1 |
SERS nanosensors for intracellular redox potential measurementsAuchinvole, Craig Alexander R. January 2012 (has links)
Redox regulation and homeostasis are critically important in the regulation of cell function; however, there are significant challenges in quantitatively measuring and monitoring intracellular redox potentials. The work in this thesis details a novel approach to intracellular redox monitoring. The approach is based on the use of nanosensors, which comprise molecules capable of sensing the local redox potential, assembled on gold nanoshells. Since the Raman spectra of the sensor molecules change depending on their oxidation state, and since the nanoshells allow a large enhancement of the Raman scattering, intracellular potential can be calculated by simple optical measurements. A full description of the design, fabrication and characterisation (spectroscopic and electrochemical) of the nanosensors is provided within. The ability to deliver nanosensors into cells in a controllable fashion was confirmed using electron microscopy. Results from a range of assays are also presented which reveal that introduction of nanosensors does not result in any cytotoxicity. Sensor utility in monitoring redox potentials as cells responded to physiological and superphysiological oxidative and reductive stimuli was investigated. Importantly, the capability of the nanosensors in monitoring intracellular potentials in a reversible, non-invasive manner, and over a previously unattainable potential range, is demonstrated.
|
2 |
Computational modeling of the IL-4 pathway to understand principles of systemic redox regulation in cell signalingDwivedi, Gaurav 08 June 2015 (has links)
Elevated levels of reactive oxygen species (ROS) cause or aggravate a variety of pathological conditions such as cardiovascular disease, cancer and rheumatoid arthritis. Despite known links between oxidative stress and disease, years of clinical studies have failed to show clear benefits of antioxidant therapy. It is now recognized that ROS such as hydrogen peroxide can act as signaling molecules and are required for physiological functioning of a number of signaling pathways. Therefore, a mechanistic basis of ROS-mediated regulation of cell signaling must be established to enable rational design of antioxidant-based therapies.
The challenges in quantification of transient changes mediated by ROS during cell signaling have impeded investigation of redox-regulated signaling. In the present work, computational modeling is used to circumvent these technical challenges and to test competing hypotheses of redox regulation. Using a quantitative, systems level approach to study interactions between ROS dependent and independent regulatory mechanisms, the most comprehensive model of the IL-4 signaling pathway to date has been developed and validated with experimental data. The model is capable of predicting kinase phosphorylation dynamics under new oxidative conditions, and our analyses suggest that reversible oxidation of tyrosine phosphatases is the primary mechanism of redox regulation in this pathway. Additional computational methods have been developed to study ROS as mediators of crosstalk between signaling pathways, to optimize model parameters, and to interrogate model dynamics for the purpose of model selection. Collectively, these modeling tools provide a new systems-level perspective for investigating reversible protein oxidation as a means of control over cellular signal transduction.
|
3 |
Genome Maintenance by Selenoprotein H in the NucleolusZhang, Li 08 December 2017 (has links)
Selenoprotein H (SELENOH) is a nucleolar oxidoreductase with DNA binding properties whose function is not well understood. To determine the functional and physiological roles of SELENOH, a knockout of SELENOH was generated in cell lines using CRISPR/Cas9-mediated genomic deletion and in mice by targeted disruption. Based on the sequenced genome, the results of deduced protein sequences indicated various forms of mutants in the CRISPR/Cas9-mediated knockout, including a frame-shift by aberrant splicing and truncated SELENOH by early termination of the translation process. Loss of SELENOH in HeLa cells induced slow cell proliferation, the formation of giant multinucleated cells, accumulation of unrepaired DNA damage and oxidative stress, and cellular senescence. SELENOH cells were enlarged and possessed a single large nucleolus. Atomic force microscope showed increased stiffness in the nucleoli of SELENOH knockout cells, which suggests that SELENOH maintains the flexible structure of the nucleolus. Furthermore, the knockout of SELENOH led to a large-scale reorganization of the nucleolar architecture with the movement of nucleolar protein into nucleolar cap regions in response to oxidative stress. The nucleolar reorganization is dependent on ATM signaling. Altogether, results suggest that SELENOH appears to be a sensor of oxidative stress that plays critical roles in redox regulation and genome maintenance within the nucleolus. To determine the physiological role of SELENOH in vivo, Selenoh knockout mice were generated by targeted deletion through homologous recombination. Selenoh+/− mice were fertile and phenotypically indistinguishable from wild-type littermates. Results from matings of Selenoh+/− mice showed a significantly reduced fraction of Selenoh−/− offspring on the basis of Mendelian segregation. Since some Selenoh−/− were born, it is likely that Selenoh is a partially essential gene in mice. Live-born Selenoh−/− mice were viable and born without apparent phenotypes. Selenoh−/− mice at 2-month of age showed increased GPX activity in the lung but not in the brain and liver. Furthermore, loss of Selenoh resulted in the aggravated formation of aberrant crypt foci in the colon of Selenoh+/− mice that were injected with azoxymethane. Altogether, SELENOH has critical roles in embryogenesis and colorectal carcinogenesis.
|
4 |
Investigating the role of cell-autonomous ROS status in the regulation of hippocampal neural precursor cells in adult miceAdusumilli, Vijaya 16 November 2020 (has links)
Adult hippocampal neurogenesis entails a continued recruitment of neural precursor cells (NPCs) into active cell cycle and their progressive transition into post-mitotic granule cells. These adult born neurons integrate into the existing circuitry and confer structural plasticity, which aids in key hippocampal functions. For sustained neurogenesis, the cell cycle entry of the NPCs has to be tightly controlled. Environmental cues strongly, and differentially, regulate this checkpoint. Voluntary physical activity represents such an established strong stimulus that results in enhanced proliferation within the neurogenic niche. However, mechanistic insights into the maintenance and regulation of quiescence and the responsiveness of the NPCs to acute physical activity, as a form of adaptive neurogenesis, are yet to be elucidated. In my doctoral studies, we identified redox regulation as a key pathway regulating the cellular state equilibrium. I further explored the role of cellular oxidative stress in the neurogenic course and in adaptive neurogenic responses. Our results show that non-proliferative precursors within the hippocampal dentate gyrus, unlike in other stem cell systems, are marked by high levels of cellular reactive oxygen species (ROS). Using cytometric methodologies, ex vivo bioassays and transcriptional profiling, we revealed that classifying cells based on intracellular ROS content identified functionally defined sub-populations of adult NPCs. We propose that a drop in intracellular ROS content precedes the transition of cellular states, specifically from quiescence to active proliferation. Acute physical activity involves the activation of non- proliferating cells through a transient Nox2-dependent ROS surge in high-ROS, quiescent NPCs. In the absence of Nox2, baseline neurogenesis was unaffected, but the activity- dependent response was abolished. These findings shed new light on the discrete cellular events, which maintain the homeostasis between distinct cellular states of NPCs within the adult murine hippocampus.:Zusammenfassung 3
Summary 4
Acknowledgements 5
Index 8
List of figures 10
List of tables 11
Abbreviations 12
Publications 14
Introduction 15
Adult hippocampal neurogenesis 16
Adult subventricular neurogenesis 21
Methods to study adult neurogenesis 23
Environmental regulation of neurogenesis 26
Redox regulation in a stem cell 29
Working hypothesis 31
Specific aims 31
Materials and methods 32
Mice 34
Physical activity paradigm 35
Thymidine labelling and tissue preparation 35
Fluorescence immunohistochemistry 35
DG and SVZ dissection and dissociation 36
Flow cytometry 36
Gating for ROS classes 36
Neurosphere culture 37
Generation of monolayer culture 37
Inducing quiescence through BMP4 treatment 38
Next Generation sequencing (NGS) 38
RNA extraction 38
Quality control and differential expression 39
Functional enrichment and expression profiles 41
RNA isolation and quantitative RTPCR (qRT-PCR) 43
Ki67 immunochemistry and quantification of in vivo proliferation 45
Quantification and statistical analysis 46
Data and software availability 48
Results 49
Intracellular ROS content functionally delineates subpopulations of neural precursor cells 49
Resolution of ROS profiles of DG and SVZ and neurosphere bioassay 49
Distribution of Nes-GFP cells into different ROS classes 54
Neural precursors of the different ROS classes have distinct molecular profiles 55
Changes in intracellular ROS content precede cell fate changes 65
ROS profiling of other cell types within the DG 70
ROS profiling of Astrocytes and type-1 cells 70
ROS profiling of Doublecortin (Dcx)positive cells of the neurogenic lineage 74
ROS profiling of microglial cells within the DG 77
Resolving the response of Nes-GFP subpopulations to environmental stimulus 78
Nes-GFP+ cells of the hiROS class specifically respond to physical activity 81
Changes in ROS content are not driven by mitochondrial activity 83
In vitro monolayer culture of NPCs as an independent corroboration 86
Discussion 89
The organization of an active stem cell niche with respect to redox content 89
Cytometric classification of cells within the DG 91
Establishing the cellular states of redox defined subsets of Nes-GFP+ adult precursors within the DG 95
Timeline of baseline proliferation within precursors and identifying the subset of precursors responsive to de novo physical activity 97
Monolayer culture to study cellular states and redox regulation 100
Nox2 dependency as a discriminatory feature of adaptive neurogenesis 101
Conclusion 103
References 104
Declarations 122
Anlage 1 122
Anlage 2 124
|
5 |
Redox-Regulation der Enzyme Glutamyl-tRNA-Reduktase (GluTR) und 5-Aminolävulinsäure-Dehydratase (ALAD) in Arabidopsis thalianaWittmann, Daniel Thomas 22 March 2022 (has links)
Die für Pflanzen lebenswichtige Synthese von Tetrapyrrolen bedarf einer fein justierten Anpassung an die Umweltbedingungen und erfolgt auf transkriptioneller und post-translationaler Ebene. In den Chloroplasten hat sich die Regulation von Enzymen über ihren Redox-Status als probates Mittel zur Koordination der photosynthetischen Energiegewinnung und des Metabolismus erwiesen. Die bei der Photosynthese generierten Reduktionsäquivalente werden zum Teil über die Ferredoxin-Thioredoxin-Reduktase auf eine Vielzahl plastidärer Thioredoxine (TRX) übertragen, welche Disulfidbrücken ihrer Zielproteine reduzieren können. Unter den Enzymen der Tetrapyrrolbiosynthese (TBS) wurden bisher mehrere TRX-Interaktionspartner identifiziert, darunter die Glutamyl-tRNA-Reduktase (GluTR) und die 5-Aminolävulinsäure-Dehydratase (ALAD). In Arabidopsis Mutanten, in denen die NADPH-abhängige Thioredoxin-Reduktase (NTRC) oder f- und m-Typ-TRX fehlen, konnten verringerte Chlorophyll- und Hämgehalte beobachtet werden. Diese ließen sich auf die verringerte Stabilität verschiedener TBS-Enzyme in den Mutanten zurückführen, darunter auch die GluTR und ALAD. Die Relevanz der Cysteine (Cys, C) für die Regulation der GluTR1-Stabilität wurde in vivo über transgene Arabidopsis Cys➔Serin (Ser, S)-Substitutionslinien untersucht. Dabei erwies sich GluTR1(C464S) stärker vor dem Abbau über die kaseinolytische Protease (Clp) geschützt als das WT-Protein. Eine intermolekulare Disulfidbrücke zwischen den beiden Cys464-Resten des GluTR1-Homodimers wird daher als Abbausignal postuliert. Mit Hilfe der rekombinanten ALAD1(Cys➔Ser)-Substitutionsmutanten konnte gezeigt werden, dass nicht nur die Stabilität, sondern auch die Aktivität der ALAD1 in vitro vom Redox-Status des Enzyms abhängig ist. Die ALAD1(Cys➔Ser)-Substitutionsmutanten konnten über Enzymaktivitäts- und gel shift-Assays unter oxidierenden und reduzierenden Bedingungen zur Identifizierung der redox-sensitiven Cys beitragen. / The synthesis of tetrapyrroles, such as chlorophyll, is vital for plants and requires a finetuned regulation. The control mechanisms involved in tetrapyrrole biosynthesis (TBS) take place both on transcriptional and post-translational levels. A broadly spread post-translational regulatory mechanism in the chloroplast involves the reduction of inter- or intramolecular disulfide bonds of redox-sensitive target enzymes by thioredoxins (TRX). Thereby the coupling of photosynthetic energy production with several energy-consuming metabolic processes can be accomplished. The reduction of disulfide bonds in redox-sensitive enzymes was previously shown to lead usually to their activation. Regarding the TBS, several TRX interacting proteins have been identified, including glutamyl-tRNA-reductase (GluTR) as well as the 5-aminolevulinic acid dehydratase (ALAD). Through the detailed and combined analysis of mutants with deficient NADPH-dependent thioredoxin reductase C (NTRC), TRX-f and TRX-m, a correlation became evident between decreased chlorophyll and heme levels of the mutants and lower amounts of several TBS enzymes, including GluTR and ALAD. For GluTR1, transgenic Arabidopsis cysteine (Cys, C) ➔ serine (Ser, S) substitution lines were generated and analyzed to identify the redox-sensitive Cys residues in vivo. In these studies, GluTR1(C464S) was shown to be better protected from degradation by the caseinolytic protease (Clp) than the GluTR1 WT protein. Thus, an intermolecular disulfide bond between the Cys464 residues in the dimerization domain of the GluTR1 homodimer is postulated to serve as a degradation signal under oxidizing conditions. However, it was shown by activity- and gel shift-assays with recombinant ALAD1(Cys➔Ser) substitution mutants that not only the stability, but also the in vitro activity of ALAD1 depends on the enzyme's redox state. Redox-sensitive inter- and intramolecular disulfide bridges of ALAD1 were identified among Cys71, Cys152 and Cys251.
|
6 |
Enzymologie des étapes clés de régulation du système Peroxyrédoxine / Sulfirédoxine dans le contexte de la signalisation cellulaire redox / Enzymology of the key steps regulating Peroxiredoxin / Sulfiredoxin system in the context of redox cell signalingBoukhenouna, Samia 17 November 2014 (has links)
Les peroxyrédoxines (Prx) sont des peroxydases à thiol, ubiquitaires, qui jouent un rôle central dans la physiologie du peroxyde d’hydrogène. Une famille de Prx dite "2-Cys-Prx typique" possède une propriété unique de suroxydation de la Cys catalytique sous forme acide sulfinique, qui constitue un mécanisme de régulation des fonctions des 2-Cys-Prx typiques en tant que peroxydase, capteur de peroxyde ou protéine chaperon. La réduction des 2-Cys-Prx typiques suroxydées est catalysée par la Sulfirédoxine (Srx), une sulfinyl réductase ATP-dépendante dont la constante catalytique est de l’ordre de 1-2 min-1, une valeur faible qui doit être corrélée au rôle de Srx dans la régulation redox. L’objectif de ce travail était d’analyser l’enzymologie de la régulation du système Prx/Srx au niveau, du processus de suroxydation des 2-Cys-Prx typiques, de l’étape limitante de la Srx, et de son recyclage par les systèmes redox cellulaires. Dans un premier temps, nous avons caractérisé les deux étapes du cycle catalytique de la 2-Cys-Prx typique majeure de S. cerevisiae Tsa1, dont la compétition contrôle la sensibilité à la suroxydation, par une stratégie combinant cinétiques rapides, système enzymatique couplé et modélisation cinétique. Ces travaux suggèrent que cette compétition est contrôlée par une réorganisation conformationnelle au cours du cycle catalytique de la Tsa1. Dans un second temps, l’étude de la première étape du mécanisme catalytique de Srx, qui consiste en l’activation ATP-dépendante du groupement acide sulfinique de la 2 Cys-Prx a permis, i) de montrer que l’étape limitante de la réaction catalysée par Srx était associée au processus chimique de transfert de phosphate, et ii) de proposer un modèle d’assemblage du complexe Michaelien Prx/Srx/ATP formé lors de ce processus. Enfin, par une approche combinant cinétiques enzymatiques in vitro et génétique de la levure in vivo, nous avons établi que le mécanisme de recyclage des Srx à 1 Cys existant chez les plantes ou les mammifères implique le rôle du glutathion comme réducteur cellulaire, contrairement à la Srx de S. cerevisiae qui est recyclée par le système thiorédoxine. De façon inattendue, la spécificité du glutathion dans ce mécanisme est assurée par un événement de reconnaissance au sein du complexe Prx/Srx / The peroxiredoxins (Prx) are ubiquitous thiol peroxidases, which play a central role in the physiology of hydrogen peroxide. A subclass of Prx called "typical 2-Cys-Prx" has a unique property to hyperoxidize the catalytic Cys into the sulfinic acid form, which acts as a regulation mechanism of their functions, as peroxidase, peroxide sensor or protein chaperone. The reduction of the overoxidized form is catalyzed by sulfiredoxin (Srx), an ATP-dependent sulfinyl reductase whose catalytic constant is about 1-2 min-1, a low value that must be correlated to the role of Srx in redox regulation. The aim of this study was to analyze the enzymology of the regulation of the Prx/Srx system at three diffrents points of control: the hyper-oxidation process of typical 2-Cys-Prx, the rate-limiting step of the Srx mechanism and the recycling step of Srx by the cellular thiol redox systems. We have first characterized the competition mechanism between the two steps of the catalytic mechanism of the major typical 2-Cys-Prx of S. cerevisiae, Tsa1, through a strategy combining rapid kinetics, coupled enzyme system and kinetic modelling analysis. This work suggests that the sensitivity to hyper-oxidation is controlled by a conformational reorganization during the catalytic cycle of Tsa1. Next, the study of the first step of Srx catalytic mechanism, which involves the ATP-dependent activation of the sulfinic acid form of typical 2-Cys Prx i) has shown that the rate-limiting step is associated with the chemical phosphate transfer process, and ii) provided an assembly model of the Michaelien complex Prx/Srx/ATP, formed during this process. Finally, through the combination of in vitro enzyme kinetics and in vivo yeast genetic tools, we established that the recycling mechanism of one Cys Srx, existing in plants or mammals, involves the glutathione (GSH) as reducer in cells, contrary to the Srx from S. cerevisiae, which is recycled by the Thioredoxin system. Unexpectedly, our study suggests that GSH binds the thiolsulfinate complex, confirming the role of GSH as the primary reducing system of 1-Cys-Srx
|
7 |
Characterization of the Molecular Chaperone Get3Voth, Wilhelm 20 September 2016 (has links)
No description available.
|
8 |
Cardiovascular regulation by Kvβ1.1 subunitTur, Jared 28 October 2016 (has links)
Heterologous expression systems such as COS-7 cells have demonstrated the profound effects of KCNAB1-3 or Kvβ1-3 proteins on voltage gated potassium channels (Kv) channels. Indeed, in the presence of these β-subunits transiently expressed Kv channels are often modulated in multiple ways. Kv channel membrane expression is often increased in the presence of β-subunits. In addition, non-inactivating Kv currents suddenly become fast-inactivating and fast-inactivating channels become even faster. While much research has demonstrated the profound effects the β-subunits in particular the Kvβ1 subunit have on transiently expressed Kv currents little to date is known of the physiological role it may play. One study demonstrated that by “knocking out” Kvβ1 cardiomyocyte current changes were noted including a decrease in the Ito,f current. While this novel finding demonstrated a key cardiac physiological role of the Kvβ1 subunit it left many unanswered questions as to determine the cardiovascular regulation the Kvβ1 subunit provides. Indeed, cardiac arrhythmias and other electrical abnormalities within the heart such as long QT present patients with many unfortunate unknowns. Many of these incidences occur often abruptly with cardiac electrical abnormalities. Genetic research has begun to shine light on key cardiovascular genes in particular those coding for ion channels and auxiliary subunits or β-subunits. Kv channels and their β-subunits have gained particular notoriety in their key responsibility in restoring the resting membrane potential known as the repolarization phase. Indeed genetic manipulation and physiological examination of Kv channels and recently their β-subunits has demonstrated profound physiological results including prolonged QT durations within mice altered functional activity during physiological cycles such as estrus. While initial findings of Kvβ1 have demonstrated profound cellular and cardiomyocyte current alterations much still remains unknown. Therefore, this work hypothesizes that the Kvβ1 subunit provides a profound cardiovascular role in regulation and redox sensing at the physiological and pathophysiological level in both males and females. This work identifies a sex-based difference in cardiovascular regulation by Kvβ1 as well as demonstrated a profound redox sensing ability during altered metabolic states seen in pathophysiological conditions.
|
9 |
Characterization of the DNA-Binding Properties of the Cyanobacterial Transcription Factor NtcAWisén, Susanne January 2003 (has links)
<p>Nitrogen is an essential building block of proteins and nucleic acids and, therefore, crucial for the biosphere. Nearly 79 % of the air consists of nitrogen, but in the form of nitrogen gas (N<sub>2</sub>), which cannot be utilized by most organisms. Nitrogen-fixing microorganisms such as cyanobacteria have a central role in supplying biologically useful nitrogen to the biosphere. Therefore, it is important to achieve further understanding of control mechanisms involved in nitrogen fixation and related processes. </p><p>This thesis concerns different molecular aspects of the transcription factor NtcA from the heterocystous cyanobacterium <i>Anabaena</i> PCC 7120. Apart from performing oxygenic photosynthesis, <i>Anabaena</i> PCC 7120 is also capable of fixing nitrogen. NtcA is a protein regulating transcription of a wide range of genes and in particular genes involved in cyanobacterial global nitrogen control. NtcA binds as a dimer to the promoter regions of target genes such as those involved in nitrogen fixation and heterocyst differentiation. </p><p>NtcA from <i>Anabaena</i> PCC 7120 was heterologously expressed in <i>E. coli</i> and a high yield of recombinant protein was achieved through purification by Ni-IMAC chromatography. The purified NtcA was used to examine DNA binding motifs preferred by NtcA <i>in vitro </i>using a semi-random library of DNA sequences. The preferred binding sequence for NtcA is TGTA – N<sub>8</sub> – TACA and at least five of the bases in the palindromic binding site are necessary for binding. Differences in the consensus sequence in vivo may reflect variations in the structural conformation of NtcA under various physiological conditions. </p><p>Since an earlier study suggested redox-regulated NtcA-DNA binding the role of the two cysteine residues of NtcA were investigated. Binding studies using three mutants, Cys157Ala, Cys164Ala, and Cys157Ala / Cys164Ala, demonstrated that all these NtcA variants bind to DNA with a slightly higher affinity in the presence of the reducing agent DTT. The studies indicate that the binding mechanism is not dependent on a conformational change of NtcA caused by breaking of intra-molecular disulfide bonds. </p><p>Crystallization followed by structural studies rendered a partial crystal structure of NtcA. The structure verifies that NtcA is a dimeric protein. Each subunit has three domains: the N-terminal domain, a dimerization helix connecting the N-terminal domain with the C-terminal domain, as well as making up the dimer interface, and a C-terminal domain including the DNA binding helix-turn-helix motif.</p><p>Furthermore, an NtcA binding site was found in the promoter region of the<i> hupSL</i> gene, encoding an uptake hydrogenase in <i>Nostoc punctiforme</i> (ATCC 29133), indicating that yet another gene is transcriptionally controlled by NtcA, thereby further emphasizing the multifaceted role of NtcA in cyanobacteria.</p>
|
10 |
Die Hemmung der Bildung des Interleukin-1-Rezeptorkomplexes als redoxregulierter antiinflammatorischer Mechanismus / The inhibition of the Interleukin-1 receptor complex formation as a redox regulated antiinflammatory mechanismJurrmann, Nadine January 2006 (has links)
Das proinflammatorische Zytokin Interleukin-1 (IL-1) spielt eine zentrale Rolle bei Entzündungen und Infektionen. Die zellulären Antworten von IL-1 werden über den IL-1-Rezeptor Typ I (IL-1RI) vermittelt. Adapterproteine und die IL-1RI-assoziierte Kinase IRAK werden nach Ligandenbindung an den Rezeptor rekrutiert. Nach ihrer Phosphorylierung dissoziiert die IRAK vom IL-1RI-Komplex und aktiviert weitere Kinasen, was letztendlich zur Aktivierung von NF-κB und zur Induktion der Transkription von Genen führt. Für eine adäquate Immunantwort ist ein intrazellulärer reduzierter Status von Proteinthiolen essentiell. Vorausgegangene Untersuchungen an der murinen Thymomzelllinie EL-4 zeigten, dass die IL-1-Signalkaskade durch thiolmodifizierende Substanzen wie Menadion (MD) oder Phenylarsinoxid (PAO) gehemmt wird. Eine IL-1-abhängige Aktivierung von IL-1RI-assoziierte Kinasen oder NF-κB fand nicht mehr statt.<br><br>
Ziele dieser Arbeit waren: (i) mögliche Proteine, die für den Angriff von thiolmodifizierenden Agenzien ein Ziel sein könnten, zu identifizieren und (ii) den Einfluss nahrungsrelevanter und redoxaktiver Substanzen auf frühe Ereignisse der IL-1-Signaltransduktion wie der Bildung des IL-1RI-Komplexes zu untersuchen. Als Zellmodell wurden EL-4-Zellen mit stabil überexprimierter IRAK (EL-4<sup>IRAK</sup>) verwendet. Um die Bildung des IL-1RI-Komplexes, anschließende Phosphorylierungsereignisse und somit Kinase-Aktivitäten nachzuweisen, wurden Co-Präzipitations-Experimente und <i>in vitro</i> Kinase Tests durchgeführt. Die Markierung von Proteinthiolen erfolgte mit dem thiolspezifischen Reagenz Iodoacetyl-[<sup>125</sup>I]-Iodotyrosin ([<sup>125</sup>I]-IAIT).<br><br>
Die Vorbehandlung von EL-4<sup>IRAK</sup>-Zellen mit MD oder PAO führte zu einer Hemmung der Rekrutierung der IRAK an den IL-1RI und der anschließenden Phosphorylierungen. Zur Identifikation weiterer IL-1RI-assoziierter Proteine wurden IL-1RI-Immunpräzipitate zweidimensional aufgetrennt, Colloidal-Coomassie gefärbte Proteinspots ausgeschnitten und anschließend massenspektrometrisch mittels ESI-Q-TOF analysiert. Bei der Analyse wurden Proteine des Cytoskeletts wie z. B. Actin identifiziert.<br><br>
In Analogie zu den synthetischen Substanzen MD und PAO wurden nahrungsrelevante und redoxaktive Substanzen wie Curcumin (Gelbwurz) und Sulforaphan (Broccoli) eingesetzt, um zu untersuchen, ob sie bereits früh die IL-1-Signaltransduktion beeinflussen. Bislang sind antiinflammatorische Effekte dieser beiden Nahrungsinhaltsstoffe nur auf der Ebene der Zytokin-vermittelten Aktivierung von NF-κB beschrieben. Sowohl Curcumin als auch Sulforaphan blockierten konzentrationsabhängig die Assoziation der IRAK an den IL-1RI in EL-4<sup>IRAK</sup>-Zellen, wobei beide Substanzen unterschiedlich wirkten. Curcumin beeinflusste die IRAK-Aktivierung durch direkte Modifikation von Thiolen der IRAK ohne die Bindung von IL-1 mit dem IL-1RI zu beeinträchtigen. Sulforaphan hingegen induzierte auf mRNA- und Proteinebene die Expression von Tollip, welches durch PCR bzw. Western Blot nachgewiesen wurde. Tollip, ein negativer Regulator in TLR/IL-1RI-Signalkaskaden, könnte somit nach Induktion die IRAK-Aktivierung unterdrücken. Die Sulforaphan-abhängige Induktion der Tollip-Expression erfolgte jedoch nicht über Nrf2 und "antioxidant response element" (ARE)-regulierte Transkription, obwohl Sulforaphan ein bekannter Nrf2-Aktivator ist.<br><br>
Diese Ergebnisse veranschaulichen, dass die IRAK ein redoxsensitives Protein ist und für die Bildung des IL-1RI-Komplexes reduzierte Proteinthiole eine Voraussetzung sind. Der Angriffspunkt für die antiinflammatorische Wirkung der beiden Nahrungsbestandteile Curcumin und Sulforaphan ist die Bildung des IL-1RI-Komplexes als ein frühes Ereignis in der IL-1-Signalkaskade. Die Hemmung dieses Prozesses würde die in der Literatur beobachteten Inhibitionen der abwärts liegenden Signale wie die Aktivierung von NF-κB und die Induktion proinflammatorischer Proteine erklären. / The pro-inflammatory cytokine Interleukin-1 (IL-1) generates cellular responses in infection and inflammation. Effects of IL-1 are mediated by the IL-1-receptor type I (IL-1RI). Following ligand binding the IL-1RI-associated kinase IRAK is recruited to the IL-1RI. After phosphorylation and dissociation of IRAK from the receptor different adapter proteins and kinases are activated finally leading to translocation of NF-κB into the nucleus and induction of gene expression. An intracellular reduced state of cysteine residues (thiols) of proteins is necessary for an appropriate IL-1 response. It was shown recently, that preincubation of murine thymoma EL-4 cells with the thiol modifying agents menadione (MD) or phenylarsine oxide (PAO) completely abolished e. g. the IL-1-induced activation of NF-κB. <br><br>
The question to answer therefore was: (i) what are the proteins requiring free thiols and (ii) is the complex formation also influenced by dietary compounds exhibiting anti-inflammatory effects and being able to react with thiols in proteins. As a model the EL-4-cell line stably overexpressing IRAK (EL-4<sup>IRAK</sup>) was used. Recruitment of IRAK was followed by its co-precipitation with the IL-1RI by means of Western blotting with an IRAK antibody. IRAK phosphorylation was demonstrated by in vitro kinase assays with the co-precipitates. Free thiols of IL-1RI complex-associated proteins were made visible by Iodo-acetyl-[<sup>125</sup>I]-Iodotyrosine ([<sup>125</sup>I]-IAIT). <br><br>
By combining these methods with pretreatment of cells with MD or PAO, inhibition of recruitment of IRAK was identified as the first step in the IL-1 signaling cascade sensitive to thiol modification. To detect further redox-sensitive IL-1RI-associated proteins, receptor immunoprecipitates were separated by two dimensional gel electrophoresis and protein spots were analyzed by ESI-Q-TOF. In this way proteins of the cytoskeleton, including actin, were identified. <br><br>
In addition to the synthetical compounds MD or PAO the effects of dietary agents were investigated on the IL-1 signaling pathway. Curcumin as a component of turmeric and sulforaphane from broccoli have been described to be redox-active and anti-inflammatory by an impairment of late events in IL-1- and Toll-like receptor (TLR) signaling. Increasing doses of curcumin and sulforaphane blocked the recruitment of IRAK to the IL-1RI in EL-4<sup>IRAK</sup> cells, but these dietary compounds acted by different mechanisms. Curcumin exerted this inhibition not due to an interference with ligand binding to the receptor, it rather modified protein thiols of IRAK. In contrast, sulforaphane had an indirect effect by an induction of Tollip expression, as shown by mRNA (PCR) and protein (Western blot) analysis. Tollip is known as a negative regulator of IL-1- and TLR-mediated signaling and enhanced expression of Tollip mediated by sulforaphane might therefore inhibit IRAK activation. The induction of Tollip expression was not initiated by Nrf2 and antioxidant response element (ARE)-regulated transcription, which is known to be activated by sulforaphane. <br><br>
These results demonstrate that IRAK is a redox-sensitive protein and the complex formation requires a reduced state of proteins involved. Curcumin and sulforaphane act anti-inflammatory by blocking IL-1 signaling pathway at the most early step, explaining its inhibitory effect on further downstream events in pro-inflammatory pathways.
|
Page generated in 0.1168 seconds