31 |
Synchronous exfoliation and assembly of graphene on 3D Ni(OH)2 for supercapacitorsMa, Liguo, Zheng, Maojun, Liu, Shaohua, Li, Qiang, You, Yuxiu, Wang, Faze, Ma, Li, Shen, Wenzhong 17 July 2017 (has links) (PDF)
Nowadays, new approaches to fabricate high-performance electrode materials are of vital importance in the renewable energy field. Here, we present a facile synthesis procedure of 3D Ni(OH)2/graphene hybrids for supercapacitors via synchronous electrochemical-assisted exfoliation and assembly of graphene on 3D Ni(OH)2 networks. With the assistance of an electric field, the electrochemically exfoliated high-quality graphene can be readily, uniformly assembled on the surfaces of 3D Ni(OH)2. When serving as electrode materials for supercapacitors, the resulting 3D Ni(OH)2/graphene composites exhibited excellent specific capacitance (263 mF cm−2 at 2 mA cm−2), remarkable rate capability and super-long cycle life (retention of 94.1% even after 10 000 continuous charge–discharge cycles), which may be attributed to their highly porous, stable 3D architecture as well as uniform, firm anchoring of ultrathin graphene on their surfaces. Therefore, our approach provides a facile strategy for the large-scale synthesis of high-quality graphene based composites towards various applications.
|
32 |
Nitrogen-enriched, ordered mesoporous carbons for potential electrochemical energy storageZhu, Jinhui, Yang, Jun, Miao, Rongrong, Zhaoquan, Zhaoquan, Zhuang , Xiaodong, Feng, Xinliang 17 July 2017 (has links) (PDF)
Nitrogen-doped (N-doped) porous carbons have drawn increasing attention due to their high activity for electrochemical catalysis, and high capacity for lithium-ion (Li-ion) batteries and supercapacitors. So far, the controlled synthesis of N-enriched ordered mesoporous carbons (N-OMCs) for Li-ion batteries is rarely reported due to the lack of a reliable nitrogen-doping protocol that maintains the ordered mesoporous structure. In order to realize this, in this work, ordered mesoporous carbons with controllable N contents were successfully prepared by using melamine, F127 and phenolic resin as the N-source, template and carbon-source respectively via a solvent-free ball-milling method. The as-prepared N-OMCs which showed a high N content up to 31.7 wt% were used as anodes for Li-ion batteries. Remarkably, the N-OMCs with an N content of 24.4 wt% exhibit the highest reversible capacity (506 mA h g−1) even after 300 cycles at 300 mA g−1 and a capacity retention of 103.3%. N-OMCs were also used as electrode materials in supercapacitors and a capacity of 150 F g−1 at 0.2 A g−1 with stable cycling up to 2500 times at 1 A g−1 was achieved. These attractive results encourage the design and synthesis of high heteroatom content ordered porous carbons for applications in the field of energy storage and conversion.
|
33 |
Effects of calcination and activation conditions on ordered mesoporous carbon supported iron catalysts for production of lower olefins from synthesis gasOschatz, M., van Deelen, T. W., Weber, J. L., Lamme, W. S., Wang, G., Goderis, B., Verkinderen, O., Dugulan, A. I., de Jong, K. P. 24 July 2017 (has links) (PDF)
Lower C2–C4 olefins are important commodity chemicals usually produced by steam cracking of naphtha or fluid catalytic cracking of vacuum gas oil. The Fischer–Tropsch synthesis of lower olefins (FTO) with iron-based catalysts uses synthesis gas as an alternative feedstock. Nanostructured carbon materials are widely applied as supports for the iron nanoparticles due to their weak interaction with the metal species, facilitating the formation of catalytically active iron carbide. Numerous synthetic approaches towards carbon-supported FTO catalysts with various structures and properties have been published in recent years but structure-performance relationships remain poorly understood. We apply ordered mesoporous carbon (CMK-3) as a support material with well-defined pore structure to investigate the relationships between calcination/activation conditions and catalytic properties. After loading of iron and sodium/sulfur as the promoters, the structures and properties of the FTO catalysts are varied by using different calcination (300–1000 °C) and activation (350 or 450 °C) temperatures followed by FTO testing at 1 bar, 350 °C, H2/CO = 1. Carbothermal reduction of iron oxides by the support material occurs at calcination temperatures of 800 or 1000 °C, leading to a higher ratio of catalytically active iron(carbide) species but the catalytic activity remains low due to particle growth and blocking of the catalytically active sites with dense graphite layers. For the samples calcined at 300 and 500 °C, the formation of non-blocked iron carbide can be enhanced by activation at higher temperatures, leading to higher catalytic activity. Olefin selectivities of ∼60%C in the formed hydrocarbons with methane of ∼10%C are achieved for all catalysts under FTO conditions at low CO conversion. The influence of the calcination temperature is further investigated under industrially relevant FTO conditions. Promoted CMK-3-supported catalysts obtained at low calcination temperatures of 300–500 °C show stable operation for 140 h of time on stream at 10 bar, 340 °C, H2/CO = 2.
|
34 |
Recent highlights in mixed-coordinate oligophosphorus chemistryDonath, Maximillian, Hennersdorf, Felix, Weigand, Jan J. 18 January 2017 (has links) (PDF)
This review aims to highlight and comprehensively summarize recent developments in the field of mixed-coordinate phosphorus chemistry. Particular attention is focused on the synthetic approaches to compounds containing at least two directly bonded phosphorus atoms in different coordination environments and their unexpected properties that are derived from spectroscopic and crystallographic data. Novel substance classes are discussed in order to supplement previous reviews about mixed-coordinate phosphorus compounds.
|
35 |
Total synthesis of the cyclic monoterpenoid pyrano[3,2-a]carbazole alkaloids derived from 2-hydroxy-6-methylcarbazoleGassner, Cemena, Hesse, Ronny, Schmidt, Arndt W., Knölker, Hans-Joachim 09 February 2015 (has links) (PDF)
The synthesis of seven pyrano[3,2-a]carbazole alkaloids has been achieved using their putative biogenetic precursor 2-hydroxy-6-methylcarbazole as key intermediate.
|
36 |
Controlled manipulation of multiple cells using catalytic microbotsSanchez, Samuel, Solovev, Alexander A., Schulze, Sabine, Schmidt, Oliver G. 31 March 2014 (has links) (PDF)
Self-propelled microjet engines (microbots) can transport multiple cells into specific locations in a fluid. The motion is externally controlled by a magnetic field which allows to selectively load, transport and deliver the cells. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
37 |
Heating and separation using nanomagnet-functionalized metal–organic frameworksLohe, Martin R., Gedrich, Kristina, Freudenberg, Thomas, Kockrick, Emanuel, Dellmann, Til, Kaskel, Stefan 31 March 2014 (has links) (PDF)
A magnetic functionalization of microcrystalline MOF particles was realized using magnetic iron oxide particles. Such magnetic MOFs can be separated using a static magnetic field after use in catalytic processes and heated by an external alternating magnetic field to trigger desorption of encaged drug molecules. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
38 |
High-throughput screening: speeding up porous materials discoveryWollmann, Philipp, Leistner, Matthias, Stoeck, Ulrich, Grünker, Ronny, Gedrich, Kristina, Klein, Nicole, Throl, Oliver, Grählert, Wulf, Senkovska, Irena, Dreisbach, Frieder, Kaskel, Stefan 31 March 2014 (has links) (PDF)
A new tool (Infrasorb-12) for the screening of porosity is described, identifying high surface area materials in a very short time with high accuracy. Further, an example for the application of the tool in the discovery of new cobalt-based metal–organic frameworks is given. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
39 |
Characterizing cytochrome c states – TERS studies of whole mitochondriaBöhme, René, Mkandawire, Msau, Krause-Buchholz, Udo, Rösch, Petra, Rödel, Gerhard, Popp, Jürgen, Deckert, Volker 31 March 2014 (has links) (PDF)
Protein structures (cytochrome c) were visualized by TERS measurements on whole mitochondria referring to specific spectral features describing the electronic state of the heme moiety. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
40 |
Application of a chiral metal–organic framework in enantioselective separationPadmanaban, Mohan, Müller, Philipp, Lieder, Christian, Gedrich, Kristina, Grünker, Ronny, Bon, Volodymyr, Senkovska, Irena, Baumgärtner, Sandra, Opelt, Sabine, Paasch, Silvia, Brunner, Eike, Glorius, Frank, Klemm, Elias, Kaskel, Stefan 31 March 2014 (has links) (PDF)
A modular approach for the synthesis of highly ordered porous and chiral auxiliary (Evans auxiliary) decorated metal–organic frameworks is developed. Our synthesis strategy, which uses known porous structures as model materials for incorporation of chirality via linker modification, can provide access to a wide range of porous materials suitable for enantioselective separation and catalysis. Chiral analogues of UMCM-1 have been synthesized and investigated for the enantioseparation of chiral compounds in the liquid phase and first promising results are reported. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
Page generated in 0.0505 seconds