51 |
Crystallographic insights into (CH3NH3)3(Bi2I9): a new lead-free hybrid organic–inorganic material as a potential absorber for photovoltaicsEckhardt, Kai, Bon, Volodymyr, Getzschmann, Jürgen, Grothe, Julia, Wisser, Florian M., Kaskel, Stefan 17 March 2017 (has links) (PDF)
The crystal structure of a new bismuth-based light-absorbing material for the application in solar cells was determined by single crystal X-ray diffraction for the first time. (CH3NH3)3(Bi2I9) (MBI) is a promising alternative to recently rapidly progressing hybrid organic–inorganic perovskites due to the higher tolerance against water and low toxicity. Single crystal X-ray diffraction provides detailed structural information as an essential prerequisite to gain a fundamental understanding of structure property relationships, while powder diffraction studies demonstrate a high degree of crystallinity in thin films.
|
52 |
Tuning the flexibility in MOFs by SBU functionalizationBon, Volodymyr, Kavoosi, Negar, Senkovska, Irena, Müller, Philipp, Schaber, Jana, Wallacher, Dirk, Többens, Daniel M., Mueller, Uwe, Kaskel, Stefan 17 March 2017 (has links) (PDF)
A new approach for the fine tuning of flexibility in MOFs, involving functionalization of the secondary building unit, is presented. The "gate pressure" MOF [Zn3(bpydc)2(HCOO)2] was used as a model material and SBU functionalization was performed by using monocarboxylic acids such as acetic, benzoic or cinnamic acids instead of formic acid in the synthesis. The resulting materials are isomorphous to [Zn3(bpydc)2(HCOO)2] in the "as made" form, but show different structural dynamics during the guest removal. The activated materials have entirely different properties in the nitrogen physisorption experiments clearly showing the tunability of the gate pressure, at which the structural transformation occurs, by using monocarboxylic acids with varying backbone structure in the synthesis. Thus, increasing the number of carbon atoms in the backbone leads to the decreasing gate pressure required to initiate the structural transition. Moreover, in situ adsorption/PXRD data suggest differences in the mechanism of the structural transformations: from "gate opening" in the case of formic acid to "breathing" if benzoic acid is used.
|
53 |
Phototrophic growth of Arthrospira platensis in a respiration activity monitoring system for shake flasks (RAMOS)Socher, Maria Lisa, Lenk, Felix, Geipel, Katja, Schott, Carolin, Püschel, Joachim, Haas, Christiane, Grasse, Christiane, Bley, Thomas, Steingroewer, Juliane 27 February 2017 (has links) (PDF)
Optimising illumination is essential for optimising the growth of phototrophic cells and their production of desired metabolites and/or biomass. This requires appropriate modulation of light and other key inputs and continuous online monitoring of their metabolic activities. Powerful non-invasive systems for cultivating heterotrophic organisms include shake flasks in online monitoring units, but they are rarely used for phototrophs because they lack the appropriate illumination design and necessary illuminatory power.
This study presents the design and characterisation of a photosynthetic shake flask unit, illuminated from below by warm white light-emitting diodes with variable light intensities up to 2300 μmol m-2 s-1. The photosynthetic unit was successfully used, in combination with online monitoring of oxygen production, to cultivate Arthrospira platensis.
In phototrophic growth under continuous light and a 16 h light/8 h dark cycle (light intensity: 180 μmol m-2 s-1), the oxygen transfer rate and biomass-related oxygen production were - 1.5 mmol L-1 h-1 and 0.18 mmol O2 gx-1 h-1, respectively. The maximum specific growth rate was 0.058 h-1, during the exponential growth phase, after which the biomass concentration reached 0.75 g L-1.
|
54 |
Unusual dimer formation of cyclometalated ruthenium NHC p-cymene complexesSchleicher, David, Tronnier, Alexander, Leopold, Hendrik, Borrmann, Horst, Strassner, Thomas 27 February 2017 (has links) (PDF)
We present the synthesis and structural characterization of novel ruthenium complexes containing C^C* cyclometalated N-heterocyclic carbene ligands, η6-arene (p-cymene) ligands and one bridging chlorine ion. Complexes of the general formula [Ru(p-cymene)(C^C*)Cl] were prepared via a one-pot synthesis using in situ transmetalation from the correspondent silver NHC complexes. These complexes react with sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBArF4) to form dinuclear complexes of the general structure [Ru(p-cymene)(C^C*)-μ-Cl-(p-cymene)(C^C*)Ru]+[BArF4]−. Solid-state structures confirm that the pseudo-tetrahedral coordination around the metal center with the η6-ligand aligned perpendicularly to the C^C* ligand and the i-Pr group “atop” is retained in the bimetallic complexes.
|
55 |
A new metal–organic framework with ultra-high surface areaGrünker, Ronny, Bon, Volodymyr, Müller, Philipp, Stoeck, Ulrich, Krause, Simon, Mueller, Uwe, Senkovska, Irena, Kaskel, Stefan 21 July 2014 (has links) (PDF)
A new mesoporous MOF, Zn4O(bpdc)(btctb)4/3 (DUT-32), containing linear ditopic (bpdc2−; 4,4′-biphenylenedicarboxylic acid) and tritopic (btctb3−; 4,4′,4′′-[benzene-1,3,5-triyltris(carbonylimino)]tris-benzoate) linkers, was synthesised. The highly porous solid has a total pore volume of 3.16 cm3 g−1 and a specific BET surface area of 6411 m2 g−1, adding this compound to the top ten porous materials with the highest BET surface area.
|
56 |
Zr(IV) and Hf(IV) based metal–organic frameworks with reo-topologyBon, Volodymyr, Senkovskyy, Volodymyr, Senkovska, Irena, Kaskel, Stefan 09 April 2014 (has links) (PDF)
Zr and Hf based MOFs with enhanced pore accessibility for large molecules and good hydrothermal stability were obtained using a bent dithienothiophene dicarboxylate and Zr4+ or Hf4+ source. A modulator (benzoic acid) facilitates formation of an eight-connecting cluster leading to a new framework which adopts reo topology. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
57 |
Ca3Pt4+xGe13−y and Yb3Pt4Ge13: new derivatives of the Pr3Rh4Sn13 structure typeGumeniuk, Roman, Akselrud, Lev, Kvashnina, Kristina O., Schnelle, Walter, Tsirlin, Alexander A., Curfs, Caroline, Rosner, Helge, Schöneich, Michael, Burkhardt, Ulrich, Schwarz, Ulrich, Grin, Yuri, Leithe-Jasper, Andreas 08 April 2014 (has links) (PDF)
The new phases Ca3Pt4+xGe13−y (x = 0.1; y = 0.4; space group I213; a = 18.0578(1) Å; RI = 0.063; RP = 0.083) and Yb3Pt4Ge13 (space group P42cm; a = 12.7479(1) Å; c = 9.0009(1) Å; RI = 0.061, RP = 0.117) are obtained by high-pressure, high-temperature synthesis and crystallize in new distortion variants of the Pr3Rh4Sn13 type. Yb3Pt4Ge13 features Yb in a temperature-independent non-magnetic 4f14 (Yb2+) configuration validated by X-ray absorption spectra and resonant inelastic X-ray scattering data. Ca3Pt4+xGe13−y is diamagnetic (χ0 = −5.05 × 10−6 emu mol−1). The Sommerfeld coefficient γ = 4.4 mJ mol−1 K−2 for Ca3Pt4+xGe13−y, indicates metallic properties with a low density of states at the Fermi level in good agreement with electronic structure calculation (N(EF) = 3.3 eV−1/f.u.)); the Debye temperature (θD) is 398 K. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
58 |
A family of 2D and 3D coordination polymers involving a trigonal tritopic linkerHauptvogel, Ines Maria, Bon, Volodymyr, Grünker, Ronny, Baburin, Igor A., Senkovska, Irena, Müller, Uwe, Kaskel, Stefan 08 April 2014 (has links) (PDF)
Five new coordination polymers, namely, [Zn2(H2O)2(BBC)](NO3)(DEF)6 (DUT-40), [Zn3(H2O)3(BBC)2] (DUT-41), [(C2H5)2NH2][Zn2(BBC)(TDC)](DEF)6(H2O)7 (DUT-42), [Zn10(BBC)5(BPDC)2(H2O)10](NO3)(DEF)28(H2O)8 (DUT-43), and [Co2(BBC)(NO3)(DEF)2(H2O)](DEF)6(H2O) (DUT-44), where BBC – 4,4′,4′′-(benzene-1,3,5-triyl-tris(benzene-4,1-diyl))tribenzoate, TDC – 2,5-thiophenedicarboxylate, BPDC – 4,4′-biphenyldicarboxylate, DEF – N,N-diethylformamide, were obtained under solvothermal conditions and structurally characterized. It has been shown that compounds DUT-40, DUT-41 and DUT-44 exhibit 2D layered structures with large hexagonal channels. Utilization of additional angular dicarboxylic TDC linker led to the formation of the DUT-42 compound with the structure consisting of three interpenetrated 3D networks. Using the linear co-linker dicarboxylic BPDC, DUT-43 was obtained which forms a complicated 3D architecture arising from the polycatenation of triple-layered 2D building units and 2D single layer units. The pore accessibility of the synthesized compounds in the liquid phase was proved by the adsorption of dye molecules. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
59 |
Stereoselective synthesis and hormonal activity of novel dafachronic acids and naturally occurring steroids isolated from coralsSaini, Ratni, Boland, Sebastian, Kataeva, Olga, Schmidt, Arndt W., Kurzchalia, Teymuras V., Knölker, Hans-Joachim 07 April 2014 (has links) (PDF)
A stereoselective synthesis of (25S)-Δ1-, (25S)-Δ1,4-, (25S)-Δ1,7-, (25S)-Δ8(14)-, (25S)-Δ4,6,8(14)-dafachronic acid, methyl (25S)-Δ1,4-dafachronate and (25S)-5α-hydroxy-3,6-dioxocholest-7-en-26-oic acid is described. (25S)-Δ1,4-Dafachronic acid and its methyl ester are natural products isolated from corals and have been obtained by synthesis for the first time. (25S)-5α-Hydroxy-3,6-dioxocholest-7-en-26-oic acid represents a promising synthetic precursor for cytotoxic marine steroids. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
60 |
TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices – the ISOS-3 inter-laboratory collaborationAndreasen, Birgitta, Tanenbaum, David M., Hermenau, Martin, Voroshazi, Eszter, Lloyd, Matthew T., Galagan, Yulia, Zimmernann, Birger, Kudret, Suleyman, Maes, Wouter, Lutsen, Laurence, Vanderzande, Dirk, Würfel, Uli, Andriessen, Ronn, Rösch, Roland, Hoppe, Harald, Teran-Escobar, Gerardo, Lira-Cantu, Monica, Rivaton, Agnès, Uzunoğlu, Gülşah Y., Germack, David S., Hösel, Markus, Dam, Henrik F., Jørgensen, Mikkel, Gevorgyan, Suren A., Madsen, Morten V., Bundgaard, Eva, Krebs, Frederik C., Norrman, Kion 07 April 2014 (has links) (PDF)
The present work is the fourth (and final) contribution to an inter-laboratory collaboration that was planned at the 3rd International Summit on Organic Photovoltaic Stability (ISOS-3). The collaboration involved six laboratories capable of producing seven distinct sets of OPV devices that were degraded under well-defined conditions in accordance with the ISOS-3 protocols. The degradation experiments lasted up to 1830 hours and involved more than 300 cells on more than 100 devices. The devices were analyzed and characterized at different points of their lifetimes by a large number of non-destructive and destructive techniques in order to identify specific degradation mechanisms responsible for the deterioration of the photovoltaic response. Work presented herein involves time-of-flight secondary ion mass spectrometry (TOF-SIMS) in order to study chemical degradation in-plane as well as in-depth in the organic solar cells. Various degradation mechanisms were investigated and correlated with cell performance. For example, photo-oxidation of the active material was quantitatively studied as a function of cell performance. The large variety of cell architectures used (some with and some without encapsulation) enabled valuable comparisons and important conclusions to be drawn on degradation behaviour. This comprehensive investigation of OPV stability has significantly advanced the understanding of degradation behaviour in OPV devices, which is an important step towards large scale application of organic solar cells. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
Page generated in 0.0511 seconds