• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 68
  • 30
  • 20
  • 15
  • 15
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 313
  • 313
  • 35
  • 29
  • 22
  • 20
  • 17
  • 16
  • 16
  • 16
  • 14
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Structural Studies On Enzymes From Salmonella Typhimurium Involved In Propionate Metabolism: Biodegradative Threonine Deaminase, Propionate Kinase And 2-Methylisocitrate Lyase

Simanshu, Dhirendra Kumar 09 1900 (has links)
I formally joined Prof. M. R. N. Murthy’s laboratory at the Molecular Biophysics Unit, Indian institute of Science, on 1st August 2001. During that time, the interest in the laboratory was mainly focused on structural studies on a number of capsid mutants of two plant viruses, sesbania mosaic virus and physalis mottle virus, to gain an insight into the virus structure and its assembly. Besides these two projects, there were a few other collaborative projects running in the lab at that time such as NIa protease from pepper vein banding virus and diaminopropionate ammonia lyase from Escherichia coli with Prof. H. S. Savithri, triosephosphate isomerase from Plasmodium falciparum with Prof. P. Balaram and Prof. H. Balaram and a DNA binding protein (TP2) with Prof. M. R. S. Rao. During my first semester, along with my course work, I was assigned to make an attempt to purify and crystallize recombinant NIa protease and TP2 protein. I started with NIa protease which could be purified using one step Ni-NTA affinity column chromatography. Although the expression and protein yield were reasonably good, protein precipitated with in a couple of hours after purification. Attempts were made to prevent the precipitation of the purified enzyme and towards this end we were successful to some extent. However, during crystallization trials most of the crystallization drops precipitated completely even at low protein oncentration. TP2 protein was purified using three-step chromatographic techniques by one of the project assistant in Prof. M. R. S. Rao’s laboratory. Because of low expression level and three step purification protocol, protein yield was not good enough for complete crystallization screening. Hits obtained from our initial screening could not be confirmed because of low protein yield as well as batch to batch variation. My attempts to crystallize these two proteins remained unsuccessful but in due course I had learnt a great deal about the tips and tricks of expression, purification and mainly crystallization. To overcome the problems faced with these two proteins, we decided to make some changes in the gene construct and try different expression systems. By this time (beginning of 2002), I had finished my first semester and a major part of the course work, so we decided to start a new project focusing on some of the unknown enzymes from a metabolic pathway. Dr. Parthasarathy, who had finished his Ph. D. from the lab, helped me in literature work and in finding targets for structural studies. Finally, we decided to target enzymes involved in the propionate etabolism. The pathways for propionate metabolism in Escherichia coli as well as Salmonella typhimurium were just established and there were no structural information available for most of the enzymes involved in these pathways. Since, propionate metabolic pathways were well described in the case of Salmonella typhimurium, we decided to use this as the model organism. We first started with the enzymes present in the propionate catabolic pathway “2-methylcitrate pathway”, which converts propionate into pyruvate and succinate. 2-methylcitrate pathway resembles the well-studied glyoxylate and TCA cycle. Most of the enzymes involved in 2-methylcitrate pathway were not characterized biochemically as well as structurally. First, we cloned all the four enzymes PrpB, PrpC, PrpD and PrpE present in the prpBCDE operon along with PrpR, a transcription factor, with the help of Dr. P.S. Satheshkumar from Prof. H. S. Savithri’s laboratory. Since these five proteins were cloned with either N- or C-terminal hexa-histidine tag, they could be purified easily using one-step Ni-NTA affinity column chromatography. PrpB, PrpC and PrpD had good expression levels but with PrpE and PrpR, more than 50% of the expressed protein went into insoluble fraction, probably due to the presence of membrane spanning domains in these two enzymes. Around this time, crystallization report for the PrpD from Salmonella was published by Ivan Rayment’s group, so after that we focused only on the remaining four proteins leaving out PrpD. Our initial attempts to crystallize these proteins became successful in case of PrpB, 2-methylisocitrate lyase. We collected a complete diffraction data to a resolution of 2.5 Å which was later on extended to a resolution of 2.1 Å using another crystal. Repeated crystallization trials with PrpC also gave small protein crystals but they were not easy to reproduce and size and diffraction quality always remained a problem. Using one good crystal obtained for PrpC, data to a resolution of 3.5 Å could be collected. Unfortunately, during data collection due to failure of the cryo-system, a complete dataset could not be collected. Further attempts to crystallize this protein made by Nandashree, one of my colleagues in the lab at that time, was also without much success. Attempts to purify and crystallize PrpE and PrpR were made by me as well as one of my colleagues, Anupama. In this case, besides crystallization, low expression and precipitation of the protein after purification were major problems. Our attempt to phase the PrpB data using the closest search model (phosphoenolpyruvate mutase) by molecular replacement technique was unsuccessful,probably because of low sequence identity between them (24%). Further attempts were made to obtain heavy atom derivatives of PrpB crystal. We could obtain a mercury derivative using PCMBS. However, an electron density map based on this single derivative was not nterpretable. Around this time, the structure of 2-methylisocitrate lyase (PrpB) from E. coli was published by Grimm et. al. The structure of Salmonella PrpB could easily be determined using the E. coli PrpB enzyme as the starting model. We also solved the structure of PrpB in complex with pyruvate and Mg2+. Our attempts to crystallize PrpB with other ligands were not successful. Using the structures of PrpB and its complex with pyruvate and Mg2+, we carried out comparative studies with the well-studied structural and functional homologue, isocitrate lyase. These studies provided the plausible rationale for different substrate specificities of these two enzymes. Due to unavailability of PrpB substrate commercially and the extensive biochemical and mutational studies carried out by two different groups made us turn our attention to other enzymes in this metabolic pathway. Since our repeated attempts to obtain good diffraction quality crystals of PrpC, PrpE and PrpR continued to be unsuccessful, we decided to target other enzymes involved in propionate metabolism. We looked into the literature for the metabolic pathways by which propionate is synthesized in the Salmonella typhimurium and finally decided to target enzymes present in the metabolic pathway which converts L-threonine to propionate. Formation of propionate from L-threonine is the most direct route in many organisms. During February 2003, we initiated these studies with the last enzyme of this pathway, propionate kinase (TdcD), and within a couple of months we could obtain a well-diffracting crystal in complex with ADP and with a non-hydrolysable ATP analog, AMPPNP. TdcD structure was solved by molecular replacement using acetate kinase as a search model. Propionate kinase, like acetate kinase, contains a fold with the topology βββαβαβα, identical with that of glycerol kinase, hexokinase, heat shock cognate 70 (Hsc70) and actin, the superfamily of phosphotransferases. Examination of the active site pocket in propionate kinase revealed a plausible structural rationale for the greater specificity of the enzyme towards propionate than acetate. One of the datasets of TdcD obtained in the presence of ATP showed extra continuous density beyond the γ-phosphate. Careful examination of this extra electron density finally allowed us to build diadenosine tetraphosphate (Ap4A) into the active site pocket, which fitted the density very well. Since the data was collected at a synchrotron source to a resolution of 1.98 Å, we could identify the ligand in the active site pocket solely on the basis of difference Fourier map. Later on, co-crystallization trials of TdcD with commercially available Ap4A confirmed its binding to the enzyme. These studies suggested the presence of a novel Ap4A synthetic activity in TdcD, which is further being examined by biochemical experiments using mass-spectrometry as well as thin-layer chromatography experiments. By the end of 2004, we shifted our focus to the first enzyme involved in the anaerobic degradation of L-threonine to propionate, a biodegradative threonine deaminase (TdcB). Sagar Chittori, who had joined the lab as an integrated Ph. D student, helped me in cloning this enzyme. My attempt to crystallize this protein became finally successful and datasets in three different crystal forms were collected. Dataset for TdcB in complex with CMP was collected during a synchrotron trip to SPring8, Japan by my colleague P. Gayathri and Prof. Murthy. TdcB structure was solved by molecular replacement using the N-terminal domain of biosynthetic threonine deaminase as a search model. Structure of TdcB in the native form and in complex with CMP helped us to understand several unanswered questions related to ligand mediated oligomerization and enzyme activation observed in this enzyme. The structural studies carried out on these three enzymes have provided structural as well as functional insights into the catalytic process and revealed many unique features of these metabolic enzymes. All these have been possible mainly due to proper guidance and encouragement from Prof. Murthy and Prof. Savithri. Prof. Murthy’s teaching as well as discussions during the course of investigation has helped me in a great deal to learn and understand crystallography. Collaboration with Prof. Savithri kept me close to biochemistry and molecular biology, the background with which I entered the world of structural biology. The freedom to choose the project and carry forward some of my own ideas has given me enough confidence to enjoy doing research in future.
292

Studies On The Mechanisms Involved In Thymic Atrophy During Salmonella Enterica Serovar Typhimurium Infection

Deobagkar-Lele, Mukta 07 1900 (has links) (PDF)
T lymphocytes are an essential component of the adaptive immune response and are highly versatile in function. Each T cell has a unique T cell receptor that can recognize an antigenic peptide in the context of the major his to compatibility complex (MHC) encoded molecules, thus offering a high degree of specificity to the immune response. T cells play a central role in the development of an effective host immune response and the quantitative and qualitative regulation of the T cell response is critical. T cells develop in the thymus, an important primary immune organ, where immature thymocytes undergo differentiation and maturation. Through the process of thymic differentiation, immature cluster of differentiation (CD)4-CD8- thymocytes progress to a CD4+CD8+ stage and are subjected to positive and negative selection to give rise to MHC restricted, single positive CD4+ or CD8+ naive T cells that emigrate from the thymus and populate the peripheral lymphocyte pool. Thymic atrophy is well known to occur naturally during the process of aging with thymocyte depletion and reduced thymic output. Along with age associated changes leading to atrophy, the thymus is exquisitely sensitive to starvation and several stresses. In addition, thymic atrophy is a characteristic feature during several viral, bacterial and parasitic infections. Egress of immature thymocytes, loss of thymic populations due to sensitivity to glucocorticoids and cytokine modulation, etc. have been variously proposed to be involved in this process. However there is limited understanding on the numerous mechanisms involved and the crosstalk between these diverse pathways. In this study, a model for thymic atrophy during acute Salmonella enterica serovar Typhimurium (S. typhimurium) infection was developed. S. typhimurium is a Gram negative bacterium that resides and grows in intracellular compartments within host cells. It causes gastroenteritis in humans but leads to typhoid like disease in mice, similar to that caused by S. typhi in humans. Initially, it was established that acute infection of C57BL/6 mice with 108 CFU S. typhimurium, via the oral, i.e. the physiological, route of infection leads to extensive depletion (8-10 fold) of thymocytes in an infection-dependent manner. Infected mice had higher CFU burden in the Peyer’s patches, spleen, liver, and mesenteric lymph node (MLN) as compared to the thymus. The thymic atrophy was dependent upon the infection caused by live S. typhimurium since oral feeding of mice even with higher doses (1010 CFU) of heat-killed bacteria did not lead to thymic atrophy. The susceptible populations in the thymus were identified by staining for expression of CD4 and CD8 on cell surface using specific monoclonal antibodies tagged to fluorophores, e.g. Fluorescein isothiocyanate (FITC) and phycoerythrin (PE), respectively. The double labelled samples were analyzed by flow cytometry. Interestingly, significant death of CD4+CD8+, the major population of thymocytes, but not single positive thymocytes or peripheral lymphocytes (MLN and spleen cells), was observed at later stages during infection. To gain greater understanding of the processes involved, the mechanisms leading to thymic atrophy were investigated. To this purpose, small molecule inhibitors and mice lacking key molecules important for the immune response were utilized. Also, various assays to assess death of thymocytes, including analysis of death markers such as Annexin V based detection of membrane flipping and caspase activation were performed. I. The extrinsic death pathway involving Fas/FasL interactions is a major death pathway. Therefore, the expression and functional role of the components of the pathway in this model of thymocyte death was investigated. It was observed that thymocytes from infected mice expressed more Fas and Fas ligand (FasL) on their surface than cells from uninfected mice. To address the role of the death receptor, Fas, infection studies were performed with lpr mice that lack functional Fas expression. The depletion of CD4+CD8+ thymocytes in lpr mice was comparable to that in C57BL/6 mice indicating that it was independent of the Fas pathway. However, extensive loss of mitochondrial membrane potential was observed upon analysis with mitochondrial potential specific dyes MitoTracker Red and DiOC6. Most likely, the intrinsic death pathway involving mitochondrial depolarization is involved in this model of thymic atrophy. II. Since thymocytes are known to be sensitive to glucocorticoids both in vitro and in vivo, the involvement of the same in this model of thymic atrophy was assessed. The amounts of cortisol, a glucocorticoid, as detected by ELISA, were elevated during infection. To investigate the functional implication of the increase in cortisol, studies were performed using RU486, a glucocorticoid receptor antagonist. RU486 did not modulate cortisol amounts and treatment of mice with RU486 did not affect CFU burden or survival of mice. However there was a moderate rescue in the number of viable CD4+CD8+ thymocytes, with only a 3-4 fold drop as compared to the 8-10 fold drop in vehicle treated infected mice. III. As glucocorticoids appeared to play a partial role in this model, it was reasonable to assume that other pathways were also involved in the thymic atrophy. The quantitative and qualitative modulation of the cytokine milieu has a profound effect upon the thymus. In fact, inflammatory cytokines, Tnfα and Ifnγ, increased upon infection. In order to study the role of Ifnγ mediated inflammatory responses in this model, infection studies with Ifnγ-/- mice were performed. Ifnγ-/- mice had higher CFU and lower survival; however the drop in thymocyte numbers was 3-4 fold as compared to the 8-10 fold drop in the infected C57BL/6 mice, again indicating a partial involvement of the Ifnγ mediated pathways. In order to study the interactions, if any, between the two pathways mentioned above, corticosteroid signaling was blocked in the Ifnγ-/- mice with RU486. Upon infection, the number of CD4+CD8+ thymocytes was significantly higher in Ifnγ-/- mice treated with RU486 (~1.5 fold drop in viable thymocyte numbers) along with lower caspase 3 activity and mitochondrial damage. Importantly, cortisol amounts in infected Ifnγ-/- mice were comparable to those in infected C57BL/6 mice and the administration of RU486 did not modulate Tnfα and Ifnγ cytokine amounts in sera. Thus, the glucocorticoid and Ifnγ mediated pathways are parallel but synergize in an additive manner to induce death of CD4+CD8+ thymocytes during S. typhimurium nfection. IV. Although thymic atrophy is known to occur, a detailed characterization of cell surface changes in thymocyte populations has not been performed. To investigate this aspect, thymocytes and MLN cells from uninfected and infected animals were stained for cell surface expression of CD3, CD4, CD5, CD8, CD24, CD25, CD44, CD69, MHC I and MHC II. This analysis was initially performed by studying the changes in expression of these molecules within the total thymocyte and MLN populations. Although there was no change in the expression of CD25 and MHC II in the total thymocyte population upon infection, CD24 expression reduced, whereas, the expression of CD3, CD5, CD44, CD69 and MHC I increased. Notably, changes in the frequency of expression of CD3, CD69 and MHC I were observed before the development of extensive thymic atrophy. The depletion of majority of the CD4+CD8+ thymocytes enriches the mature CD4+ or CD8+ thymocyte population This was corroborated with the observation that, upon in vitro stimulation with PMA and Ionomycin (pharmacological agents used to activate T cells) the residual thymocytes from infected mice produced more IL2 compared to thymocytes from uninfected mice. Subsequently, cells were stained with anti-CD4-FITC, anti-CD8-PE and a third biotinylated antibody, which was detected by a streptavidin-APC conjugate, against one of the remaining six markers. This three colour analysis made it possible to determine the changes in the expression of the third marker in each of the CD4-CD8-, CD4+CD8+, CD4+ and CD8+ populations upon infection. Distinct differences were observed in the phenotypes of uninfected and infected CD4+CD8+ thymocytes and the latter were CD3high, CD5high, CD24low, CD69high and MHC Ihigh indicating that the surviving population had a possibly more mature phenotype. Also, the changes in the phenotypes of the thymocyte populations were dependent upon the extent of thymic atrophy as indicated by time course and CFU studies with C57BL/6 and BALB/c mice respectively. Finally, the roles of glucocorticoids, Ifnγ and Nos2 in modulation of expression of these markers during infection were addressed. Interestingly, the expression of CD3, CD24 and MHC class I significantly correlated with increase in the number of surviving thymocytes upon inhibition of glucocorticoids signaling and in Ifnγ-/- mice. The implications of these changes in the thymocyte surface phenotype during thymic atrophy are discussed. V. Finally, the roles of downstream signalling molecules in S. typhimurium induced thymic atrophy were studied. Although the MAP kinase family members, Erk, Jnk and p38 have been implicated to play a role in the positive and/or negative selection of thymocytes during development, their role in infection induced thymocyte depletion has not been studied. Interestingly, the amounts of Jnk and pJnk, but not p38, increased in thymocytes upon infection. Importantly, pJnk amounts increased predominantly in CD3-/low thymocytes during infection. Furthermore, inhibition of Jnk signalling, using a specific inhibitor SP600125, lead to an increase in survival of CD4+CD8+ thymocytes during infection due to multiple reasons: lowering of cortisol, Tnfα and Ifnγ amounts, and better maintenance of thymic architecture. Thus, inhibition of Jnk mediated signaling protected CD4+CD8+ and CD3-/low thymocytes from death during S. typhimurium infection. Overall, the main conclusions of this study are as follows: First, extensive analysis of the surface phenotype of cells during thymic atrophy throws light on the sensitive and resistant thymocyte populations, thus offering a potential predictive marker profile. Second, glucocorticoids, Ifnγ and, importantly, Jnk mediated signaling play functional roles in the death of immature CD4+CD8+ thymocytes during S. typhimurium infection. The mechanistic details uncovered in this study may be important in designing effective strategies for reducing thymic atrophy during other infections. In fact, enhancement of thymic output may lead to greater numbers and diversity of thymic T cell emigrants in the periphery which is likely to enhance host responses during infections.
293

Dynamics of the bacterial genome rates and mechanisms of mutation /

Koskiniemi, Sanna, January 2010 (has links)
Diss. (sammanfattning) Uppsala : Uppsala universitet, 2010.
294

Estimativa da transferência de Salmonella typhimurium DT 177 entre faca de aço inoxidável e carne suína artificialmente contaminada

Navarrete Rivas, Cláudia Andrea January 2017 (has links)
A contaminação cruzada por Salmonella spp. durante o processo de abate de suínos contribui para o aumento da prevalência de carcaças positivas no pré-resfriamento. Um dos fatores que pode contribuir para a contaminação cruzada é a execução de cortes e palpação de carcaças durante o processo de inspeção. O presente estudo teve como objetivo estimar, por meio de ensaios laboratoriais, a transferência de Salmonella Typhimurium DT 177 entre faca e carne suína, para subsidiar análises futuras aplicadas ao processo de abate. Foram conduzidas observações independentes e aleatórias da transferência de uma cepa de S. Typhimurium resistente a Ampicilina (AmpR), entre faca e carne suína, as quais formaram quatro coleções de dados: Coleção de dados A: transferência de S. Typhimurium AmpR de faca contaminada para porção de carne suína cortada uma vez (n=20); Coleção de dados B: transferência de S. Typhimurium AmpR de faca contaminada para porção de carne suína cortada cinco vezes no mesmo lugar (n=20); Coleção de dados C: Transferência de S. Typhimurium AmpR de porção de carne suína contaminada para faca após execução de um corte (n=20); Coleção de dados D: Transferência de S. Typhimurium AmpR de porção de carne suína contaminada para faca após execução de cinco cortes no mesmo lugar (n=20). As bactérias transferidas foram quantificadas na lâmina da faca e na superfície da carne, a porcentagem de transferência foi calculada em todas as coleções de dados. As porcentagens de transferência entre as coleções de dados foram comparadas por meio de teste t para amostras independentes usando o programa R Core Team. As percentagens médias de transferência na coleção de dados A e B foram de 6,26% (4,7% – 7,7%) e 8,32% (6,4% - 10,2%). Nas coleções de dados C e D, as percentagens médias de transferência foram, respectivamente, 0,42% (0,3% - 0,5%) e 0,3% (0,2% - 0,4%). Não houve diferença significativa entre as percentagens de transferência após um e cinco cortes consecutivos. A partir disso, conclui-se que há transferência de S. Typhimurium da faca para a carne suína, bem como da carne suína para a faca. A porcentagem de transferência da carne suína contaminada para a faca é baixa, ao passo que a faca contaminada transfere alta percentagem do total de células de S. Typhimurium que carreia, durante a realização dos cortes. / Cross-contamination by Salmonella spp. during the pig slaughtering process contributes to increase the prevalence of positive carcasses in pre-chilling. One of the factors that may contribute to cross-contamination is the implementation of cuts and palpation of carcasses during the inspection process. The present study aimed to estimate, through laboratory tests, the transfer of Salmonella Typhimurium between knife and swine meat, to support future analyzes applied to the slaughter process. Independent and random observations of the transfer of a strain of S. Typhimurium Ampicillin-resistant (AmpR) between knife and swine meat were conducted, which formed four collections of data: Data collection A: Transfer of S. Typhimurium AmpR from contaminated knife to one portion of swine meat cut once (n = 20); Data collection B: Transfer of S. Typhimurium AmpR from contaminated knife to swine meat portion cut five times in the same place (n=20); Data collection C: Transfer of S. Typhimurium AmpR from portion of contaminated meat swine to knife after a cut (n=20); Data collection D: Transfer of S. Typhimurium AmpR from swine meat portion contaminated to knife after five cuts in the same place (n=20). The transfer percentages between the data collection were compared by t-test for independent samples using the R Core Team software. The mean transfer percentages in the data collection A and B were 6,26% (4,7% - 7,7%) and 8,32% (6,4% - 10,2%). In the C and D data collections, mean transfer rates were, respectively, 0.42% (0.3% - 0.5%) and 0.3% (0.2% - 0.4%). There was not significant difference between transfer rates after one and five consecutive cuts. From this, it is concluded that there is transfer of S. Typhimurium from the knife to the swine meat as well as from the swine meat to the knife. The percentage of transfer of contaminated pork to the knife is low, while the contaminated knife transfers at high percentage of the total number of S. Typhimurium cells it carries during cuts.
295

Structural and Functional Studies on Pyridoxal Kinase and Pyridoxal 5′-phosphate Dependent Enzymes

Deka, Geeta January 2017 (has links) (PDF)
Most of the chemical reactions of living cells are catalyzed by protein enzymes. These enzymes are very efficient and display a high degree of specificity with respect to the reaction catalyzed. Cellular activities depend critically on the precise three-dimensional structure and function of thousands of enzymes. Many enzymes require binding of metal ions or small organic molecules for their function. The organic molecules that are indispensible components of catalysis by proteins are called coenzymes. Pyridoxal 5ʹ-phosphate (PLP) is a versatile coenzyme found in all living cells. PLP-dependent enzymes play a key role in the function of most of the enzymes catalyzing reactions in the metabolic pathways of amino acid synthesis and degradation. The enzyme pyridoxal kinase serves to make available the co-enzyme PLP to apo-PLP dependent enzymes. Because of their key role in cellular function and their medical importance, the structure and function of PLP-dependent enzymes have been extensively investigated. In the past decade, detailed investigations on the structure and function of several PLP-dependent enzymes have been carried out in our laboratory. The enzymes studied are B. subtilis serinehydroxymethyl transferase (SHMT), S. typhimurium acetylornithine aminotransferase (AcOAT), S. typhimurium and E. coli diaminopropionate ammonia lyase (DAPAL), S. typhimurium D-serine dehydratase (DSD), S. typhimurium D-cysteine desulfhydrase (DCyD) and S. typhimurium arginine decarboxylase (ArgD). The extensive studies conducted on PLP-dependent enzymes in our laboratory during the past decade has not only resulted in deeper understanding of their structure and function but also raised several new questions regarding substrate recognition, reaction specificity, role of active site residues in the catalytic reaction, mechanism of catalysis and potential applications of these enzymes. This thesis is an attempt to answer some of these questions. The thesis also presents the structure and function of a new protein, Salmonella typhimurium pyridoxal kinase, the enzyme that provides PLP for PLP-dependent enzymes. Single crystal X-ray diffraction technique is the most powerful tool currently available for the elucidation of the three-dimensional structures of proteins and other biological macromolecules and for revealing the relationship between their structure and function. X-ray diffraction studies have provided in depth understanding of the topology of secondary structural elements in the three-dimensional structures of proteins, the hierarchical organization of protein domains, structural basis for the substrate specificity of enzymes, intricate details of mechanisms of enzyme catalyzed reactions, allosteric regulation of enzyme activity, mechanisms of feed-back inhibition, structural basis of protein stability, symmetry of oligomeric proteins and their possible biological implications and a myriad of other biochemical and biophysical properties of proteins. The work reported in this thesis is primarily based on X-ray diffraction studies. X-ray crystal structure investigations are complemented by spectral and biochemical studies on the catalyzed reactions. The thesis begins with an introduction to PLP-dependent enzymes and presentation of a brief summary of the earlier work carried out in our laboratory on PLP-dependent enzymes (Chapter 1). A brief description of earlier functional classification of PLP-dependent enzymes and the more recent classification of these enzymes into the four groups based on their three-dimensional structure is provided. Although enzymes belonging to these four structural classes have evolved from independent evolutionary lineages, they share some common features near their active sites and in the mode of PLP binding. Earlier work carried out elsewhere on pyridoxal kinase and its key role in maintaining PLP at a low concentration in the cytosol is presented. Different mechanisms that have been proposed for the transfer of PLP from pyridoxal kinase to other apo PLP-dependent enzymes are briefly described. The experimental procedures and computational methods used during the course of these investigations to obtain the results reported in chapters 3-6 are presented in Chapter 2. Most of these methods are applicable to the isolation of plasmids, cloning, over expression, protein purification, mutant construction, crystallization, X-ray diffraction data collection and processing, structure elucidation and refinement, validation and structural analysis presented in the next three chapters. Various programs and protocols used for data processing, structure determination, refinement, model building, structure validation and analysis are also briefly described. In chapter 3, the role of a number of active site residues in the reaction catalyzed by EcDAPAL, a fold type II PLP-dependent enzyme, the structure of which was determined earlier in the laboratory is explored by mutational, biochemical and structural analyses. Earlier studies had established the probable role of Asp120 and Lys77 in the reaction leading to the breakdown of D-DAP and L-DAP, respectively (Bisht et al., 2012). To further validate the earlier observations, a number of active site mutants were generated for Asp 120 (D120N, D120C, D120S and D120T), Asp 189 (D189N, D189C, D189S and D189T), Lys77 (K77T, K77H, K77R and K77A), His 123 (H123L) and Tyr 168 (Y168F). The structure of D120N mutant crystal obtained after soaking in crystallization cocktail containing D-DAP revealed the presence of an intact external aldimine complex at the active site supporting the earlier proposal that Asp120 is the base abstracting the Cα proton from the D-isomer of DAP. Biochemical and structural observations suggested that none of the Asp189 mutants may bind PLP and were catalytically inactive suggesting an essential role for Asp189 in catalysis. In contrast to type I PLP-dependent enzymes, none of the Lys 77 mutants of EcDAPAL could bind PLP either covalently or non-covalently and were inactive with both the isomers of DAP. Thus, Lys77 appears to be important for both PLP binding and catalysis. H123L mutant formed an external aldimine with D-DAP and a gem-diamine complex with L-DAP indicating that this residue is also crucial for catalysis. These studies have provided additional support to the catalytic mechanism of EcDAPAL proposed earlier. The next Chapter 4 explores the structure, function and catalytic mechanism of Salmonella typhimurium DAPAL (StDAPAL). The protein was purified from a construct carrying a hexa-histidine tag at the C-terminus by Ni-NTA chromatography. The purified protein was demonstrated to be homogeneous by SDS-PAGE and MALDI-TOF. Crystals of StDAPAL belonging to the C-centred monoclinic space group (C121) with four molecules in the asymmetric unit were obtained by the micro batch method and used for collecting X-ray diffracting data. The crystal structure was determined by molecular replacement using the homologous enzyme from E. coli (PDB code 4D9M, Bisht et al., 2012), which shares a sequence identity of 50% with the S. typhimurium enzyme as the phasing model in the program Phaser (McCoy et al., 2007) of the CCP4 suite. The model was refined with Refmac5 of CCP4 suite to R and Rfree values of 25.5% and 30.9%, respectively. A superposition of the structure so obtained over EcDAPAL revealed that the two structures are very similar. A sulfate molecule bound to the active site of StDAPAL could be located. The position of the sulfate corresponds to that of the carboxyl group of aminoacrylate intermediate of EcDAPAL (4D9M). The PLP was bound to Lys78 as an internal aldimine. Since the active sites of the two protomers in fold type II PLP-dependent enzymes are independent, it might be possible to obtain functional monomers of EcDAPAL. With this view, mutation of a conserved Trp (Trp399) present in the dimeric interface resulted in the destabilization of the dimeric interface and partial conversion of the dimeric protein to a monomeric protein. However, the monomeric species of EcDAPALW399R was unable to bind PLP and hence did not possess any catalytic activity. This highlights the importance of dimeric organization for efficient binding of PLP as well as for the activity of the enzyme. A remarkable difference between EcDAPAL and StDAPAL is the absence of a disulfide bond between residues Cys271 and Cys299 in StDAPAL equivalent to the bond formed between Cys265 and Cys291 in EcDAPAL. Mutation of Cys265 and Cys291 of EcDAPAL to Ser did not affect the activity of the enzyme towards either of the isomers of the substrate indicating that the disulfide bond is not crucial for enzyme activity. The stability of the loop corresponding residues 261-295 of EcDAPAL was believed to be promoted by the disulfide bond. However, the equivalent loop was found to be ordered in StDAPAL even though the disulfide bond is absent. In contrast to StDAPAL, EcDAPAL did not show any metal dependent activity. The previous two chapters dealt with fold type II PLP-dependent enzymes. In contrast, Chapter 5 deals with revisiting the structure and function of a fold type I PLP-dependent enzyme, Salmonella typhimurium arginine decarboxylase (StADC). ADC is a very large polypeptide in comparison with other fold type I enzymes. It is induced when the bacterium is subjected to low pH and plays a major role in protecting the cells from acid stress. The structure of StADC was determined but not satisfactorily refined by Dr. S. R. Bharat earlier. The X-ray diffraction data collected by Bharat needed to be improved and the structure needed to be further refined and compared with the homologous E. coli enzyme. Therefore, the entire process of data processing, structure solution and refinement was repeated. The refined structure of StADC was found to correspond to the apo form of the enzyme with only a phosphate molecule occupying the position equivalent to that of 5’ phosphate of PLP observed in EcADC holo enzyme structure. This allowed examination of structural changes that accompany PLP binding and formation of an internal aldimine. The apo to holo transition in StADC involves the movement and ordering of two loops consisting of residues 151-164 and 191-196 which are in the linker and PLP binding domains of the protein, respectively. Phosphate binding by itself appears to be insufficient for these structural changes. These two loops are close to the PLP binding site of the other protomer of the dimer. Hence, these movements are probably important for the catalytic function of the enzyme. Holo ADC has been found as a decamer in other studies. The decameric form of the apo-StADC suggests that PLP binding may not be essential for the oligomeric state of the protein. ADC appears to reduce proton concentration inside the cell in two ways; (i) by surface charge neutralization and (ii) by arginine decarboxylation by extracting a proton from the cytoplasm. The resulting product agmatine is exchanged for extra cellular arginine by arginine-agmatine antiporter. The low sequence identity and lack of structural similarity of the inducible and constitutive forms of ADC from S. typhimurium shows that these are unlikely to be products of divergent evolution. The final chapter 6 of the thesis presents the work carried out on S. typhimurium pyridoxal kinase (PLK). In the salvage pathway of pyridoxal 5’phosphate (PLP), PLP is produced as the product of the reaction catalyzed by PLK using PL, PN and PM as substrates. Thus, PLK plays the critical role of ensuring availability of PLP to the large number of PLP-dependent enzymes. S. typhimurium PLK was purified to homogeneity, crystallized in its native as well as ligand bound forms. It was necessary to circumvent an unusual problem caused by spots arising from a contaminant crystal to obtain the structure of the native crystals of PLK that belonged to the P212121 space group with two protomers in the crystal asymmetric unit. It was then straight forward to determine the ligand bound structures of StPLK (space group P43212) obtained by co-crystallization with ATP, PL and Mg2+ by molecular replacement using the wild type structure as the phasing model. The structures obtained by co-crystallization revealed the presence of ADP, Mg2+ and a PL bound to the active site Lys233 via a Schiff base (internal aldimine). This is the first structure in which the presence of an internal aldimine in the active site of PLK has been observed. Formation of the internal aldimine might be one way to prevent the release of excess PLP and protecting the cell from PLP induced toxicity. The enzyme was shown to be inhibited by the product which will also help in maintaining PLP concentration at low levels. It was also demonstrated that PLK interacts with apo-PLP-dependent enzymes. This observation supports possible direct transfer of PLP from PLK to PLP-dependent enzymes. The thesis ends with an appendix where the work carried out during the course of the thesis work but not as part of the thesis is briefly described.
296

Estudo do metabolismo de Salmonella typhimurium : da abordagem tradicional à análise dos fluxos metabólicos

Sargo, Cíntia Regina 27 August 2015 (has links)
Submitted by Alison Vanceto (alison-vanceto@hotmail.com) on 2017-01-23T10:29:06Z No. of bitstreams: 1 TeseCRS.pdf: 3506039 bytes, checksum: 68f4c5fe1c6ae3672adcedf3450e2f31 (MD5) / Approved for entry into archive by Camila Passos (camilapassos@ufscar.br) on 2017-01-23T15:48:35Z (GMT) No. of bitstreams: 1 TeseCRS.pdf: 3506039 bytes, checksum: 68f4c5fe1c6ae3672adcedf3450e2f31 (MD5) / Approved for entry into archive by Camila Passos (camilapassos@ufscar.br) on 2017-01-23T15:48:42Z (GMT) No. of bitstreams: 1 TeseCRS.pdf: 3506039 bytes, checksum: 68f4c5fe1c6ae3672adcedf3450e2f31 (MD5) / Made available in DSpace on 2017-01-23T15:48:50Z (GMT). No. of bitstreams: 1 TeseCRS.pdf: 3506039 bytes, checksum: 68f4c5fe1c6ae3672adcedf3450e2f31 (MD5) Previous issue date: 2015-08-27 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / The genus Salmonella spp. has been extensively investigated because these bacteria are important pathogens that frequently cause severe diseases and gastrointestinal infections in humans and animals. Moreover, in recent years, Salmonella has called attention due to the excellent results in the production and in vivo delivery of various substances with potential application in Vaccinology. However, there is still little information available concerning aspects of its metabolism, which hampers both the development of new attenuated strains and the large-scale production of live cells and cellular components. Thus, this work aimed to study the S. typhimurium LT2 metabolism, using traditional and innovative approaches to investigate different carbon sources as well as different bioreactor operation modes and aeration conditions (aerobic and anaerobic). Results obtained in batch and chemostat cultivations indicated that S. typhimurium metabolism differs significantly from E. coli metabolism, closely related bacteria species with regard to the central carbon metabolism. The main difference observed between these bacteria was the high level of acetate production exhibited by S. typhimurium LT2 cells, which, differently from E. coli, occurred even at the lowest dilution rate evaluated. Currently, genome scale metabolic models are important tools for better understanding the phenotypic behavior of many organisms. Therefore the model STM_v1.0 reconstructed for S. typhimurium LT2 was evaluated, comparing experimental data, obtained in chemostat cultivations, with model predictions. Since this model was derived from E. coli model, the simulated results for biomass formation were overestimated and, consequently, predicted acetate fluxes were lower than those obtained experimentally. Therefore, to obtain experimental data useful to improve the model and to reach a better comprehension of S. typhimurium metabolism, the technique of metabolic flux analysis using isotopic labeled substrate was adopted, allowing determination of the fluxes for the main pathways of central carbon metabolism of Salmonella. This analysis revealed different preferred metabolic pathways depending on the specific growth rate. At the lowest dilution rate evaluated, D = 0.24 h-1, glucose was catabolized predominantly by the pentose phosphate and glycolysis pathways, while at the dilution rate of 0.48 h-1, the major pathway of glucose oxidation was Entner-Doudoroff. In addition, a relatively high flux through the citric acid cycle at the higher dilution rate studied was observed. / Bactérias do gênero Salmonella spp. são extensivamente estudadas por serem importantes patógenos, causando frequentemente graves doenças e infecções gastrointestinais em humanos e animais. Além disso, nos últimos anos, estas bactérias vêm ganhando um destaque ainda maior na área da biotecnologia por apresentarem ótimos resultados na produção e veiculação in vivo de diversas substâncias com fins vacinais. No entanto, ainda há poucas informações a respeito de seu metabolismo, dificultando tanto o desenvolvimento de novas linhagens atenuadas, como também a produção em larga escala de células vivas e de componentes celulares. Neste sentido, este trabalho se propôs a estudar o metabolismo de S. typhimurium LT2, utilizando inicialmente abordagens tradicionais para investigar seu comportamento na presença de diferentes fontes de carbono, em diferentes modos de operação de biorreator e de aeração (aeróbias e anaeróbias). Os resultados obtidos em cultivos em batelada e em quimiostatos evidenciaram que o metabolismo da S. typhimurium difere bastante do metabolismo da E. coli, espécies consideradas semelhantes com relação ao metabolismo do carbono central. A principal diferença observada entre essas duas bactérias foi a elevada produção de acetato pelas células de S. typhimurium LT2, mesmo em baixas velocidades de crescimento nas quais este metabólito não é produzido por diversas estirpes de E. coli. Atualmente, modelos metabólicos em escala genômica são ferramentas importantes para que o comportamento do fenótipo de diversos organismos sejam melhor compreendidos. Assim, avaliou-se o modelo STM_v1.0 reconstruído para S. typhimurium LT2, comparando-se dados obtidos experimentalmente, em quimiostatos, e os preditos pelo modelo. No entanto, como este modelo foi baseado no modelo da E. coli, os resultados simulados para produção de biomassa foram superestimados e, consequentemente, os fluxos de acetato foram inferiores aos obtidos experimentalmente. Sendo assim, para se obter dados experimentais úteis para aprimorar o modelo e para uma compreensão maior do metabolismo de S. typhimurium, utilizou-se a técnica de análise dos fluxos metabólicos com substrato isotopicamente marcado, permitindo a determinação dos fluxos das principais vias do metabolismo do carbono central da bactéria em estudo. Essa análise revelou diferenças na utilização das vias metabólicas em função da velocidade específica de crescimento, sendo que na menor taxa de diluição avaliada, D = 0,24 h-1, a glicose foi predominantemente catabolizada pelas vias pentose fosfato e glicólise, enquanto na taxa de diluição de 0,48 h-1, a via principal de oxidação da glicose foi a Entner- Doudoroff. Além disso, também observou-se um fluxo relativamente maior na via do ciclo do ácido cítrico na maior taxa de diluição estudada.
297

Estimativa da transferência de Salmonella typhimurium DT 177 entre faca de aço inoxidável e carne suína artificialmente contaminada

Navarrete Rivas, Cláudia Andrea January 2017 (has links)
A contaminação cruzada por Salmonella spp. durante o processo de abate de suínos contribui para o aumento da prevalência de carcaças positivas no pré-resfriamento. Um dos fatores que pode contribuir para a contaminação cruzada é a execução de cortes e palpação de carcaças durante o processo de inspeção. O presente estudo teve como objetivo estimar, por meio de ensaios laboratoriais, a transferência de Salmonella Typhimurium DT 177 entre faca e carne suína, para subsidiar análises futuras aplicadas ao processo de abate. Foram conduzidas observações independentes e aleatórias da transferência de uma cepa de S. Typhimurium resistente a Ampicilina (AmpR), entre faca e carne suína, as quais formaram quatro coleções de dados: Coleção de dados A: transferência de S. Typhimurium AmpR de faca contaminada para porção de carne suína cortada uma vez (n=20); Coleção de dados B: transferência de S. Typhimurium AmpR de faca contaminada para porção de carne suína cortada cinco vezes no mesmo lugar (n=20); Coleção de dados C: Transferência de S. Typhimurium AmpR de porção de carne suína contaminada para faca após execução de um corte (n=20); Coleção de dados D: Transferência de S. Typhimurium AmpR de porção de carne suína contaminada para faca após execução de cinco cortes no mesmo lugar (n=20). As bactérias transferidas foram quantificadas na lâmina da faca e na superfície da carne, a porcentagem de transferência foi calculada em todas as coleções de dados. As porcentagens de transferência entre as coleções de dados foram comparadas por meio de teste t para amostras independentes usando o programa R Core Team. As percentagens médias de transferência na coleção de dados A e B foram de 6,26% (4,7% – 7,7%) e 8,32% (6,4% - 10,2%). Nas coleções de dados C e D, as percentagens médias de transferência foram, respectivamente, 0,42% (0,3% - 0,5%) e 0,3% (0,2% - 0,4%). Não houve diferença significativa entre as percentagens de transferência após um e cinco cortes consecutivos. A partir disso, conclui-se que há transferência de S. Typhimurium da faca para a carne suína, bem como da carne suína para a faca. A porcentagem de transferência da carne suína contaminada para a faca é baixa, ao passo que a faca contaminada transfere alta percentagem do total de células de S. Typhimurium que carreia, durante a realização dos cortes. / Cross-contamination by Salmonella spp. during the pig slaughtering process contributes to increase the prevalence of positive carcasses in pre-chilling. One of the factors that may contribute to cross-contamination is the implementation of cuts and palpation of carcasses during the inspection process. The present study aimed to estimate, through laboratory tests, the transfer of Salmonella Typhimurium between knife and swine meat, to support future analyzes applied to the slaughter process. Independent and random observations of the transfer of a strain of S. Typhimurium Ampicillin-resistant (AmpR) between knife and swine meat were conducted, which formed four collections of data: Data collection A: Transfer of S. Typhimurium AmpR from contaminated knife to one portion of swine meat cut once (n = 20); Data collection B: Transfer of S. Typhimurium AmpR from contaminated knife to swine meat portion cut five times in the same place (n=20); Data collection C: Transfer of S. Typhimurium AmpR from portion of contaminated meat swine to knife after a cut (n=20); Data collection D: Transfer of S. Typhimurium AmpR from swine meat portion contaminated to knife after five cuts in the same place (n=20). The transfer percentages between the data collection were compared by t-test for independent samples using the R Core Team software. The mean transfer percentages in the data collection A and B were 6,26% (4,7% - 7,7%) and 8,32% (6,4% - 10,2%). In the C and D data collections, mean transfer rates were, respectively, 0.42% (0.3% - 0.5%) and 0.3% (0.2% - 0.4%). There was not significant difference between transfer rates after one and five consecutive cuts. From this, it is concluded that there is transfer of S. Typhimurium from the knife to the swine meat as well as from the swine meat to the knife. The percentage of transfer of contaminated pork to the knife is low, while the contaminated knife transfers at high percentage of the total number of S. Typhimurium cells it carries during cuts.
298

Análise microbiológica de cenoura e beterraba irrigadas com águas residuárias domésticas tratadas

Dantas, Iasmine Louise de Almeida 19 June 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The use of treated domestic wastewater for irrigation could become an alternative to regions facing water scarcity, as in northeastern Brazil, specifically in the state of Sergipe. This work aimed to analyze the influence of the use of domestic wastewater treated in the microbiological quality of carrots (Daucus carota) and beets (Beta vulgaris) irrigated with this water. The experiment was conducted in a greenhouse of the Department of Agricultural Engineering (DEA) in the Federal University of Sergipe / Campus of Saint Kitts from April to July 2014. The wastewater was collected in the Sewage Treatment Plant (WWTP ) Rosa Elze, in the municipality of St. Kitts / SE. Irrigation was performed using four different dilutions. The evapotranspiration was obtained by the method of the Food and Agriculture Organization of United Nations (FAO) 56 through weather station mounted inside the greenhouse. The experimental design was randomized blocks (DBC), composed of eight treatments, two species and four wastewater percentage e/ou drinking water of Sergipe Supply Company (DESO); Of DESO 100% water; 75% water DESO + 25% waste water; 75% wastewater + 25% water DESO and 100% wastewater in five replicates and four plants per working portion. Microbiological samples were analyzed according to the parameters recommended by Resolution no. 12 02/01/2001 of the National Health Surveillance Agency - ANVISA: enumeration of fecal coliforms and Salmonella sp. In addition to these analyzes, they were also listed the population of mesophilic aerobic bacteria and molds and yeasts and the results were submitted to ANOVA by the Tukey test at 5% probability. The results obtained in the microbiological quality analyzes show that the beets and carrots irrigated with wastewater are in accordance with the standards established by law (Salmonella sp. Absence in 25 g fecal coliform ≤3 NMP. g-1) and the enumeration of mesophilic and molds and yeasts did not exceed 4,5x106, but we still need more depth to the thematic studies. / A utilização de águas residuárias domésticas tratadas para irrigação pode se tornar uma alternativa para regiões que enfrentam escassez de água, como na região Nordeste do Brasil, especificamente no Estado de Sergipe. A presente dissertação teve como objetivo analisar a influência do uso de águas residuárias domésticas tratadas na qualidade microbiológica de cenouras (Daucus carota) e beterrabas (Beta vulgaris) irrigadas com essa água. O experimento foi realizado em casa de vegetação do Departamento de Engenharia Agronômica (DEA), localizada na Universidade Federal de Sergipe/Campus de São Cristóvão no período de abril a julho de 2014. As águas residuárias foram coletadas na Estação de Tratamento de Esgotos (ETE) Rosa Elze, localizada no Município de São Cristóvão/SE. As irrigações foram feitas utilizando-se quatro diluições diferentes. A evapotranspiração foi obtida pelo método do Food and Agriculture Organization of United Nations (FAO) 56 através de estação meteorológica montada dentro da casa de vegetação. O delineamento experimental utilizado foi o de blocos casualizados (DBC), composto por oito tratamentos, sendo duas espécies e quatro percentuais de água residuária e/ou água potável da Companhia de Abastecimento de Sergipe (DESO); 100% água da DESO; 75% água da DESO + 25% água residuária; 75% água residuária + 25% água da DESO e 100% água residuária, em cinco repetições e quatro plantas por parcela útil. As amostras microbiológicas foram analisadas de acordo com os parâmetros recomendados pela Resolução n°. 12 de 02/01/2001 da Agência Nacional de Vigilância Sanitária – ANVISA: enumeração de coliformes termotolerantes e pesquisa de Salmonella sp. Além dessas análises, também foram enumeradas a população de bactérias aeróbias mesófilas e de bolores e leveduras e os resultados foram submetidos à anova pelo teste de Tuckey a 5% de probabilidade. Os resultados obtidos nas análises de qualidade microbiológicas demonstram que a beterraba e a cenoura irrigadas com água residuária encontram-se de acordo com os padrões estabelecidos pela legislação vigente (Salmonella sp. ausência em 25 g e coliformes termotolerantes =3 NMP. g-1) e a enumeração de mesófilos e bolores e leveduras não ultrapassaram 4,5x106, contudo se faz necessário estudos mais aprofundados à temática.
299

Structural Studies On Physalis Mottle Virus Capsid Proteins & Stress Response Proteins Of Oryza Sativa And Salmonella Typhimurium

Sagurthi, Someswar Rao 06 1900 (has links) (PDF)
X-ray crystallography is one of the most powerful tools for the elucidation of the structure of biological macromolecules such as proteins and viruses. Crystallographic techniques are extensively used for investigations on protein structure, ligand-binding, mechanisms of enzyme catalyzed reactions, protein-protein interactions, role of metal ions in protein structure and function, structure of multi-enzyme complexes and viruses, protein dynamics and for a myriad other problems in structural biology. Crystallographic studies are essential for understanding the intricate details of the mechanism of action of enzymes at molecular level. Understanding the subtle differences between the pathogenic enzymes and host enzymes is necessary for the design of inhibitor molecules that specifically inhibit parasite enzymes. The current thesis deals with the application of biochemical and crystallographic techniques for understanding the structure and function of proteins from two pathogenic organisms – a plant virus Physalis Mottle Virus (PhMV), and a pathogenic bacterium, Salmonella typhimurium and also stress induced proteins from Oryza sativa. The thesis has been divided into seven chapters, with the first four chapters describing the work carried out on PhMV, while the rest of the chapters deal with the studies on stress response proteins from Oryza sativa and Salmonella typhimurium. The first part of the thesis deals with studies on viral capsids. Viruses are obligate parasites that have proteinaceous capsids enclosing the genetic material, which, in the case of small plant viruses, is invariably ss-RNA. X-ray diffraction studies on single crystals of viruses enable visualization of the structures of intact virus particles at near-atomic resolution. These studies provide detailed information regarding the coat protein folding, molecular interactions between protein subunits, flexibility of the N-and C-terminal segments and their probable importance in viral assembly, role of RNA in capsid assembly, nucleic acid (RNA)-protein interactions, the capsid structure and mechanism of assembly and disassembly. The present thesis deals with the capsid structure and analysis of the coat protein (CP) recombinant mutants of PhMV. Virus assembly, one of the important steps in the life cycle of a virus, involves specific interactions between the structural protein and cognate viral genome. This is a complex process that requires precise protein-protein and protein nucleic acid interactions. In fact, most of the biological functional units such as ribosomes and proteosomes also require highly co-ordinated macromolecular interactions for their functional expression. Viruses being simple in their architecture, serve as excellent model systems to understand mechanism of macromolecular assembly and provide necessary information for the development of antiviral therapeutics, especially in animal viruses. PhMV is a plant virus infecting several members of Solanaceae family. It belongs to the tymoviridae group of single stranded RNA viruses. Its genome is encapsidated in a shell comprising of 180 (architecture based on T = 3 icosahedral lattice) chemically identical coat protein (CP) subunits (~ 20,000Da) arranged with icosahedral symmetry. In an earlier phase of work, PhMV purified from infected plant leaves was crystallized in the space group R3 (a = 294.56 Å,  = 59.86). X-ray diffraction data to 3.8 Å resolution were recorded on films by screenless oscillation photography. Using this data of severely limited quality and poor completion (40%), the structure PhMV was determined by molecular replacement using the related turnip yellow mosaic virus (TYMV) structure as the phasing model. There was therefore a need to re-determine and improve the structure, which could be useful for understanding the earlier detailed studies on its biophysical properties. As a continuation of these studies, the present investigations were conceived with the goal of determining the natural top and bottom component capsid structures of PhMV. Investigations were also carried out to examine the possibility of enhancing the diffraction quality of PhMV crystals. The thesis begins with a review of the current literature on the available crystal structures of viruses and their implications for capsid assembly (chapter I). All experimental and computational methods used during the course of investigations are described in chapter II, as most of these are applicable to all the structure determinations and analyses. The experimental procedures described include cloning, overexpression, purification, crystallization and intensity data collection. Computational methods covered include details of various programs used during data processing, structure solution, refinement, model building, validation and analysis. Chapter III describes structural studies on top and bottom components of PhMV. Purified tymoviruses including PhMV are found to contain two classes of particles that sediment at different velocities through sucrose gradients and are called the top (sedimentation coefficient 54 Svedberg units(S)) and the bottom (115S) components. The top component particles are either devoid of RNA or contain only a small subgenomic RNA (5%) while the bottom component particles contain the full length genomic RNA. Only the bottom component is infectious. The top and bottom components were separately crystallized in P1 and R3 space groups, respectively. It is of interest to note that crystals of the bottom component obtained earlier belonged to R3 space group while recombinant capsids that lack of full length RNA as in natural top component crystallized in the P1 space group. A polyalanine model of the homologous TYMV was used as the phasing model to determine the structures of these particles by molecular replacement using the program AMoRe. The refinement of top and bottom component capsid structures were carried out using CNS version 1.1 and the polypeptide models were built into the final electron-density map using the interactive graphics program O. The quality of the map was sufficient for building the model and unambiguous positioning of the side chains. There is a significant difference in the radius of the top and bottom component capsids, the top component being 5 Å larger in radius. Thus, RNA makes the capsid more compact, even though RNA is not a pre-requisite for capsid assembly. Partially ordered RNA was observed in the bottom component. The refined models could form the basis for understanding the architecture, protein-protein interactions, protein-nucleic acid interactions, stability and assembly of PhMV. Chapter IV provides a detailed description of the mutations carried out on PhMV coat protein towards enhancing the diffraction quality of crystals. The gene coding for PhMV coat protein (PhMVCP) and several of its deletion and substitution mutants were originally cloned in pRSETC and pET-21 vectors by Mira Sastri and Uma Shankar in Prof. Savithri’s laboratory at the Department of Biochemistry. It was observed that the recombinant intact coat protein and several mutants lacking up to 30 amino acids from the N-terminal end could assemble into empty shells resembling the natural top component. None of these deletion mutants crystallized in forms that diffracted to high resolution. Based on the intersubunit contacts observed, three more site-specific mutants were designed. These three mutants were expressed in BL21 (DE3), purified and crystallized. Even these mutant crystals did not diffract to high resolution. The polypeptide fold of PhMV coat protein therefore was carefully examined for probable reasons. It was found that PhMV subunit has three major cavities. Three cavities are likely to increase the flexibility of protein subunits, which in turn may result in crystals of poor quality. Mutations V52W, S158Q and A160L were shown to fill up these cavities and with the view of obtaining better crystals. These site specific mutations were carried out the mutant proteins were purified. It was shown that the recombinant capsids are stable and possess T=3 architecture. Two mutants were crystallized and a data set for V52W extending to 6.0 Å resolution could be collected. Due to the limited resolution, further work was not pursued. It is plausible that the triple mutant will diffract to higher resolution. The second part of the thesis deals with stress response proteins from Oryza sativa and Salmonella typhimurium. It is known that viral infection and abiotic and biotic stresses induce a network of proteins in plants. Chapter V presents a review of the current literature on stress proteins, focusing mainly on Oryza sativa and S. typhimurium stress response proteins. Chapter VI describes the over expression of stress proteins SAP1 and SAP2 from rice. These stress related proteins confer tolerance to cold, dehydration and salt stress in rice. These proteins have been cloned in the expression vector pEt-28(a) and expressed in E. coli strain BL21 CodonPlus(DE3)RIL. The proteins were purified and crystallization trials were made. However, there were no hits. In an attempt to get crystals, nine deletion constructs of SAP1 were designed eliminating potentially disordered and unfolded regions based on a bioinformatics analysis. Crystallization trails are being carried out on three of the constructs. Structural studies on a universal stress protein from Salmonella typhimurium, which shares homology with the rice universal stress proteins, was initiated. Apart from this, several other stress related proteins of Salmonella typhimurium have also been selected for structural and functional studies. These include YdaA, YbdQ, Yic, Ynaf, Yec, Spy and Usb. All these were cloned and expressed in E. coli. Out of seven proteins, Ynaf, YdaA and YbdQ were found in the soluble fraction and were expressed in quantities suitable for structural studies. I could crystallize YdaA and Ynaf. X-ray diffraction data to resolutions of 3.6 Å and 2.3 Å were collected on crystals of YdaA and YnaF, respectively. A tentative structure of YnaF has been obtained. Further attempts to determine these structures are in progress. Biophysical, Biochemical functional characterization of YdaA and YnaF proteins are described. Structural studies on mannose-6-phosphate isomerase, an enzyme related to stress regulatory proteins from S. typhimurium are dealt with in Chapter VII. Mannose 6-phosphate isomerase (MPI) catalyzes the interconversion of mannose 6-phosphate and fructose 6-phosphate. The structure could be solved in its apo and holo forms (with two different metal atoms, Y3+ and Zn2+), and complexed with the cyclic form of the substrate fructose 6-phosphate (F6P) and Zn2+. Isomerization involves acid/base catalysis with proton transfer between C1 and C2 atoms of the substrate. Lys 132, His 131, His 99 and Asp 270 are close to the substrate and are likely to be the residues involved in proton transfer. Interactions observed at the active site suggest that the ring opening step is catalyzed by His 99 and Asp 270. An active site loop consisting of residues 130-133 undergoes conformational changes upon substrate binding. The metal ion is not close to the substrate atoms involved in proton transfer. Binding of the metal induces structural order in the loop consisting of residues 50-54. Hence, the metal atom does not appear to play a direct role in catalysis, but is probably important for maintaining the architecture of the active site. Based on these structures and earlier biochemical work, a probable isomerization mechanism has been proposed. The thesis concludes with a brief discussion on the future prospects of the work. The following manuscripts have been published or will be communicated for publication based on the results presented in the thesis:
300

Évaluation chez le porcelet de l'effet des probiotiques « Pediococcus acidilactici » et « Saccharomyces cerevisiae ssp. boulardii » sur le microbiote intestinal et sur les réponses innées et acquises lors d'une infection à « Salmonella Typhimurium DT 104 »

Brousseau, Jean 19 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2013-2014. / Les suppléments antibiotiques dans l'alimentation animale sont sévèrement critiqués. Les probiotiques sont une alternative prometteuse, mais la caractérisation de leurs effets demeure nécessaire. Ce mémoire décrit l'influence de Pediococcus acidilactici (PA) et Saccharomyces cerevisiae ssp. boulardii (SCB) sur 1) le microbiote intestinal avant et après le sevrage et, 2) l'immunité et la colonisation intestinale lors d'une infection à Salmonella Typhimurium DT104. Nos résultats montrent que suite au sevrage PA module le microbiote iléal de façon similaire aux antibiotiques tandis que SCB influence le microbiote colique. De plus, SCB seul ou avec PA module certaines populations de cellules immunitaires du sang avant et après l'infection à S. Typhimurium. Cependant, aucun effet n'a été observé sur les autres paramètres évalués. Même si nous approfondissons la compréhension entourant les effets de PA et SCB sur l'hôte, d'autres études sont nécessaires pour optimiser l'utilisation des probiotiques comme alternative aux suppléments d'antibiotiques dans l'élevage. / Antibiotics as growth promoters in pig feed are severely criticized. Probiotics are a promising alternative, but characterization of their effects on the intestinal microbiota and immunity is still necessary. In this study, the influences of Pediococcus acidilactici (PA) and Saccharomyces cerevisiae ssp. boulardii (SCB) on 1) intestinal microbiota before and after weaning and, on 2) immunity and intestinal colonization during a Salmonella Typhimurium DT104 infection were evaluated. Our results show that following weaning PA modulated ileal microbiota similarly to in-feed antibiotic while SCB influenced the colonic microbiota. Moreover, SCB alone or with PA modulate some immune blood cell populations before and after the S. Typhimurium infection. However, no effects were observed on the other parameters assessed. Although we deepened the understanding surrounding the effects of PA and SCB on the host, further studies are needed to fully optimize the use of probiotics as alternatives to antibiotic supplements in animal husbandry.

Page generated in 0.1071 seconds