621 |
Transferts anisotropes d'énergie en turbulence en rotation et excitation de modes d'inertieLamriben, Cyril 12 July 2012 (has links) (PDF)
Nous présentons une étude expérimentale de l'influence d'une rotation d'ensemble sur le déclin d'un écoulement turbulent dans une géométrie confinée. L'écoulement est généré en translatant rapidement une grille dans un récipient parallélépipédique, et nous mesurons les champs de vitesse dans un plan vertical (parallèle à l'axe de rotation) grâce à un dispositif de PIV embarqué. Nous montrons dans un premier temps qu'une partie significative de l'énergie est contenue dans un écoulement moyen reproductible, qui s'identifie à une superposition de modes d'inertie résonnants de la cuve. Le couplage possible entre cet écoulement et la turbulence suggère que la turbulence ainsi créée n'est pas en déclin libre. Nous montrons cependant qu'il est possible d'inhiber l'apparition de ces modes d'inertie en modifiant les caractéristiques géométriques de la grille. Cette nouvelle configuration permet alors de caractériser dans l'espace physique les transferts d'énergie pour une turbulence en déclin libre. L'énergie associée aux incréments de vitesse et la densité de flux d'énergie sont calculées à partir d'un grand nombre de réalisations indépendantes. Nous montrons que la rotation provoque une forte bidimensionalisation de la distribution d'énergie, et que celle-ci est contrôlée par une densité de flux d'énergie qui reste quasi-radiale, mais qui fait apparaître une dépendance angulaire marquée. Enfin, nous étudions également l'écoulement dans un cube, que nous soumettons à une libration longitudinale afin d'exciter les modes observés initialement avec le dispositif de turbulence de grille. En comparant les champs de vitesse expérimentaux aux prédictions numériques des modes inviscides, nous montrons que seul un certain nombre de modes, compatibles avec les symétries du forçage, peuvent être excités par libration. Nous caractérisons en particulier la résonance du mode de plus bas ordre compatible avec les symétries du forçage, et discutons du rôle de la viscosité.
|
622 |
The fading of signals propagating in the ionosphere for wide bandwidth high-frequency radio systems.Yau, Kin Shing Bobby January 2008 (has links)
The use of High-Frequency (HF) radio-wave propagation in the ionosphere remains prevalent for applications such as long-range communication, target detection and commercial broadcasting. The ionosphere presents a challenging channel for radio-wave propagation as it is a varying medium dependent on a number of external factors. Of the many adverse effects of ionospheric propagation, signal fading is one of the most difficult to eliminate due to its unpredictable nature. Increase in the knowledge of how the ionospheric channel affects the propagating signals, in particular fading of the signals, will drive the continual improvements in the reliability and performance of modern wide-bandwidth HF systems. This is the underlying motivation for the study of signal fading of HF radio-waves propagating through the ionosphere, from both the theoretical and experimental perspectives, with the focus of application to modern wide bandwidth HF systems. Furthermore, it is the main objective of this investigation to address the lacking in the current literature of a simple analytical signal fading model for wideband HF systems that relates the physics of the ionospheric irregularities to the observable propagation effects due to the irregularities, and one that is verified by experimental observations. An original approach was taken in the theoretical investigation to develop an analytical model that combines the effects of signal fading and directly relating them to the ionospheric irregularities that are causing the fading. The polarisation fading model (PFM) is a combination of geometric optics, perturbation techniques and frequency offset techniques to derive expressions for the Faraday rotation of the radio-wave propagating in the ionosphere. Using the same notation as the PFM, the amplitude fading model (AFM) extends the Complex Amplitude concept using perturbation techniques and Green’s functions solution to arrive at a set of expressions that describes the focussing and defocussing effects of the wave. The PFM and AFM, together with expressions for combining the effects of multiple propagation paths, provide a simple analytic model that completely describes the fading of the signal propagating in the ionosphere. This theoretical model was implemented into an efficient ionospheric propagation simulator (IPS) from which simulations of wide bandwidth HF signals propagating through the ionosphere can be undertaken. As an example of the type of results produced by the IPS, for a typical 1200km path in the north-south direction with the ionospheric channel under the influence of a travelling ionospheric disturbance (TID), a 10 MHz radio-wave signal in one-hop path is shown to be affected by polarisation fading with fading periods in the order of minutes, and a fading bandwidth in the order of 100 kHz. Further results generated by the IPS have shown to be consistent with the results reported elsewhere in the literature. The experimental investigation involves the study of signal fading from observations of real signals propagating in the ionosphere, a major part of which is the development of a digital compact channel probe (CCP) capable of operating in dual-polarisation mode, and the characterisation of such systems to ensure that data collected are not compromised by the non-idealities of the individual devices contained within the system. The CCP was deployed in experiments to collect transmissions of HF frequency-modulated continuouswave (FMCW) radio signals from the Jindalee Over-the-Horizon radar (OTHR) in dualpolarisation. Analyses of the collected data showed the full anatomy of fading of signals propagating in the ionosphere for both horizontal and vertical polarisations, the results of which are consistent with that from the IPS and thus verifying the validity of the theoretical model of fading. Further experimental results showed that in majority of the observations polarisation fading is present but can be masked by multi-path fading, and confirming that periods of rapid signal fading are associated with rapid changes in the ionospheric channel. From the theoretical and experimental investigations, the major achievement is the successful development of an efficient propagation simulator IPS based on the simple analytical expressions derived in the PFM and AFM theoretical models of signal fading, which has produced sensible signal fading results that are verified by experimental observations. One of the many outcomes of this investigation is that polarisation diversity has the potential to bring improvements to the quality of wide-bandwidth HF signals in a fading susceptible propagation channel. The combination of an efficient propagation simulator IPS based on theoretical signal fading model and the experimental data collection by the dual-polarisation CCP is a major step in allowing one to fully understand the different aspects of fading of signals propagating in the ionosphere, which sets a solid foundation for further research into the design of wide bandwidth HF systems and the possible fading mitigation techniques. / Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering, 2008
|
623 |
The influence of management on runoff and water quality in a coastal lowland PINUS plantation, Southeast QueenslandForsyth, Adam January 2006 (has links)
The exotic Pinus plantations of southeast Queensland occupy approximately 130 000 ha and are prominent in catchments which drain to estuarine and marine waters that are economically, socially, and environmentally important. Recently, the deterioration of estuarine and marine water quality has raised concerns about the possible off-site impacts from the intensive management of the Pinus estate in southeast Queensland. Additionally, forest managers have raised questions over the effects of the currently adopted management practices on soil, water, and nutrient resources within plantations. A paucity of information regarding the impacts of these plantations in the humid sub-tropics of southeast Queensland initiated the research presented here. The objectives of this study were to: (i) determine the influence specific Pinus management techniques (harvesting, site-preparation, prescribed burning and forest roads) have on runoff generation; (ii) quantify fluxes of some nutrients (nitrogen (N), phosphorus (P), dissolved organic carbon (DOC) and iron (Fe)) and suspended solids (SS) in runoff from these management treatments; and, (iii) assess the overall effectiveness of the currently adopted Best Management Practices (BMP's) in protecting on-site soil, water and nutrient resources, as well as protecting off-site waters from pollution. The study site was located in an intensively managed sub-catchment within the Beerburrum State Forest Pinus plantation on the coastal plain of the Pumicestone region, southeast Queensland. This study was established in October 2001 and consisted of a 141 ha catchment based investigation into water quality and hydrology, which received a 50 ha harvest treatment in February and March 2002. Water was monitored for two water years (October 2001 - September 2003), and incorporated site-preparation and the establishment of the subsequent rotation. The influence of a forest road stream crossing was also monitored in this component of the investigation. Two discrete forest road plots were monitored for the same period to measure the response of runoff, nutrient and sediment fluxes to different road surface materials (gravelled and ungravelled), road maintenance and traffic intensity. Rainfall simulation was used on small plots covering specific management treatments (clearfall harvest, cultivation, fertilised cultivation, prescribed fire and established trees) within the general plantation area to determine their influence on water, sediment and nutrient fluxes. The investigation in the catchment receiving inter-rotation management revealed that that there was very little difference in water quality indices up and downstream of the forest road stream crossing, which suggests that road borne runoff contributed only minor amounts of N, P, Fe and SS to the stream. Perched groundwater quality within the general plantation area was similar to that observed in the adjacent stream. Water quality monitoring within the Coochin-Mellum and Coonowrin Creek catchments showed that the mean annual concentrations of N and P in surface waters were highest from catchments hosting agriculture and residential areas, respectively. Mean annual DOC and Fe concentrations were highest from the catchment hosting native Wallum vegetation. The mean annual concentration of SS was highest from an unmanaged native forest catchment. The rainfall simulation on specific management treatments revealed that mean losses of N and P from unfertilised and unburnt treatments were comparable to loads reported from catchment scale studies in the Pinus plantations of south-east Queensland. Mean SS loads from all treatments were considerably higher than stream loads reported in the literature from catchment scale investigations, and suggest that the currently adopted mitigation practices between the general plantation area and streams are effective in promoting the deposition of entrained solids. The investigation into gravelled and ungravelled forest roads revealed that the mean runoff coefficient (runoff depth / rainfall depth) was consistently higher from the gravelled road plot with 0.57, as compared to the ungravelled road with 0.38. Total sediment loss over the two year period was greatest from the gravelled road plot. Suspended solids contributed 86% of the total sediment loss from the gravelled road and 72% from the ungravelled road over the two years. When road and drain maintenance (grading) was performed runoff and sediment loss was increased from both road types. It should be noted that the results presented herein were based on only two water years, and both years experienced below average rainfall. As such it is important that future research in a catchment prone to waterlogging be conducted over a longer term so as to increase the chance of quantifying water, nutrient and sediment fluxes in response to average and above average rainfall years. It is likely that in above average rainfall years the results for nutrient and sediment fluxes from the general plantation area would be significantly different as runoff would be more readily generated and sustained for longer periods. Overall, the research presented suggests that the management of an exotic Pinus plantation during the inter-rotation period results in relatively low fluxes of N, P, SS Fe and DOC in stream water and vindicates the use of the current practices in protecting on-site water, soil and nutrient resources.
|
624 |
Novel methodologies for three-dimensional modelling of subject specific biomechanics : application to lumbopelvic mechanics in sitting and standingCargill, Sara C. January 2008 (has links)
This project presented a biomechanical model of the lumbosacral spine and pelvis, including novel methodologies associated with the measurement of human mechanics. This research has, for the first time, produced accurate three-dimensional geometric models of the human skeleton from living subjects using magnetic resonance imaging technology, enabling the prediction of physiological muscle action within individuals.
The model was used to examine changes in the mechanics of the lumbopelvic musculoskeletal system between the standing and seated postures due to the increasing prevalence of the seated posture in the work and home environment.
The outcomes of this research included a novel bone wrapping algorithm used to describe the effect of muscle-bone interactions. a novel method for creating three-dimensional in vivo spinal reconstructions using MRI, three dimensional in vivo helical axis measurements and subject specific normalised moment data.
|
625 |
About turn:neural mechanisms underlying visual processing of rotated letters and digitsMilivojevic, Branka January 2007 (has links)
This thesis explores neural activity associated with processing of rotated alphanumeric characters, focusing particularly on linear and quadratic trend components of orientation-dependent activity. Choice of these components was driven by results of reaction-time (RT) studies; judging whether characters are normal or backward (parity task) typically elicit RTs that are linearly related to character disorientation, implying mental rotation of the characters to the upright, while judging whether they are letters or digits (categorisation task) elicits RTs related nonlinearly to disorientation, combining both linear and quadratic component, but not indicative of mental rotation. In Experiment 1 neural activity was monitored using fMRI while participants performed these tasks. In the next two experiments, neural processing was monitored with high-density EEG. In Experiment 2 participants performed the same two tasks, while in Experiment 3 they performed the category task and red-blue colour judgements. In Experiment 1, linear increases in fMRI activation were elicited only by the parity task and were observed in the posterior portion of the dorsal intraparietal sulcus and lateral and medial pre-supplementary motor areas, suggesting a fronto-parietal network underlying mental rotation. Experiment 2 showed that linear increases in parietal negativity between 350 and 710 ms only evident in the parity task, again indicating that mental rotation is only elicited by that task. Contrary to previous evidence, Experiment 2 indicated that both hemispheres may be involved in mental rotation, but rotation is faster in the right hemisphere than in the left hemisphere. Experiment 1 also showed that effects of orientation common to both tasks were best characterised by a quadratic trend, and were restricted to the supramarginal gyrus. This activation was interpreted as representing orientation-dependent shape recognition. Experiments 2 and 3 also revealed orientation-dependent neural activity at three distinct stages prior to mental rotation. First, on the P1 component, there was a difference between oblique and vertical orientations, suggesting the extraction of orientation based on axis of elongation. Next, orientation affected the N1 component, with longer latencies and larger amplitudes with misorientation, and smaller effects for inversion than for intermediate angular rotations. Finally, changes in orientation affected the P2 component differently for the parity and category tasks, probably signalling the perception of orientation relative to a parity-defined memory representation, and serving as a preparation for mental rotation. These experiments identify both the orientation-specific neural processing that occurs prior to the onset of mental rotation, and the subsequent neural correlates of mental rotation itself. / Top Achiever Doctoral Scholarship, University of Auckland Doctoral Scholarship, The New Zealand Neurological Foundation, University of Auckland Research Fund (Project numbers: 3607199, 3605876 3604420)
|
626 |
About turn:neural mechanisms underlying visual processing of rotated letters and digitsMilivojevic, Branka January 2007 (has links)
This thesis explores neural activity associated with processing of rotated alphanumeric characters, focusing particularly on linear and quadratic trend components of orientation-dependent activity. Choice of these components was driven by results of reaction-time (RT) studies; judging whether characters are normal or backward (parity task) typically elicit RTs that are linearly related to character disorientation, implying mental rotation of the characters to the upright, while judging whether they are letters or digits (categorisation task) elicits RTs related nonlinearly to disorientation, combining both linear and quadratic component, but not indicative of mental rotation. In Experiment 1 neural activity was monitored using fMRI while participants performed these tasks. In the next two experiments, neural processing was monitored with high-density EEG. In Experiment 2 participants performed the same two tasks, while in Experiment 3 they performed the category task and red-blue colour judgements. In Experiment 1, linear increases in fMRI activation were elicited only by the parity task and were observed in the posterior portion of the dorsal intraparietal sulcus and lateral and medial pre-supplementary motor areas, suggesting a fronto-parietal network underlying mental rotation. Experiment 2 showed that linear increases in parietal negativity between 350 and 710 ms only evident in the parity task, again indicating that mental rotation is only elicited by that task. Contrary to previous evidence, Experiment 2 indicated that both hemispheres may be involved in mental rotation, but rotation is faster in the right hemisphere than in the left hemisphere. Experiment 1 also showed that effects of orientation common to both tasks were best characterised by a quadratic trend, and were restricted to the supramarginal gyrus. This activation was interpreted as representing orientation-dependent shape recognition. Experiments 2 and 3 also revealed orientation-dependent neural activity at three distinct stages prior to mental rotation. First, on the P1 component, there was a difference between oblique and vertical orientations, suggesting the extraction of orientation based on axis of elongation. Next, orientation affected the N1 component, with longer latencies and larger amplitudes with misorientation, and smaller effects for inversion than for intermediate angular rotations. Finally, changes in orientation affected the P2 component differently for the parity and category tasks, probably signalling the perception of orientation relative to a parity-defined memory representation, and serving as a preparation for mental rotation. These experiments identify both the orientation-specific neural processing that occurs prior to the onset of mental rotation, and the subsequent neural correlates of mental rotation itself. / Top Achiever Doctoral Scholarship, University of Auckland Doctoral Scholarship, The New Zealand Neurological Foundation, University of Auckland Research Fund (Project numbers: 3607199, 3605876 3604420)
|
627 |
About turn:neural mechanisms underlying visual processing of rotated letters and digitsMilivojevic, Branka January 2007 (has links)
This thesis explores neural activity associated with processing of rotated alphanumeric characters, focusing particularly on linear and quadratic trend components of orientation-dependent activity. Choice of these components was driven by results of reaction-time (RT) studies; judging whether characters are normal or backward (parity task) typically elicit RTs that are linearly related to character disorientation, implying mental rotation of the characters to the upright, while judging whether they are letters or digits (categorisation task) elicits RTs related nonlinearly to disorientation, combining both linear and quadratic component, but not indicative of mental rotation. In Experiment 1 neural activity was monitored using fMRI while participants performed these tasks. In the next two experiments, neural processing was monitored with high-density EEG. In Experiment 2 participants performed the same two tasks, while in Experiment 3 they performed the category task and red-blue colour judgements. In Experiment 1, linear increases in fMRI activation were elicited only by the parity task and were observed in the posterior portion of the dorsal intraparietal sulcus and lateral and medial pre-supplementary motor areas, suggesting a fronto-parietal network underlying mental rotation. Experiment 2 showed that linear increases in parietal negativity between 350 and 710 ms only evident in the parity task, again indicating that mental rotation is only elicited by that task. Contrary to previous evidence, Experiment 2 indicated that both hemispheres may be involved in mental rotation, but rotation is faster in the right hemisphere than in the left hemisphere. Experiment 1 also showed that effects of orientation common to both tasks were best characterised by a quadratic trend, and were restricted to the supramarginal gyrus. This activation was interpreted as representing orientation-dependent shape recognition. Experiments 2 and 3 also revealed orientation-dependent neural activity at three distinct stages prior to mental rotation. First, on the P1 component, there was a difference between oblique and vertical orientations, suggesting the extraction of orientation based on axis of elongation. Next, orientation affected the N1 component, with longer latencies and larger amplitudes with misorientation, and smaller effects for inversion than for intermediate angular rotations. Finally, changes in orientation affected the P2 component differently for the parity and category tasks, probably signalling the perception of orientation relative to a parity-defined memory representation, and serving as a preparation for mental rotation. These experiments identify both the orientation-specific neural processing that occurs prior to the onset of mental rotation, and the subsequent neural correlates of mental rotation itself. / Top Achiever Doctoral Scholarship, University of Auckland Doctoral Scholarship, The New Zealand Neurological Foundation, University of Auckland Research Fund (Project numbers: 3607199, 3605876 3604420)
|
628 |
The effects of sagittal plane postures on trunk rotation range of motionMontgomery, Trevor January 2008 (has links)
Axial rotation is regarded as an essential movement of the trunk that allows many individuals to participate in vocations, sports and activities of daily living. Unfortunately when the destabilising nature of rotation is combined with that of spinal flexion, the risk of injuring the spine can increase significantly. Few studies have investigated the potential benefits that maximizing trunk rotation has in certain vocation and sport-related arenas and none have looked at whether adopting certain spinal postures in the sagittal plane can maximise trunk rotation more than others. The aim of the study was to determine the effects of alterations of trunk inclination, spinal posture, pelvic fixation and turning direction on the active range of motion (ROM) of trunk rotation. Twenty healthy individuals participated in the main study. Retro-reflective markers were placed on key anatomical locations and used to track the movement of the thorax and pelvis during a series of repeated maximal trunk rotations in ten different spinal positions within the sagittal plane. Trunk kinematics and kinetics were recorded simultaneously using an optoelectronic motion analysis and force platform measuring system. A repeated-measures multiple analysis of variance (MANOVA) was used to test for the main effects of trunk inclination, spinal posture, fixation of pelvis and direction of turn on maximum active ROM of trunk rotation, maximum pelvic rotation and the anterior-posterior and lateral displacement of the centre of pressure (COP). To investigate test-retest reliability, ten participants were tested on two separate days. Repeatability for each outcome measure was investigated using interclass correlation coefficients (ICC) and Bland Altman graphs. The majority of subjects showed reasonable test-retest reliability for trunk rotation measures in each of the test positions, with ICC’s ranging between 0.562 – 0.731. Overall, trunk inclination (0°, 22.5°, 45°) forward in the sagittal plane had a significant effect on trunk and pelvic rotation (p<0.001) and lateral displacement of the COP (p<0.005) during trunk rotation. As trunk inclination increased from 0° to 45° there was an average increase in trunk rotation ROM of approximately 10 % (approximately 3.4°). Furthermore, increasing trunk inclination led to an increase in lateral displacement of the COP and a decrease in pelvic rotation. Spinal posture (neutral, flexed, extended) at a forward inclination of 45° had a significant effect on trunk rotation (p<0.01) and pelvic rotation (p<0.05), with a neutral spine averaging approximately 3 % (approximately 1.1°) more trunk rotation than a flexed or extended posture. The position and posture of the spine in the sagittal plane appears to have a significant influence on ranges of trunk rotation. The study suggests that rotating the trunk when adopting a neutral spine inclined to 45° will maximise range of trunk rotation and encourage a natural stabilisation of the lower body. This posture meets the unique set of biomechanical requirements for the sport of golf and may help to reduce the risk of injury in manual material handling tasks. Conversely, rotating the trunk whilst the thoracolumbar spine is flexed leads to a reduction in trunk rotation ROM, encourages greater pelvic and lower body rotation, reduces torque production of the trunk and may increase the risk of lower back injury. These findings have important implications in relation to the teaching of spinal position during vocations, sports and activities of daily living that seek to maximise trunk rotation.
|
629 |
About turn:neural mechanisms underlying visual processing of rotated letters and digitsMilivojevic, Branka January 2007 (has links)
This thesis explores neural activity associated with processing of rotated alphanumeric characters, focusing particularly on linear and quadratic trend components of orientation-dependent activity. Choice of these components was driven by results of reaction-time (RT) studies; judging whether characters are normal or backward (parity task) typically elicit RTs that are linearly related to character disorientation, implying mental rotation of the characters to the upright, while judging whether they are letters or digits (categorisation task) elicits RTs related nonlinearly to disorientation, combining both linear and quadratic component, but not indicative of mental rotation. In Experiment 1 neural activity was monitored using fMRI while participants performed these tasks. In the next two experiments, neural processing was monitored with high-density EEG. In Experiment 2 participants performed the same two tasks, while in Experiment 3 they performed the category task and red-blue colour judgements. In Experiment 1, linear increases in fMRI activation were elicited only by the parity task and were observed in the posterior portion of the dorsal intraparietal sulcus and lateral and medial pre-supplementary motor areas, suggesting a fronto-parietal network underlying mental rotation. Experiment 2 showed that linear increases in parietal negativity between 350 and 710 ms only evident in the parity task, again indicating that mental rotation is only elicited by that task. Contrary to previous evidence, Experiment 2 indicated that both hemispheres may be involved in mental rotation, but rotation is faster in the right hemisphere than in the left hemisphere. Experiment 1 also showed that effects of orientation common to both tasks were best characterised by a quadratic trend, and were restricted to the supramarginal gyrus. This activation was interpreted as representing orientation-dependent shape recognition. Experiments 2 and 3 also revealed orientation-dependent neural activity at three distinct stages prior to mental rotation. First, on the P1 component, there was a difference between oblique and vertical orientations, suggesting the extraction of orientation based on axis of elongation. Next, orientation affected the N1 component, with longer latencies and larger amplitudes with misorientation, and smaller effects for inversion than for intermediate angular rotations. Finally, changes in orientation affected the P2 component differently for the parity and category tasks, probably signalling the perception of orientation relative to a parity-defined memory representation, and serving as a preparation for mental rotation. These experiments identify both the orientation-specific neural processing that occurs prior to the onset of mental rotation, and the subsequent neural correlates of mental rotation itself. / Top Achiever Doctoral Scholarship, University of Auckland Doctoral Scholarship, The New Zealand Neurological Foundation, University of Auckland Research Fund (Project numbers: 3607199, 3605876 3604420)
|
630 |
Agroforestry systems in northern Vietnam with Tephrosia candida as an alternative to short-fallow crop rotations /Hoang Fagerström, Minh Ha. January 1900 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniv. / Härtill 4 uppsatser.
|
Page generated in 0.0794 seconds