• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 3
  • 2
  • 1
  • Tagged with
  • 54
  • 54
  • 53
  • 19
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Conception de systèmes cobotiques industriels : approche robotique avec prise en compte des facteurs humains : application à l'industrie manufacturière au sein de Safran et ArianeGroup / Industrial cobotic system design : robotics approach and taking into consideration human factors : practical application to manufacturing within Safran and ArianeGroup

Bitonneau, David 25 May 2018 (has links)
La cobotique est un domaine émergeant qui offre de nouvelles perspectives pour améliorer la performance des entreprises et la santé des hommes au travail, en alliant l'expertise et les capacités cognitives des opérateurs aux atouts des robots. Dans cette thèse la cobotique est positionnée comme le domaine de la collaboration homme-robot. Nous définissons les systèmes cobotiques comme des systèmes au sein desquels l'homme et le robot interagissent pour réaliser une tâche commune.Cette thèse d'ingénierie robotique a été réalisée en binôme avec Théo Moulières-Seban, doctorant en cognitique. Ces deux thèses Cifre ont été menées avec Safran et ArianeGroup qui ont reconnu la cobotique comme stratégique pour le développement de leur compétitivité. Pour étudier et développer les systèmes cobotiques, nous avons proposé conjointement une approche méthodologique interdisciplinaire appliquée à l'industrie et validée par nos encadrants académiques. Cette approche offre une place centrale à l'intégration des futurs utilisateurs dans la conception, à travers l'analyse de leur activité de travail et la réalisation de simulations participatives. Nous avons déployé cette démarche pour répondre à différents besoins industriels concrets chez ArianeGroup.Dans cette thèse, nous détaillons la conception d'un système cobotique pour améliorer la santé et la sécurité des opérateurs sur le poste de nettoyage des cuves de propergol. Les opérations réalisées sur ce poste sont difficiles physiquement et présentent un risque pyrotechnique. Conjointement avec l'équipe projet ArianeGroup, nous avons proposé un système cobotique de type téléopération pour conserver l'expertise des opérateurs tout en les plaçant en sécurité pendant la réalisation des opérations pyrotechniques. Cette solution est en cours d'industrialisation dans la perspective de la production du propergol des fusées Ariane.L'application de notre démarche d'ingénierie des systèmes cobotiques sur une variété de postes de travail et de besoins industriels nous a permis de l'enrichir avec des outils opérationnels pour guider la conception. Nous prévoyons que la cobotique soit une des clés pour replacer l'homme au cœur des moyens de production dans le cadre de l'Usine du futur. Réciproquement, l'intégration des opérateurs dans les projets de conception sera déterminante pour assurer la performance et l'acceptation des futurs systèmes cobotiques. / Human Robot Collaboration provides new perspectives to improve companies' performance and operators' working conditions, by bringing together workers expertise and adaptation capacity with robots' power and precision. In this research, we introduce the concept of "cobotic system", in which humans and robots -- with possibly different roles -- interact, sharing a common purpose of solving a task.This robotic engineering PhD thesis has been completed as a team with the cognitive engineer Théo Moulières-Seban. Both PhD thesis were conducted under the leadership of Safran and ArianeGroup, which have recognized Human Robot Collaboration has strategic for their industrial performance. Together, we proposed the "cobotic system engineering": a cross-disciplinary approach for cobotic system design. This approach was applied to several industrial needs within ArianeGroup.In this thesis, we detail the design of a cobotic system to improve operators' health and safety on the "tank cleaning" workstation. We have proposed a teleoperation cobotic system to keep operators' expertise while placing them in a safe place to conduct operations. This solution is now under an industrialization phase for the production of Ariane launch vehicles.We argue that thanks to their flexibility, their connectivity to modern workshops' technological ecosystem and their ability to take humans into account, cobotic systems will be one of the key parts composing the Industry 4.0.
22

Inferring intentions through state representations in cooperative human-robot environments / Déduction d’intentions au travers de la représentation d’états au sein des milieux coopératifs entre homme et robot

Schlenoff, Craig 30 June 2014 (has links)
Les humains et les robots travaillant en toute sécurité et en parfaite harmonie dans un environnement est l'un des objectifs futurs de la communauté robotique. Quand les humains et les robots peuvent travailler ensemble dans le même espace, toute une catégorie de tâches devient prête à l'automatisation, allant de la collaboration pour l'assemblage de pièces, à la manutention de pièces et de materiels ainsi qu'à leur livraison. Garantir la sûreté des humains nécessite que le robot puisse être capable de surveiller la zone de travail, déduire l'intention humaine, et être conscient suffisamment tôt des dangers potentiels afin de les éviter.Des normes existent sur la collaboration entre robots et humains, cependant elles se focalisent à limiter les distances d'approche et les forces de contact entre l'humain et le robot. Ces approches s'appuient sur des processus qui se basent uniquement sur la lecture des capteurs, et ne tiennent pas compte des états futurs ou des informations sur les tâches en question. Un outil clé pour la sécurité entre des robots et des humains travaillant dans un environnement inclut la reconnaissance de l'intention dans lequel le robot tente de comprendre l'intention d'un agent (l'humain) en reconnaissant tout ou partie des actions de l'agent pour l'aider à prévoir les actions futures de cet agent. La connaissance de ces actions futures permettra au robot de planifier sa contribution aux tâches que l'humain doit exécuter ou au minimum, à ne pas se mettre dans une position dangereuse.Dans cette thèse, nous présentons une approche qui est capable de déduire l'intention d'un agent grâce à la reconnaissance et à la représentation des informations de l'état. Cette approche est différente des nombreuses approches présentes dans la littérature qui se concentrent principalement sur la reconnaissance de l'activité (par opposition à la reconnaissance de l'état) et qui « devinent » des raisons pour expliquer les observations. Nous déduisons les relations détaillées de l'état à partir d'observations en utilisant Region Connection Calculus 8 (RCC-8) et ensuite nous déduisons les relations globales de l'état qui sont vraies à un moment donné. L'utilisation des informations sur l'état sert à apporter une contribution plus précise aux algorithmes de reconnaissance de l'intention et à générer des résultats qui sont equivalents, et dans certains cas, meilleurs qu'un être humain qui a accès aux mêmes informations. / Humans and robots working safely and seamlessly together in a cooperative environment is one of the future goals of the robotics community. When humans and robots can work together in the same space, a whole class of tasks becomes amenable to automation, ranging from collaborative assembly to parts and material handling to delivery. Proposed standards exist for collaborative human-robot safety, but they focus on limiting the approach distances and contact forces between the human and the robot. These standards focus on reactive processes based only on current sensor readings. They do not consider future states or task-relevant information. A key enabler for human-robot safety in cooperative environments involves the field of intention recognition, in which the robot attempts to understand the intention of an agent (the human) by recognizing some or all of their actions to help predict the human’s future actions.We present an approach to inferring the intention of an agent in the environment via the recognition and representation of state information. This approach to intention recognition is different than many ontology-based intention recognition approaches in the literature as they primarily focus on activity (as opposed to state) recognition and then use a form of abduction to provide explanations for observations. We infer detailed state relationships using observations based on Region Connection Calculus 8 (RCC-8) and then infer the overall state relationships that are true at a given time. Once a sequence of state relationships has been determined, we use a Bayesian approach to associate those states with likely overall intentions to determine the next possible action (and associated state) that is likely to occur. We compare the output of the Intention Recognition Algorithm to those of an experiment involving human subjects attempting to recognize the same intentions in a manufacturing kitting domain. The results show that the Intention Recognition Algorithm, in almost every case, performed as good, if not better, than a human performing the same activity.
23

A HUB-CI MODEL FOR NETWORKED TELEROBOTICS IN COLLABORATIVE MONITORING OF AGRICULTURAL GREENHOUSES

Ashwin Sasidharan Nair (6589922) 15 May 2019 (has links)
Networked telerobots are operated by humans through remote interactions and have found applications in unstructured environments, such as outer space, underwater, telesurgery, manufacturing etc. In precision agricultural robotics, target monitoring, recognition and detection is a complex task, requiring expertise, hence more efficiently performed by collaborative human-robot systems. A HUB is an online portal, a platform to create and share scientific and advanced computing tools. HUB-CI is a similar tool developed by PRISM center at Purdue University to enable cyber-augmented collaborative interactions over cyber-supported complex systems. Unlike previous HUBs, HUB-CI enables both physical and virtual collaboration between several groups of human users along with relevant cyber-physical agents. This research, sponsored in part by the Binational Agricultural Research and Development Fund (BARD), implements the HUB-CI model to improve the Collaborative Intelligence (CI) of an agricultural telerobotic system for early detection of anomalies in pepper plants grown in greenhouses. Specific CI tools developed for this purpose include: (1) Spectral image segmentation for detecting and mapping to anomalies in growing pepper plants; (2) Workflow/task administration protocols for managing/coordinating interactions between software, hardware, and human agents, engaged in the monitoring and detection, which would reliably lead to precise, responsive mitigation. These CI tools aim to minimize interactions’ conflicts and errors that may impede detection effectiveness, thus reducing crops quality. Simulated experiments performed show that planned and optimized collaborative interactions with HUB-CI (as opposed to ad-hoc interactions) yield significantly fewer errors and better detection by improving the system efficiency by between 210% to 255%. The anomaly detection method was tested on the spectral image data available in terms of number of anomalous pixels for healthy plants, and plants with stresses providing statistically significant results between the different classifications of plant health using ANOVA tests (P-value = 0). Hence, it improves system productivity by leveraging collaboration and learning based tools for precise monitoring for healthy growth of pepper plants in greenhouses.
24

Supporting the Implementation of Industrial Robots in Collaborative Assembly Applications / Stödja implementeringen av industrirobotar i samarbetande monteringsapplikationer

Andersson, Staffan January 2021 (has links)
Until recently, few technologies have been applicable to increase flexibility in the manufacturers’ assembly applications, but the introduction of industrial robots in collaborative assembly applications provides such opportunities. Specifically, these collaborative assembly applications present an opportunity to, in a fenceless environment, combine the flexibility of the human with the accuracy, repeatability, and strengths of the robot while utilizing less floor space and allowing portable applications. However, despite the benefits of industrial robots in collaborative assembly applications, there are significant gaps in the literature preventing their implementation. Based on this background, the objective of this work is to support the implementation of industrial robots in collaborative assembly applications. To fulfill this objective, this work included two empirical studies; first, an interview study mapped the attributes of industrial robots in collaborative assembly applications. Second, a multiple-case study mapped the critical challenges and enabling activities when implementing these collaborative assembly applications. The studies were also combined with literature reviews aiming to fill the theoretical gaps.  The work provides an implementation process with enabling activities that can mitigate critical challenges when implementing industrial robots in collaborative assembly applications. The implementation process shows enabling activities in the three first phases: pre-study, collaborative assembly application design, and assembly installation. These enabling activities are mapped to the 7M dimensions as a way to clearly show how they can support the implementation of industrial robots in collaborative assembly applications. The implementation process contributes to filling the identified gaps in the literature and provides practitioners with activities that managers could consider when implementing collaborative robots in collaborative assembly applications. Finally, this work suggests that future research could aim to validate the implementation process in a case study or investigate further the last two phases of the process. / Hittills har få tekniker kunnat öka flexibiliteten i tillverkarnas monteringsapplikationer, men introduktion av industrirobotar i samarbetande monteringsapplikationer öppnar upp för sådana möjligheter. Specifikt så presenterar dessa samarbetande monteringsapplikationer en möjlighet att, i en staketlös miljö, kombinera människans flexibilitet med industrirobotens precision, repeterbarhet och styrka men samtidigt nyttja litet golvutrymme och tillåta bärbarhet. Emellertid, trots fördelarna med industrirobotar i samarbetande monteringsapplikationer, finns det signifikanta gap i litteraturen som förhindrar dess implementering.  Baserat på denna bakgrund är syftet med detta arbete att stödja implementeringen av industrirobotar i samarbetande monteringsapplikationer.  För att fullfölja detta syfte inkluderade detta arbete två empiriska studier. Först, en intervjustudie som kartlagde attributen för industrirobotar i samarbetande monteringsapplikationer. För det andra, en flerfallstudie som kartlagde de kritiska utmaningarna och möjliggörande aktiviteterna för implementeringen av dessa samarbetande monteringsapplikationer. Studierna kombinerades också med litteraturstudier med målet att fylla de teoretiska gapen.  Detta arbete ger en implementeringsprocess med möjliggörande aktiviteter som kan mildra de kritiska utmaningarna under implementeringen av industrirobotar i samarbetande monteringsapplikationer. Implementeringsprocessen visar möjliggörande aktiviteter i de tre första faserna; förstudie, design av samarbetande monteringsapplikationer och monteringsinstallation.  Dessa möjliggörande aktiviteter är kartlagda mot 7M dimensionerna som ett sätt att tydligt visa hur dessa kan stödja implementeringen av industrirobotar i samarbetande monteringsapplikationer. Implementeringsprocessen bidrar till att fylla de identifierade gapen i litteraturen och ger till praktiker aktiviteter som ledare kan beakta vid implementeringen av industrirobotar i samarbetande monteringsapplikationer. Slutligen, detta arbete föreslår att framtida forskning syftar att validera implementeringsprocessen genom en fallstudie eller vidare undersöka de två sista faserna av denna process.
25

Towards Enhancing Human-robot Communication for Industrial Robots: A Study in Facial Expressions Mot Förbättra Människa-robot Kommunikation för Industrirobotar : En studie i ansiktsuttryck

Wang, Lan January 2016 (has links)
Collaborative robots are becoming more commonplace within factories to work alongside their human counterparts. With this newfound perspective towards robots being seen as collaborative partners comes the question of how interacting with these machines will change. This thesis therefore focuses on investigating the connection between facial expression communication in industrial robots and users' perceptions. Experiments were conducted to investigate the relationship between users' perceptions towards both existing facial expressions of the Baxter robot (an industrial robot by Rethink Robotics) and redesigned versions of these facial expressions. Findings reveal that the redesigned facial expressions provide a better match to users’ expectations. In addition, insights into improving the expressive communication between humans and robots are discussed, including the need for additional solutions which can complement the facial expressions displayed by providing more detailed information as needed. The last section of this thesis presents future research directions towards building a more intuitive and user-friendly human-robot cooperation space for future industrial robots.
26

A demonstrator for human-robot collaboration with augmented reality for future evaluations of user experiences

Yattou Belkhrouf, Najwa January 2022 (has links)
Industries are becoming more and more demanding with new technology and trying to improve the productivity of their lines by adding technological methods and thus obtaining greater flexibility and time savings. One of these methods is to train their workers with the new augmented reality technology, which saves training time since the user can learn independently by following the steps indicated on the device. Another method is to add robots to the production line to carry out those tasks that are supposed to be repetitive and tiring for humans. To squeeze more and get the best out of the robot and the human, companies choose to combine their virtues and put them working together hand in hand as a human-robot collaboration.In this project, the demonstrator includes an assembly car process realized in a human-robot collaboration system, where the human and the collaborative robot communicate through an augmented reality device, Hololens2. This demonstrator might be used for user experience studies to evaluate if the human can realize an assembly process following the instructions in a head-mounted device without previous experience and collaborate with a robot. / <p>Program: - (Utbytesstudenter)</p>
27

Pose Imitation Constraints For Kinematic Structures

Glebys T Gonzalez (14486934) 09 February 2023 (has links)
<p> </p> <p>The usage of robots has increased in different areas of society and human work, including medicine, transportation, education, space exploration, and the service industry. This phenomenon has generated a sudden enthusiasm to develop more intelligent robots that are better equipped to perform tasks in a manner that is equivalently good as those completed by humans. Such jobs require human involvement as operators or teammates since robots struggle with automation in everyday settings. Soon, the role of humans will be far beyond users or stakeholders and include those responsible for training such robots. A popular teaching form is to allow robots to mimic human behavior. This method is intuitive and natural and does not require specialized knowledge of robotics. While there are other methods for robots to complete tasks effectively, collaborative tasks require mutual understanding and coordination that is best achieved by mimicking human motion. This mimicking problem has been tackled through skill imitation, which reproduces human-like motion during a task shown by a trainer. Skill imitation builds on faithfully replicating the human pose and requires two steps. In the first step, an expert's demonstration is captured and pre-processed, and motion features are obtained; in the second step, a learning algorithm is used to optimize for the task. The learning algorithms are often paired with traditional control systems to transfer the demonstration to the robot successfully. However, this methodology currently faces a generalization issue as most solutions are formulated for specific robots or tasks. The lack of generalization presents a problem, especially as the frequency at which robots are replaced and improved in collaborative environments is much higher than in traditional manufacturing. Like humans, we expect robots to have more than one skill and the same skills to be completed by more than one type of robot. Thus, we address this issue by proposing a human motion imitation framework that can be efficiently computed and generalized for different kinematic structures (e.g., different robots).</p> <p> </p> <p>This framework is developed by training an algorithm to augment collaborative demonstrations, facilitating the generalization to unseen scenarios. Later, we create a model for pose imitation that converts human motion to a flexible constraint space. This space can be directly mapped to different kinematic structures by specifying a correspondence between the main human joints (i.e., shoulder, elbow, wrist) and robot joints. This model permits having an unlimited number of robotic links between two assigned human joints, allowing different robots to mimic the demonstrated task and human pose. Finally, we incorporate the constraint model into a reward that informs a Reinforcement Learning algorithm during optimization. We tested the proposed methodology in different collaborative scenarios. Thereafter, we assessed the task success rate, pose imitation accuracy, the occlusion that the robot produces in the environment, the number of collisions, and finally, the learning efficiency of the algorithm.</p> <p> </p> <p>The results show that the proposed framework creates effective collaboration in different robots and tasks.</p>
28

Model Development for Autonomous Short-Term Adaptation of Cobots' Motion Speed to Human Work Behavior in Human-Robot Collaboration Assembly Stations

Jeremy Amadeus Deniz Askin (11625070) 26 July 2022 (has links)
<p>  </p> <p>Manufacturing flexibility and human-centered designs are promising approaches to face the demand for individualized products. Human-robot assembly cells still lack flexibility and adaptability (VDI, 2017) using static control architectures (Bessler et al., 2020). Autonomous adaptation to human operators in short time horizons increases the willingness to work with cobots. Besides, monotonous static assembling in manufacturing operations does not accommodate the human way of working. Therefore, Human-Robot Collaboration (HRC) workstations require a work behavior adaptation accommodating varying work behavior regarding human mental and physical conditions (Weiss et al., 2021). The thesis presents the development of a cyber-physical HRC assembly station.</p> <p>Moreover, the thesis includes an experimental study investigating the influence of a cobot’s speed on human work behavior. The Cyber-Physical System (CPS) integrates the experiment's findings with event-based software architecture and a semantic knowledge representation. Thereby, the work focuses on demonstrating the feasibility of the CPS and the semantic model, allowing the self-adaptation of the system. Finally, the conclusion identifies the need for further research in human work behavior detection and fuzzy decision models. Such detection and decision models could improve self-adaptation in human-centered assembly systems.</p>
29

Perceived Safety Aspects when Collaborating with Robots in the Manufacturing Industry : Applying an HTO Methodology

Eklund, Jonas, Hallengren, Ida January 2024 (has links)
As Industry 4.0 continues to evolve, human-robot collaboration, HRC, has become more common in industries. This study aimed to explore perceived safety in HRC within manufacturing, with a focus on the assembly processes at Volvo. The goal was to promote perceived safety among operators by applying the Human-Technology-Organization, HTO, perspective, including Safety-I, -II, and -III. A framework was developed to illustrate the aim in relation to the theory and the approach taken in the study. The Volvo case RITA, a collaborative robot designed to assist with kitting, was used as a use case in the study. Numerous interviews were conducted with organizational representatives and assembly line operators with a complementary questionnaire. Since RITA was not operational, a video of the case was utilized extensively throughout the study. Operator interviews were centered on gathering their insights on perceived safety, drawing from the above safety perspectives. The formulated recommendations emphasized the importance of comprehensive operator training and early involvement in new development processes. Various traffic rules were devised for different collaboration scenarios, and the significance of clear workspaces was underscored to maintain system efficiency. These recommendations were later validated by an organizational representative from Volvo. Lastly, the study emphasizes that while technical solutions for safety are necessary, they are not sufficient without a strong safety culture that encourages openness and collaboration. By considering technical, organizational, and human aspects of safety, this study contributes to a deeper understanding of the dynamics in HRC and lays the foundation for safe and efficient manufacturing processes.
30

Human-help in automated planning under uncertainty / Ajuda humana em planejamento automatizado sob incerteza

Franch, Ignasi Andrés 21 September 2018 (has links)
Planning is the sub-area of artificial intelligence that studies the process of selecting actions to lead an agent, e.g. a robot or a softbot, to a goal state. In many realistic scenarios, any choice of actions can lead the robot into a dead-end state, that is, a state from which the goal cannot be reached. In such cases, the robot can, pro-actively, resort to human help in order to reach the goal, an approach called symbiotic autonomy. In this work, we propose two different approaches to tackle this problem: (I) contingent planning, where the initial state is partially observable, configuring a belief state, and the outcomes of the robot actions are non-deterministic; and (II) probabilistic planning, where the initial state may be partially or totally observable and the actions have probabilistic outcomes. In both approaches, the human help is considered a scarce resource that should be used only when necessary. In contingent planning, the problem is to find a policy (a function mapping belief states into actions) that: (i) guarantees the agent will always reach the goal (strong policy); (ii) guarantees that the agent will eventually reach the goal (strong cyclic policy), or (iii) does not guarantee achieving the goal (weak policy). In this scenario, we propose a contingent planning system that considers human help to transform weak policies into strong (cyclic) policies. To do so, two types of human help are included: (i) human actions that modify states and/or belief states; and (ii) human observations that modify belief states. In probabilistic planning, the problem is to find a policy (a function mapping between world states and actions) that can be one of these two types: a proper policy, where the agent has probability 1 of reaching the goal; or an improper policy, in the case of unavoidable dead-ends. In general, the goal of the agent is to find a policy that minimizes the expected accumulated cost of the actions while maximizes the probability of reaching the goal. In this scenario, this work proposes probabilistic planners that consider human help to transform improper policies into proper policies however, considering two new (alternative) criteria: either to minimize the probability of using human actions or to minimize the expected number of human actions. Furthermore, we show that optimal policies under these criteria can be efficiently computed either by increasing human action costs or given a penalty when a human help is used. Solutions proposed in both scenarios, contingent planning and probabilistic planning with human help, were evaluated over a collection of planning problems with dead-ends. The results show that: (i) all generated policies (strong (cyclic) or proper) include human help only when necessary; and (ii) we were able to find policies for contingent planning problems with up to 10^15000 belief states and for probabilistic planning problems with more than 3*10^18 physical states. / Planejamento é a subárea de Inteligência Artificial que estuda o processo de selecionar ações que levam um agente, por exemplo um robô, de um estado inicial a um estado meta. Em muitos cenários realistas, qualquer escolha de ações pode levar o robô para um estado que é um beco-sem-saída, isto é, um estado a partir do qual a meta não pode ser alcançada. Nestes casos, o robô pode, pró-ativamente, pedir ajuda humana para alcançar a meta, uma abordagem chamada autonomia simbiótica. Neste trabalho, propomos duas abordagens diferentes para tratar este problema: (I) planejamento contingente, em que o estado inicial é parcialmente observável, configurando um estado de crença, e existe não-determinismo nos resultados das ações; e (II) planejamento probabilístico, em que o estado inicial é totalmente observável e as ações tem efeitos probabilísticos. Em ambas abordagens a ajuda humana é considerada um recurso escasso e deve ser usada somente quando estritamente necessária. No planejamento contingente, o problema é encontrar uma política (mapeamento entre estados de crença e ações) com: (i) garantia de alcançar a meta (política forte); (ii) garantia de eventualmente alcançar a meta (política forte-cíclica), ou (iii) sem garantia de alcançar a meta (política fraca). Neste cenário, uma das contribuições deste trabalho é propor sistemas de planejamento contingente que considerem ajuda humana para transformar políticas fracas em políticas fortes (cíclicas). Para isso, incluímos ajuda humana de dois tipos: (i) ações que modificam estados do mundo e/ou estados de crença; e (ii) observações que modificam estados de crenças. Em planejamento probabilístico, o problema é encontrar uma política (mapeamento entre estados do mundo e ações) que pode ser de dois tipos: política própria, na qual o agente tem probabilidade 1 de alcançar a meta; ou política imprópria, caso exista um beco-sem-saída inevitável. O objetivo do agente é, em geral, encontrar uma política que minimize o custo esperado acumulado das ações enquanto maximize a probabilidade de alcançar a meta. Neste cenário, este trabalho propõe sistemas de planejamento probabilístico que considerem ajuda humana para transformar políticas impróprias em políticas próprias, porém considerando dois novos critérios: minimizar a probabilidade de usar ações do humano e minimizar o número esperado de ações do humano. Mostramos ainda que políticas ótimas sob esses novos critérios podem ser computadas de maneira eficiente considerando que ações humanas possuem um custo alto ou penalizando o agente ao pedir ajuda humana. Soluções propostas em ambos cenários, planejamento contingente e planejamento probabilístico com ajuda humana, foram empiricamente avaliadas sobre um conjunto de problemas de planejamento com becos-sem-saida. Os resultados mostram que: (i) todas as políticas geradas (fortes (cíclicas) ou próprias) incluem ajuda humana somente quando necessária; e (ii) foram encontradas políticas para problemas de planejamento contingente com até 10^15000 estados de crença e para problemas de planejamento probabilístico com até 3*10^18 estados do mundo.

Page generated in 0.1369 seconds