• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 885
  • 716
  • 199
  • 125
  • 108
  • 96
  • 64
  • 43
  • 19
  • 19
  • 16
  • 10
  • 6
  • 6
  • 6
  • Tagged with
  • 2658
  • 914
  • 582
  • 362
  • 302
  • 295
  • 262
  • 240
  • 183
  • 168
  • 156
  • 152
  • 146
  • 142
  • 133
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
711

Nutzung armer primärer & sekundärer Rohstoffe zur Gewinnung von seltenen Metallen

Wolf, Robert 25 July 2018 (has links)
In der Dissertation wurde die Möglichkeit des gemeinsamen Recycling von Bleiglas und LCD-Glas zur Gewinnung der Hauptmetalle Blei und Indium (sowie weiterer Begleitmetalle) und die Erzeugung einer wirtschaftlich verwertbaren Glasphase untersucht. Durch die Anpassung der Glaszusammensetzung über die Zugabe von Soda und Kalk, die Einstellung der Arbeitstemperatur und die Untersuchung der prozesstechnischen Erfordernisse, wie die Trennung von Schmelzvorgang und Reduktion, konnte gezeigt werden, dass Blei zu über 98% und Indium zu über 80% aus den Schrotten gewonnen werden kann. Die erzeugte Glasphase ist durch Verdünnung mit Quarz und Feineinstellung der Zusammensetzung direkt verwendbar. Durch die Reduktion des Glases und die Kreislaufführung von zugeführtem Natriumoxid konnte gezeigt werden, dass sogar höherwertige Gläser hergestellt werden können. Die durchgeführte Wirtschaftlichkeitsbetrachtung der beiden Verfahrensalternativen bestätigte den ökonomischen Vorteil der Kreislaufführung.
712

Farbe als Herausforderung im Textilrecycling

Tomovic, Tina 30 June 2022 (has links)
Der Textilindustrie wird hinsichtlich umweltschädlicher Emissionen ein schlechtes Zeugnis ausgestellt. Bisweilen nimmt sie sogar einen unrühmlichen zweiten Platz ein und hat damit unweigerlich eine grosse Verantwortung um das global gesetzte 1,5-Grad Ziel (COP 21) zu erreichen. Konkret müssen bis 2030 die von diesem Industriezweig ausgehenden Treibhausgasemissionen um 45 % reduziert werden. Neben neuen Konsummustern und Geschäftspraktiken gilt es insbesondere die produktionsbasierten Emissionen zu vermindern (Berg, 2020).
713

Modeling You Can’t Refuse: How Recycling Policies Motivate a Transition to Circular Economy

Rousch, Katelyn 17 May 2023 (has links)
No description available.
714

Potential of chemical recyclingto improve the recycling of plastic waste / Potential för kemisk återvinningför att förbättra återvinningen av plastavfall

Solis, Martyna January 2018 (has links)
Chemical recycling can improve the plastic recycling rates and reduce the level of CO2 from fossil plasticsproduction. Thus, it is seen as an attractive technology in the action towards meeting the emission, circulareconomy and recycling targets. In the Swedish context, it could help reach the carbon neutrality goal by2045. This thesis aims to investigate the potential of chemical recycling in the Swedish plastic recyclingsystem with Brista waste-to-energy plant in Stockholm as a case study. The thesis describes different stagesof current Swedish plastic recycling system and quantifies material losses at every stage. The recycling rateof plastic packaging in the household waste stream in Stockholm was found to be lower than 7%.Remaining 93% is sent for energy recovery through incineration. The feasibility of implementing differentchemical recycling technologies is analysed together with the Technology Readiness Level (TRL). Theresults showed that there are three technologies with the highest TRL of 9: thermal cracking (pyrolysis),catalytic cracking and conventional gasification. The important parameters when implementing chemicalrecycling in an existing facility are discussed and used for the feasibility analysis of implementing thesethree technologies in Brista facility. It is not obvious which technology is the best one for this application.Gasification is proven for the production of intermediates (oil or syngas) which can be used for newplastic production, however, the scale of Brista facility is not large enough for a gasification plant to befeasible. Pyrolysis and catalytic cracking could be used at a smaller scale, but they have not contributed tothe production of new plastics so far, thus, both technologies would require further research and tests ona pilot scale before moving to commercial operation. The findings from this study have to be followed byan in-depth analysis of real data, from pilot or commercial projects, which is currently unavailable.The major challenges to implement chemical recycling of waste plastics in Sweden are of economic andpolitical nature. The key point in successful deployment of chemical recycling is the development ofa business model which would ensure that all actors along the plastic recycling chain benefit economicallyfrom the solution. For the Brista 2 plant case, the challenges include Stockholm Exergi’s insufficientexpertise to perform chemical recycling independently, uncertain feedstock purity requirements andchallenging market situation. / Kemisk återvinning har potentialen att öka återvinningsgraden av plastförpackningar och minska därmedminska klimatpåverkan från fossila plastprodukter. Således ses den som en möjlig teknik för att mötautsläpps- och återvinningsmål samt införandet av en cirkulär ekonomi. I ett svenskt sammanhang kan detbidra till att nå målet om netto noll utsläpp 2045. Denna uppsats syftar till att undersöka potentialen förkemisk återvinning i det svenska återvinningssystemet för plast, med det avfallseldade Bristaverket somfallstudie. Avhandlingen beskriver ingående led i den nuvarande svenska plaståtervinningssystem ochkvantifierar materialförluster i alla steg. Återvinningsgraden för plastförpackningar i hushållsavfalleti Stockholm visar sig vara lägre än 7%. Återstående 93% skickas för energiåtervinning genom förbränning.Analysen av olika teknologier för kemisk återvinnings genomförs med hjälp av Technology ReadinessLevel (TRL). Resultatet visar att det fanns tre teknologier med högsta TRL på 9: termisk krackning(pyrolys), katalytisk krackning och konventionell förgasning. Viktiga parametrar för kemisk återvinningkopplat till en befintlig anläggning diskuteras och används för genomförbarhetsanalys av de tre valdateknologierna genom en fallstudie vid Bristaanläggningen. Det är inte uppenbart vilken teknik som är denbästa för denna applikation. Förgasning är bevisat framgångsrik för produktion av intermediära produkter(olja eller syngas) som kan användas för ny plastproduktion, men Bristaanläggningens storlek är för litenför att en förgasningsanläggning ska varamotiverad. Pyrolys och katalytisk krackning kan användasi mindre applikationer, men de har hittills inte lyckats bidra till framställning av ny plast. Därför skullebåda teknikerna kräva ytterligare forskning och test på pilotskala innan de skalas upp till kommersiell drift.Resultaten från denna studie måste följas av en djupgående analys av verklig data, från pilotprojekt ellerkommersiella projekt, som för närvarande inte är tillgänglig.De stora utmaningarna för att genomföra kemisk återvinning av plastavfall i Sverige är av ekonomisk ochpolitisk karaktär. Nyckeln till framgångsrik spridning av kemisk återvinning är utvecklingen av enaffärsmodell som säkerställer att alla aktörer längs plaståtervinningskedjan kan dra ekonomiskt fördel avlösningen. För en anläggning i Brista finns utmaningar i form av Stockholm Exergis otillräckliga expertisinom området kemisk återvinning, osäkra råvarukrav och en utmanande marknadssituation.
715

Influences of different pre-treatments, settings and cell types on the first process stage of a mechanical recycling process for automotive lithium-ion batteries

Wilke, Christian 06 February 2025 (has links)
This thesis addresses the mechanical recycling of lithium-ion batteries, more precisely the influences on the first process stage of the process developed at TU Bergakademie Freiberg. The recycling of lithium-ion batteries becomes more important with the increasing number of electric vehicles due to the transition in the transport sector. To achieve the new recycling targets introduced by the European Union in 2023, mechanical recycling in combination with hydrometallurgical treatment is the one option that gains more and more importance. The investigated process employs a two-stage comminution, classification and separation process. This thesis focuses only on the first stage and investigates possible variations of input materials and machine settings as well as an additional subprocess and their impact on the products. The varied parameters are the depth of discharge of the battery cells, an additional thermal pre-treatment at different temperatures, a variation of the crusher discharge grid size and the drying temperature after crushing. Furthermore, the robustness of the process was tested with various cell types to ensure its effectiveness with different inputs. Generally speaking, the process consists of a comminution followed by drying and separation of the liberated coatings by sieving as so-called black mass. The coarse fraction is further treated by air classification to produce three products: separator, electrodes and casing fraction. The influence of the different parameters is analysed regarding the crushing in terms of required specific stress energy and particle size distribution of the crushing product. The products of the air classifier and the black mass are analysed regarding their composition to evaluate the product quality and to calculate the recovery rates. Finally, recommendations are given for an optimisation of this part of the mechanical recycling process.:1. Introduction 2. Lithium-ion batteries 3. Mechanical recycling of lithium-ion batteries 3.1. Legal conditions 3.2. Market situation 3.3. Health and safety 3.4. Processing 3.4.1. Discharge 3.4.2. Comminution 3.4.3. Thermal treatment 3.4.4. Separation 3.4.5. Hydrometallurgy 4. Materials, methodology and preliminary tests 4.1. Materials 4.1.1. Investigated cell types 4.1.2. Materials for preliminary tests 4.1.3. Materials used in the publications 4.2. Methodology and preliminary tests 4.2.1. Recycling process and machines 4.2.2. Analysis Methods 4.2.3. Calculations 5. Data 6. Conclusion and outlook References Publications Appendix / Die vorliegende Arbeit befasst sich mit dem mechanischen Recycling von Lithium-Ionen-Batterien, genauer gesagt mit den Einflüssen auf die erste Prozessstufe des an der TU Bergakademie Freiberg entwickelten Verfahrens. Das Recycling von Lithium-Ionen-Batterien wird mit der zunehmenden Anzahl von Elektrofahrzeugen aufgrund des Wandels im Verkehrssektor immer wichtiger. Um die neuen Recyclingziele der Europäischen Union zu erreichen, gewinnt das mechanische Recycling in Kombination mit einer hydrometallurgischen Behandlung immer mehr an Bedeutung. Der untersuchte Prozess basiert auf einem zweistufigen Zerkleinerungs- und Trennungsverfahren. Diese Arbeit konzentriert sich nur auf die Primärstufe und untersucht mögliche Variationen des Inputs und der Einstellungen sowie die Erweiterung um einen zusätzlichen Teilprozess und die sich daraus ergebenen Auswirkungen auf die Produkte. Die veränderten Parameter sind die Entladetiefe, eine zusätzliche thermische Vorbehandlung bei unterschiedlichen Temperaturen, eine Variation der Rostweite im Austrag des Zerkleinerers und die Trocknungstemperatur nach dem Zerkleinern. Zusätzlich wird der Prozess mit verschiedenen Zelltypen auf seine Robustheit bei unterschiedlichen Aufgabematerialien getestet. Der Prozess besteht aus einer Zerkleinerung mit anschließender Trocknung und einer Abtrennung der aufgeschlossenen Beschichtungen durch Absiebung als so genannte Schwarzmasse. Die Grobfraktion wird mit einer Aerostromsortierung weiterverarbeitet, um drei Produkte zu erzeugen: Separator-, Elektroden- und Gehäusefraktion. Der Einfluss der verschiedenen Parameter auf die Zerkleinerung wird im Hinblick auf die erforderliche spezifische Beanspruchungsenergie und die Partikelgrößenverteilung des Zerkleinerungsprodukts analysiert. Die Produkte des Windsichters und die Schwarzmasse werden hinsichtlich ihrer Zusammensetzung analysiert um die Produktqualität zu bewerten und das Wertstoffausbringen zu berechnen. Abschließend werden Empfehlungen für eine Optimierung des mechanischen Recyclingprozesses gegeben.:1. Introduction 2. Lithium-ion batteries 3. Mechanical recycling of lithium-ion batteries 3.1. Legal conditions 3.2. Market situation 3.3. Health and safety 3.4. Processing 3.4.1. Discharge 3.4.2. Comminution 3.4.3. Thermal treatment 3.4.4. Separation 3.4.5. Hydrometallurgy 4. Materials, methodology and preliminary tests 4.1. Materials 4.1.1. Investigated cell types 4.1.2. Materials for preliminary tests 4.1.3. Materials used in the publications 4.2. Methodology and preliminary tests 4.2.1. Recycling process and machines 4.2.2. Analysis Methods 4.2.3. Calculations 5. Data 6. Conclusion and outlook References Publications Appendix
716

New strategies for the rhodium-catalysed aqueous-biphasic hydroformylation of medium chain alkenes

Desset, Simon L. January 2009 (has links)
Aqueous-biphasic organometallic catalysis is, as illustrated by the industrial hydroformylation of propene and butene, one of the most promising ways to overcome the intrinsic problem of catalyst separation in organometallic catalysis. However, for poorly water-soluble substrates, mass transfer limitations bring the reaction rate below any that could be economically viable, greatly limiting the scope of this elegant technology. We have studied three different strategies to overcome this limitation. We developed additives that speed up the reaction whilst retaining fast phase separation and good metal retention. Evidence suggests that those additives affect the reaction by forming emulsions with poor stability under the reaction conditions These emulsions increase the interfacial surface area but break after settling for a short time. We also developed ligands that allow the catalyst to be reversibly transported between an aqueous and an organic phase upon addition and removal of carbon dioxide. This allows the reaction to be carried out under homogeneous conditions, only limited by intrinsic kinetics, and the catalyst to be separated by aqueous extraction triggered by carbon dioxide. The catalyst can be returned to a fresh organic phase by flushing out the carbon dioxide. By applying this methodology for the hydroformylation of medium chain length alkenes, very high reaction rates were obtained and the catalyst could be recycle three times with excellent retention of activity and low metal leaching. This methodology could also be reversed with the reaction being carried out in an aqueous phase in the presence of carbon dioxide and extracting the catalyst into an organic solvent using nitrogen flushing. Finally, we briefly investigated the use of an oscillatory baffled reactor as a mean for mass transfer improvement for aqueous-biphasic hydroformylation. This new type reactor did not improve the performance of the system under the investigated conditions, but may require less energy input for equivalent agitation and mixing.
717

The values of recycling, resources and risk management in Hong Kong

Wong, Wai-han, Mimi., 黃惠嫻. January 1998 (has links)
published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management
718

Waste management and its implications for environmental planning: a review of the waste management strategyfor Hong Kong

So, Wing-yeung., 蘇永揚. January 1994 (has links)
published_or_final_version / Urban Planning / Master / Master of Science in Urban Planning
719

Biophysical Characterization of SNARE Complex Disassembly Catalyzed by NSF and alphaSNAP

Winter, Ulrike 03 July 2008 (has links)
No description available.
720

Peptidoglycan recycling in the Gram-positive bacterium Staphylococcus aureus and its role in host-pathogen interaction

Dorling, Jack January 2018 (has links)
Bacteria are enclosed by a peptidoglycan sacculus, an exoskeleton-like polymer composed of glycan strands cross-linked by short peptides. The sacculus surrounds the cell in a closed bag-like structure and forms the main structural component of the bacterial cell wall. As bacteria grow and divide, cell wall remodelling by peptidoglycan hydrolases results in the release of peptidoglycan fragments from the sacculus. In Gram-negative bacteria, these fragments are efficiently trapped and recycled. Gram-positive bacteria however shed large quantities of peptidoglycan fragments into the environment. For nearly five decades, Gram-positive bacteria were thus assumed not to recycle peptidoglycan and this process has remained enigmatic until recently. In this thesis, the occurrence and physiological role of peptidoglycan recycling in the Gram-positive pathogen Staphylococcus aureus was investigated. S. aureus is an important pathogen, and is becoming increasingly resistant to many antibiotics. Through bioinformatic and experimental means it was determined that S. aureus may potentially recycle components of peptidoglycan and novel peptidoglycan recycling components were identified and characterised. Though disruption of putative peptidoglycan recycling in S. aureus appears not affect growth or gross morphology of this bacterium, potential roles for peptidoglycan recycling in cell wall homeostasis and in virulence were identified. This is to my knowledge the first demonstration of a potential role of peptidoglycan recycling in either of these aspects of bacterial physiology in any Gram-positive bacterium. This is an important step forward in understanding the basic biology of Gram-positive bacteria, and in understanding the mechanisms of virulence in S. aureus. Future study of this process in S. aureus and other Gram-positive bacteria promises to reveal yet further facets of this process and its functions, potentially leading to the identification of novel therapeutic approaches to combat infections.

Page generated in 0.0676 seconds