41 |
Semiclassical approximations for single eigenstates of quantum mapsSczyrba, Martin 11 April 2003 (has links)
In der vorliegenden Arbeit wird die Fredholm-Methode zur semiklassischen Berechnung einzelner Eigenzustaende von Quantenabbildungen eingesetzt. Es wird gezeigt, wie auch Eigenzustaende zu entarteten Eigenwerten berechnet werden koennen. Die semiklassische Berechnung eines Eigenzustandes erfolgt mittels der Husimifunktion. Es wird gezeigt, wie das Auftreten von Bifurkationen periodischer Bahnen beruecksichtigt werden kann. Dies geschieht auch fuer den Fall von energiegemittelten Eigenzustaenden. Ebenfalls wird die Stoerung einer Quantenabbildung durch einen Punktstreuer und dessen Auswirkungen auf die semiklassische Berechnungen untersucht.
|
42 |
Mathematical Modelling of the Role of Haptotaxis in Tumour Growth and InvasionMallet, Daniel Gordon January 2004 (has links)
In this thesis, a number of mathematical models of haptotactic cell migration are developed. The modelling of haptotaxis is presented in two distinct parts - the first comprises an investigation of haptotaxis in pre-necrotic avascular tumours, while the second consists of the modelling of adhesion-mediated haptotactic cell migration within tissue, with particular attention paid to the biological appropriateness of the description of cell-extracellular matrix adhesion. A model is developed that describes the effects of passive and haptotactic migration on the cellular dynamics and growth of pre-necrotic avascular tumours. The model includes a description of the extracellular matrix and its effect on cell migration. Questions are posed as to which cell types act as a source of the extracellular matrix, and the model is used to simulate the possible effects of different matrix sources. Simulations in one-dimensional and spherically symmetric geometry are presented, displaying familiar results such as three-phase tumour growth and tumours comprising a rim of proliferating cells surrounding a non-proliferating region. Novel effects are also described such as cell population splitting and tumour shrinkage due to haptotaxis and appropriate extracellular matrix construction. The avascular tumour model is then extended to describe the internalisation of labelled cells and inert microspheres within multicell tumour spheroids. A novel model of adhesion-receptor mediated haptotactic cell migration is presented and specific applications of the model to tumour invasion processes are discussed. This model includes a more biologically realistic description of cell adhesion than has been considered in previous models of cell population haptotaxis. Through assumptions of fast kinetics, the model is simplified with the identification of relationships between the simplified model and previous models of haptotaxis. Further simpli.cations to the model are made and travelling wave solutions of the original model are then investigated. It is noted that the generic numerical solution routine NAG D03PCF is not always appropriate for the solution of the model, and can produce oscillatory and inaccurate solutions. For this reason, a control volume numerical solver with .ux limiting is developed to provide a better method of solving the cell migration models.
|
43 |
[en] ANALYSIS OF THE COMPUTATIONAL COST OF THE MONTE CARLO METHOD: A STOCHASTIC APPROACH APPLIED TO A VIBRATION PROBLEM WITH STICK-SLIP / [pt] ANÁLISE DO CUSTO COMPUTACIONAL DO MÉTODO DE MONTE CARLO: UMA ABORDAGEM ESTOCÁSTICA APLICADA A UM PROBLEMA DE VIBRAÇÕES COM STICK-SLIPMARIANA GOMES DIAS DOS SANTOS 20 June 2023 (has links)
[pt] Um dos objetivos desta tese é analisar o custo computacional do
método de Monte Carlo aplicado a um problema modelo de dinâmica,
considerando incertezas na força de atrito. O sistema mecânico a ser
estudado é composto por um oscilador de um grau de liberdade que se
desloca sobre uma esteira em movimento. Considera-se a existência de atrito
seco entre a massa do oscilador e a esteira. Devido a uma descontinuidade
na força de atrito, a dinâmica resultante pode ser dividida em duas fases
que se alternam, chamadas de stick e slip. Neste estudo, um parâmetro
da força de atrito dinâmica é modelado como uma variável aleatória. A
propagação de incerteza é estudada por meio da aplicação do método
de Monte Carlo, considerando três abordagens diferentes para calcular
aproximações da resposta dos problemas de valor inicial que modelam a
dinâmica do problema: NV) aproximações numéricas calculadas usando
método de Runge-Kutta de quarta e quinta ordens com passo de integração variável;
NF) aproximações numéricas calculadas usando método de Runge-Kutta de
quarta ordem com passo de integração fixo; AN) aproximação analítica obtida
com o método de múltiplas escalas. Nas abordagens NV e NF, para cada
valor de parâmetro, uma aproximação numérica foi calculada. Já para a AN,
apenas uma aproximação analítica foi calculada e avaliada para os diferentes
valores usados. Entre as variáveis aleatórias de interesse associadas ao
custo computacional do método de Monte Carlo, encontram-se o tempo de
execução e o espaço em disco consumido. Devido à propagação de incertezas,
a resposta do sistema é um processo estocástico com uma sequência aleatória
de fases de stick e slip. Essa sequência pode ser caracterizada pelas seguintes
variáveis aleatórias: instantes de transição entre as fases de stick e slip,
suas durações e o número de fases. Para estudar as variáveis associadas ao
custo computacional e ao processo estocástico foram construídos modelos
estatísticos, histogramas normalizados e gráficos de dispersão. O objetivo é
estudar a dependência entre as variáveis do processo estocástico e o custo
computacional. Porém, a construção destas análises não é simples devido à
dimensão do problema e à impossibilidade de visualização das distribuições
conjuntas de vetores aleatórios de três ou mais dimensões. / [en] One of the objectives of this thesis is to analyze the computational
cost of the Monte Carlo method applied to a toy problem concerning
the dynamics of a mechanical system with uncertainties in the friction
force. The system is composed by an oscillator placed over a moving
belt. The existence of dry friction between the two elements in contact
is considered. Due to a discontinuity in the frictional force, the resulting
dynamics can be divided into two alternating phases, called stick and slip.
In this study, a parameter of the dynamic friction force is modeled as
a random variable. Uncertainty propagation is analyzed by applying the
Monte Carlo method, considering three different strategies to compute
approximations to the initial value problems that model the system s
dynamics: NV) numerical approximations computed with the Runge-Kutta
method of 4th and 5th orders, with variable integration time-step; NF)
numerical approximations computed with the Runge-Kutta method of 4th
order, with a fixed integration time-step; AN) analytical approximation
obtained with the multiple scale method. In the NV and NF strategies, for
each parameter value, a numerical approximation was calculated, whereas
for the AN strategy, only one analytical approximation was calculated and
evaluated for the different values of parameters considered. The run-time
and the storage are among the random variables of interest associated with
the computational cost of the Monte Carlo method. Due to uncertainty
propagation, the system response is a stochastic process given by a random
sequence of stick and slip phases. This sequence can be characterized by the
following random variables: the transition instants between the stick and
slip phases, their durations and the number of phases. To study the random
processes and the variables related to the computational costs, statistical
models, normalized histograms and scatterplots were built. Afterwards, a
joint analysis was performed to study the dependece between the variables of
the random process and the computational cost. However, the construction
of these analyses is not a simple task due to the impossibility of viewing
the distributionto of joint distributions of random vectors of three or more.
|
44 |
Contribution à la théorie des ondelettes : application à la turbulence des plasmas de bord de Tokamak et à la mesure dimensionnelle de cibles / Contribution to the wavelet theory : Application to edge plasma turbulence in tokamaks and to dimensional measurement of targetsScipioni, Angel 19 November 2010 (has links)
La nécessaire représentation en échelle du monde nous amène à expliquer pourquoi la théorie des ondelettes en constitue le formalisme le mieux adapté. Ses performances sont comparées à d'autres outils : la méthode des étendues normalisées (R/S) et la méthode par décomposition empirique modale (EMD).La grande diversité des bases analysantes de la théorie des ondelettes nous conduit à proposer une approche à caractère morphologique de l'analyse. L'exposé est organisé en trois parties.Le premier chapitre est dédié aux éléments constitutifs de la théorie des ondelettes. Un lien surprenant est établi entre la notion de récurrence et l'analyse en échelle (polynômes de Daubechies) via le triangle de Pascal. Une expression analytique générale des coefficients des filtres de Daubechies à partir des racines des polynômes est ensuite proposée.Le deuxième chapitre constitue le premier domaine d'application. Il concerne les plasmas de bord des réacteurs de fusion de type tokamak. Nous exposons comment, pour la première fois sur des signaux expérimentaux, le coefficient de Hurst a pu être mesuré à partir d'un estimateur des moindres carrés à ondelettes. Nous détaillons ensuite, à partir de processus de type mouvement brownien fractionnaire (fBm), la manière dont nous avons établi un modèle (de synthèse) original reproduisant parfaitement la statistique mixte fBm et fGn qui caractérise un plasma de bord. Enfin, nous explicitons les raisons nous ayant amené à constater l'absence de lien existant entre des valeurs élevées du coefficient d'Hurst et de supposées longues corrélations.Le troisième chapitre est relatif au second domaine d'application. Il a été l'occasion de mettre en évidence comment le bien-fondé d'une approche morphologique couplée à une analyse en échelle nous ont permis d'extraire l'information relative à la taille, dans un écho rétrodiffusé d'une cible immergée et insonifiée par une onde ultrasonore / The necessary scale-based representation of the world leads us to explain why the wavelet theory is the best suited formalism. Its performances are compared to other tools: R/S analysis and empirical modal decomposition method (EMD). The great diversity of analyzing bases of wavelet theory leads us to propose a morphological approach of the analysis. The study is organized into three parts. The first chapter is dedicated to the constituent elements of wavelet theory. Then we will show the surprising link existing between recurrence concept and scale analysis (Daubechies polynomials) by using Pascal's triangle. A general analytical expression of Daubechies' filter coefficients is then proposed from the polynomial roots. The second chapter is the first application domain. It involves edge plasmas of tokamak fusion reactors. We will describe how, for the first time on experimental signals, the Hurst coefficient has been measured by a wavelet-based estimator. We will detail from fbm-like processes (fractional Brownian motion), how we have established an original model perfectly reproducing fBm and fGn joint statistics that characterizes magnetized plasmas. Finally, we will point out the reasons that show the lack of link between high values of the Hurst coefficient and possible long correlations. The third chapter is dedicated to the second application domain which is relative to the backscattered echo analysis of an immersed target insonified by an ultrasonic plane wave. We will explain how a morphological approach associated to a scale analysis can extract the diameter information
|
Page generated in 0.0395 seconds