41 |
Molecules for organic electronics studied one by oneMeyer, Jörg, Wadewitz, Anja, Lokamani,, Toher, Cormac, Gresser, Roland, Leo, Karl, Riede, Moritz, Moresco, Francesca, Cuniberti, Gianaurelio 02 April 2014 (has links) (PDF)
The electronic and geometrical structure of single difluoro-bora-1,3,5,7-tetraphenyl-aza-dipyrromethene (aza-BODIPY) molecules adsorbed on the Au(111) surface is investigated by low temperature scanning tunneling microscopy and spectroscopy in conjunction with ab initio density functional theory simulations of the density of states and of the interaction with the substrate. Our DFT calculations indicate that the aza-BODIPY molecule forms a chemical bond with the Au(111) substrate, with distortion of the molecular geometry and significant charge transfer between the molecule and the substrate. Nevertheless, most likely due to the low corrugation of the Au(111) surface, diffusion of the molecule is observed for applied bias in excess of 1 V. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
42 |
Novel self-assembling system based on resorcinarene and cationic surfactantKashapov, Ruslan R., Pashirova, Tatiana N., Kharlamov, Sergey V., Ziganshina, Albina Yu., Ziltsova, Elena P., Lukashenko, Svetlana S., Zakharova, Lucia Ya., Habicher, Wolf D., Latypov, Shamil K., Konovalov, Alexander I. 03 April 2014 (has links) (PDF)
Mixed association of calix[4]resorcinarene with ethyl sulfonate groups on the lower rim and dimethylaminomethyl groups on the upper rim (CR) and cationic surfactant 4-aza-1-hexadecyl-azoniabicyclo[2.2.2]octane bromide (DABCO-16) is studied by methods of tensiometry, conductometry, potentiometry and NMR spectroscopy at fixed CR concentration and varied surfactant concentration. Beyond ca. 0.4 mM of DABCO-16, mixed aggregates enriched by CR are proved to be formed due to electrostatic forces, while beyond ca. 5 mM, aggregates enriched by surfactant occur due to the hydrophobic effect. Spectrophotometry monitoring of the solubilization of a hydrophobic dye, Orange OT, demonstrated that only the second type of mixed aggregate enriched by DABCO-16 is capable of binding the organic probe, while the mixed system where the surfactant is a minor component shows no binding capacity towards Orange OT. This finding can be used for the design of nanocontainers with controllable binding/release properties. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
43 |
A highly porous metal–organic framework, constructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptakeStoeck, Ulrich, Krause, Simon, Bon, Volodymyr, Senkovska, Irena, Kaskel, Stefan 03 April 2014 (has links) (PDF)
A highly porous metal–organic framework Cu2(BBCDC) (BBCDC = 9,9′-([1,1′-[b with combining low line]iphenyl]-4,4′-diyl)[b with combining low line]is(9H-[c with combining low line]arbazole-3,6-[d with combining low line]i[c with combining low line]arboxylate) (DUT-49) with a specific surface area of 5476 m2 g−1, a pore volume of 2.91 cm3 g−1, a H2 excess uptake of 80 mg g−1 (77 K, 50 bar), a CO2 excess uptake of 2.01 g g−1 (298 K, 50 bar) and an exceptionally high excess methane storage capacity of 308 mg g−1 (298 K, 110 bar) was obtained using an extended tetratopic linker. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
44 |
T1α/Podoplanin Shows Raft-Associated Distribution in Mouse Lung Alveolar Epithelial E10 CellsBarth, Kathrin, Bläsche, Robert, Kasper, Michael 20 March 2014 (has links) (PDF)
Aims: T1α/(podoplanin) is abundantly expressed in the alveolar epithelial type I cells (ATI) of rodent and human lungs. Caveolin-1 is a classical primary structural protein of plasmalemal invaginations, so-called caveolae, which represent specialized lipid rafts, and which are particularly abundant in ATI cells. The biological functions of T1α in the alveolar epithelium are unknown. Here we report on the characteristics of raft domains in the microplicae/microvillar protrusions of ATI cells, which contain T1α. Methods: Detergent resistant membranes (DRMs) from cell lysates of the mouse epithelial ATI-like cell line E10 were prepared using different detergents followed by flotation in a sucrose gradient and tested by Western and dot blots with raft markers (caveolin-1, GM1) and nonraft markers (transferrin receptor, PDI and β-Cop). Immunocytochemistry was employed for the localization of T1α in E10 cells and in situ in rat lungs. Results: Our biochemical results showed that the solubility or insolubility of T1α and caveolin-1 differs in Triton X-100 and Lubrol WX, two distinct non-ionic detergents. Caveolin-1 was unsoluble in both detergents, whereas T1α was Triton X-100 soluble but Lubrol WX insoluble. Immunofluorescence double stainings revealed that both proteins were colocalized with GM1, while caveolin-1 and T1α were not colocalized in the plasma membrane. Cholesterol depletion modified the segregation of T1α in Lubrol WX DRMs. Cellular processes in ultrathin sections of cultured mouse E10 cells were immunogold positive. Immunoelectron microscopy (postembedding) of rat lung tissue revealed the preferential localization of T1α on apical microvillar protrusions of ATI cells. Conclusion: We conclude that T1α and caveolin-1 are located in distinct plasma membrane microdomains, which differ in their protein-lipid interactions. The raft-associated distribution of T1α may have an impact on a specific, not yet clarified function of this protein in the alveolar epithelium. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
45 |
Tissue Slices from Adult Mammalian Hearts as a Model for Pharmacological Drug TestingBussek, Alexandra, Wettwer, Erich, Christ, Torsten, Lohmann, Horst, Camelliti, Patrizia, Ravens, Ursula 20 March 2014 (has links) (PDF)
Aim: Isolated papillary muscles and enzymatically dissociated myocytes of guinea-pig hearts are routinely used for experimental cardiac research. The aim of our study is to investigate adult mammalian ventricular slices as an alternative preparation. Method: Vibratome cut ventricular slices (350 μm thick) were examined histologically and with 2-photon microscopy for fibre orientation. Intracellular action potentials were recorded with conventional glass microelectrodes, extracellular potentials were measured with tungsten platinum electrodes and multi-electrode arrays (MEA). Results: Dominant direction of fibre orientation was absent in vertical and horizontal transmural slices, but was longitudinal in tangential slices. Control action potential duration (APD90, 169.9 ± 4 ms) and drug effects on this parameter were similar to papillary muscles. The L-type Ca-channel blocker nifedipine shortened APD90 with a half maximal effective concentration (EC50) of 4.5 μM. The IKr blocker E4031 and neuroleptic drug risperidone prolonged APD90 with EC50 values of 31 nM and 0.67 μM, respectively. Mapping field potentials on multi-electrode arrays showed uniform spread of excitation with a mean conduction velocity of 0.47 m ⋅ s-1. Conclusion: Slices from adult mammalian hearts could become a useful routine model for electrophysiological and pharmacological research. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
46 |
Plasma Membrane Plasticity of Xenopus laevis Oocyte Imaged with Atomic Force MicroscopySchillers, Hermann, Danker, Timm, Schnittler, Hans-Joachim, Lang, Florian, Oberleithner, Hans 20 March 2014 (has links) (PDF)
Proteins are known to form functional clusters in plasma membranes. In order to identify individual proteins within clusters we developed a method to visualize by atomic force microscopy (AFM) the cytoplasmic surface of native plasma membrane, excised from Xenopus laevis oocyte and spread on poly-L-lysine coated glass. After removal of the vitelline membrane intact oocytes were brought in contact with coated glass and then rolled off. Inside-out oriented plasma membrane patches left at the glass surface were first identified with the lipid fluorescent marker FM1-43 and then scanned by AFM. Membrane patches exhibiting the typical phospholipid bilayer height of 5 nm showed multiple proteins, protruding from the inner surface of the membrane, with heights of 5 to 20 nm. Modelling plasma membrane proteins as spherical structures embedded in the lipid bilayer and protruding into the cytoplasm allowed an estimation of the respective molecular masses. Proteins ranged from 35 to 2,000 kDa with a peak value of 280 kDa. The most frequently found membrane protein structure (40/μm2) had a total height of 10 nm and an estimated molecular mass of 280 kDa. Membrane proteins were found firmly attached to the poly-L-lysine coated glass surface while the lipid bilayer was found highly mobile. We detected protein structures with distinguishable subunits of still unknown identity. Since X. laevis oocyte is a generally accepted expression system for foreign proteins, this method could turn out to be useful to structurally identify specific proteins in their native environment at the molecular level. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
47 |
A peroxygenase from Chaetomium globosum catalyzes the selective oxygenation of testosteroneKiebist, Jan, Schmidtke, Kai-Uwe, Zimmermann, Jörg, Kellner, Harald, Jehmlich, Nico, Ullrich, René, Zänder, Daniel, Hofrichter, Martin, Scheibner, Katrin 03 April 2017 (has links) (PDF)
Unspecific peroxygenases (UPO, EC 1.11.2.1) secreted by fungi open an efficient way to selectively oxyfunctionalize diverse organic substrates, including less-activated hydrocarbons, by transferring peroxide-borne oxygen. We investigated a cell-free approach to incorporate epoxy and hydroxyl functionalities directly into the bulky molecule testosterone by a novel unspecific peroxygenase (UPO) that is produced by the ascomycetous fungus Chaetomium globosum in a complex medium rich in carbon and nitrogen. Purification by fast protein liquid chromatography revealed two enzyme fractions with the same molecular mass (36 kDa) and with specific activity of 4.4 to 12 U mg−1. Although the well-known UPOs of Agrocybe aegerita (AaeUPO) and Marasmius rotula (MroUPO) failed to convert testosterone in a comparative study, the UPO of C. globosum (CglUPO) accepted testosterone as substrate and converted it with total turnover number (TTN) of up to 7000 into two oxygenated products: the 4,5-epoxide of testosterone in β-configuration and 16α-hydroxytestosterone. The reaction performed on a 100 mg scale resulted in the formation of about 90 % of the epoxide and 10 % of the hydroxylation product, both of which could be isolated with purities above 96 %. Thus, CglUPO is a promising biocatalyst for the oxyfunctionalization of bulky steroids and it will be a useful tool for the synthesis of pharmaceutically relevant steroidal molecules.
|
48 |
Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbonsBorchardt, Lars, Nickel, Winfried, Casco, Mirian, Senkovska, Irena, Bon, Volodymyr, Wallacher, Dirk, Grimm, Nico, Krause, Simon, Silvestre-Albero, Joaquín 05 April 2017 (has links) (PDF)
Methane hydrate nucleation and growth in porous model carbon materials illuminates the way towards the design of an optimized solid-based methane storage technology. High-pressure methane adsorption studies on pre-humidified carbons with well-defined and uniform porosity show that methane hydrate formation in confined nanospace can take place at relatively low pressures, even below 3 MPa CH4, depending on the pore size and the adsorption temperature. The methane hydrate nucleation and growth is highly promoted at temperatures below the water freezing point, due to the lower activation energy in ice vs. liquid water. The methane storage capacity via hydrate formation increases with an increase in the pore size up to an optimum value for the 25 nm pore size model-carbon, with a 173% improvement in the adsorption capacity as compared to the dry sample. Synchrotron X-ray powder diffraction measurements (SXRPD) confirm the formation of methane hydrates with a sI structure, in close agreement with natural hydrates. Furthermore, SXRPD data anticipate a certain contraction of the unit cell parameter for methane hydrates grown in small pores.
|
49 |
High-defect hydrophilic carbon cuboids anchored with Co/CoO nanoparticles as highly efficient and ultra-stable lithium-ion battery anodesSun, Xiaolei, Hao, Guang-Ping, Lu, Xueyi, Xi, Lixia, Liu, Bo, Si, Wenping, Ma, Chuansheng, Liu, Qiming, Zhang, Qiang, Kaskel, Stefan, Schmidt, Oliver G. 06 April 2017 (has links) (PDF)
We propose an effective strategy to engineer a unique kind of porous carbon cuboid with tightly anchored cobalt/cobalt oxide nanoparticles (PCC–CoOx) that exhibit outstanding electrochemical performance for many key aspects of lithium-ion battery electrodes. The host carbon cuboid features an ultra-polar surface reflected by its high hydrophilicity and rich surface defects due to high heteroatom doping (N-/O-doping both higher than 10 atom%) as well as hierarchical pore systems. We loaded the porous carbon cuboid with cobalt/cobalt oxide nanoparticles through an impregnation process followed by calcination treatment. The resulting PCC–CoOx anode exhibits superior rate capability (195 mA h g−1 at 20 A g−1) and excellent cycling stability (580 mA h g−1 after 2000 cycles at 1 A g−1 with only 0.0067% capacity loss per cycle). Impressively, even after an ultra-long cycle life exceeding 10 000 cycles at 5 A g−1, the battery can recover to 1050 mA h g−1 at 0.1 A g−1, perhaps the best performance demonstrated so far for lithium storage in cobalt oxide-based electrodes. This study provides a new perspective to engineer long-life, high-power metal oxide-based electrodes for lithium-ion batteries through controlling the surface chemistry of carbon host materials.
|
50 |
Topological control of 3,4-connected frameworks based on the Cu2-paddle-wheel node: tbo or pto, and why?Müller, Philipp, Grünker, Ronny, Bon, Volodymyr, Pfeffermann, Martin, Senkovska, Irena, Weiss, Manfred S., Feng, Xinliang, Kaskel, Stefan 06 April 2017 (has links) (PDF)
Two trigonal tritopic ligands with different conformational degree of freedom: conformationally labile H3tcbpa (tris((4-carboxyl)phenylduryl)amine) and conformationally obstructed H3hmbqa (4,4′,4′′-(4,4,8,8,12,12-hexamethyl-8,12-dihydro-4H-benzo[9,1]quino-lizino[3,4,5,6,7-defg]acridine-2,6,10-triyl)tribenzoic acid) are assembled with square-planar paddle-wheel nodes with the aim of selective engineering of the frameworks with tbo and pto underlying net topologies. In the case of H3tcbpa, both topological types were obtained forming non-interpenetrated MOFs namely DUT-63 (tbo) and DUT-64 (pto). Whereas synthesis of DUT-63 proceeds under typical conditions, formation of DUT-64 requires an additional topology directing reagent (topological modifier). Solvothermal treatment of the conformationally hindered H3hmbqa ligand with the Cu-salt results exclusively in DUT-77 material, based on the single pto net. The possibility to insert the salen based metallated pillar ligand into networks with pto topology post-synthetically results in DUT-78 and DUT-79 materials (both ith-d) and opens new horizons for post-synthetic insertion of catalytically active metals within the above-mentioned topological type of frameworks.
|
Page generated in 0.0254 seconds