• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 38
  • 12
  • 11
  • 11
  • 11
  • 10
  • 9
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 134
  • 57
  • 44
  • 29
  • 21
  • 19
  • 19
  • 18
  • 17
  • 16
  • 16
  • 15
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Solução do átomo de hélio confinado usando mecânica quântica supersimétrica /

Monteiro, João Marcos Costa January 2019 (has links)
Orientador: Elso Drigo Filho / Banca: Alvaro de Souza Dutra / Banca: Sidney Jurado de Carvalho / Resumo: Devido às modificações em propriedades físicas e químicas da matéria, sistemas quânticos confinados têm atraído a atenção da comunidade científica ao longo das últimas décadas. O objetivo geral deste trabalho é mostrar que o formalismo da Mecânica Quântica Supersimétrica, aliado ao método variacional, se mostra não somente adequado para solucionar problemas de sistemas quânticos confinados, mas também simples no quesito de complexidade matemática, sem perda significativa da precisão do resultado em comparação a outros métodos aproximativos. Nesse sentido, ao longo deste trabalho é calculado, por meio do método variacional, o autovalor de energia do estado fundamental para um átomo de hélio confinado no centro de uma cavidade esférica de paredes impenetráveis. A abordagem utilizada parte da fatorização da equação de Schrödinger para a obtenção da autofunção teste do método variacional, e os resultados obtidos se mostram muito próximos dos resultados exibidos na literatura de alto nível que se valem de outros métodos aproximativos que possuem, no geral, maior complexidade matemática. Após os resultados serem exibidos e comparados com os resultados exibidos nas referências, são indicados aspectos a serem considerados para maior precisão numérica do autovalor de energia, e é apresentado um sistema quântico com maior complexidade física e matemática no qual o formalismo pode ser aplicado / Abstract: Due to changes in physical and chemical properties of matter, confined quantum systems have attracted the attention of the scientific community over the past decades. The general objective of this work is to show that the formalism of Supersymmetric Quantum Mechanics, applied with the variational method, is not only an adequate choice to solve problems of confined quantum systems but also simple in the mathematical complexity context without significant loss of precision of the result in comparison to other approximation methods. In this sense, through this work, the eigenvalue of the ground state for a helium atom confined in the center of an impenetrable spherical cavity is calculated by means of the variational method. The approach used starts from the factorization of the Schrödinger equation to obtain the eigenfunction for the variational method, and the results obtained are very close to the results presented in the high-level literature that use other approximation methods which have greater mathematical complexity. After the results are displayed and compared with the results shown in the references, aspects to be considered for greater numerical accuracy of the energy eigenvalue are indicated, and a quantum system with more physical and mathematical complexity in which the formalism can be applied is presented / Mestre
52

Stability of line standing waves near the bifurcation point for nonlinear Schrodinger equations / 非線形シュレディンガー方程式に対する分岐点近傍での線状定在波の安定性

Yamazaki, Yohei 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18768号 / 理博第4026号 / 新制||理||1580(附属図書館) / 31719 / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 堤 誉志雄, 教授 上田 哲生, 教授 加藤 毅 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
53

GLOBAL DYNAMICS OF SOLUTIONS WITH GROUP INVARIANCE FOR THE NONLINEAR SCHRODINGER EQUATION / 非線形シュレディンガー方程式に対する群不変な解の大域ダイナミクス

Inui, Takahisa 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20152号 / 理博第4237号 / 新制||理||1609(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 堤 誉志雄, 教授 上田 哲生, 教授 國府 寛司 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
54

Invariances, conservation laws and conserved quantities of the two-dimensional nonlinear Schrodinger-type equation

Lepule, Seipati January 2014 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2014. / Symmetries and conservation laws of partial di erential equations (pdes) have been instrumental in giving new approaches for reducing pdes. In this dissertation, we study the symmetries and conservation laws of the two-dimensional Schr odingertype equation and the Benney-Luke equation, we use these quantities in the Double Reduction method which is used as a way to reduce the equations into a workable pdes or even an ordinary di erential equations. The symmetries, conservation laws and multipliers will be determined though di erent approaches. Some of the reductions of the Schr odinger equation produced some famous di erential equations that have been dealt with in detail in many texts.
55

Manipulating Beam Propagation in Slow-Light Media

Hogan, Ryan 28 September 2023 (has links)
Materials with resonant features can have a rapidly changing refractive index spectrally or temporally that gives rise to a changing group index. Depending on the wavelength of the input light, this light can see regimes of normal or anomalous dispersion. Within these regions, the group index can become large, depending on the optical effect used, and give rise to slow or fast light effects. This thesis covers two platforms that exhibit the use of slow and fast light. Slow and fast light are used to manipulate and enhance other optical effects in question. As the focus of this thesis, we examine a rotating ruby rod and spaceplates based on multilayer stacks, both considered as slow- and fast-light media. Light propagation through each platform is modelled and simulated to compare to the experiment. The simulation results for both platforms match well with the measured experimental effects and show the feasibility and utility of slow or fast light to manipulate or enhance optical effects. We simulate light propagation in a rotating ruby rod as a rotating, anisotropic medium with thermal nonlinearity using generalized nonlinear Schrodinger equations, modelling the interplay of many optical effects, including nonlinear refraction, birefringence, and a nonlinear group index. The results are fit to experimentally measured results, revealing two key relationships: The photon drag effect can have a nonlinear component that is dependent on the motion of the medium, and the temporal dynamics of the moving birefringent nonlinear medium create distorted figure-eight-like transverse trajectories at the output. We observe light propagation through a rotating ruby rod where the light is subject to drag. Light drag is often negligible due to the linear refractive index but can be enhanced by slow or fast light, i.e., a large group index. We find that the nonlinear refractive index can also play a crucial role in the propagation of light in moving media and results in a beam deflection. An experiment is performed on the crystal that exhibits a very large negative group index and a positive nonlinear refractive index. The negative group index drags the light opposite to the motion of the medium. However, the positive nonlinear refractive index deflects the beam along with the motion of the medium and hinders the observation of the negative drag effect. Therefore, it is deemed necessary to measure not only the transverse shift of the beam but also its output angle to discriminate the light-drag effect from beam deflection. This work could be applied to dynamic control of light trajectories, for example, beam steering and velocimetry. For the following two chapters, we will focus on a different slow-light platform. This platform focuses on optics that we developed and tested that compress the amount of free-space propagation using multilayered stacks of thin films known as spaceplates. We design and characterize four multilayer stack-based spaceplates based on two design philosophies: coupled resonators and gradient descent. Using the transfer-matrix method, we simulate and extract the angular and wavelength dependence of the transmission phase and transmittance to extract and predict compression factors for each device. A brief theoretical investigation is developed to predict resonance positions, spacing, and bandwidth. We measure the transverse walk-off to extract the compression factor of four multilayer stack-based spaceplates as a function of angle and wavelength. One of the devices was found to have a compression factor of $R=176\pm14$, more than ten times larger than previous experimental records. We increased the numerical aperture of one of the devices by ten times, and we still observed a compression factor of $R=30\pm3$, two times larger than the most recent experimental measurements. We also measured focal shifts up to 800 microns, more than 40 times the device size, typically 10-12 microns thick. The multilayer stack-based spaceplates we studied here show great promise for ultrathin flat optical systems that can easily be integrated into a modern-day imaging system.
56

Adiabatic Transfer of Light in a Double Cavity

miladinovic, nick k. January 2011 (has links)
<p>The goal of this thesis is to perform a simple theoretical analysis of the problem of two optical cavities coupled by a common mirror which is movable. The mirror position controls the electromagnetic mode structure of the double cavity. Modes can be transferred from one side to the other by moving the mirror, thereby allowing deterministic and on-demand transfer of photons between two cavities. By mapping the Maxwell wave equation onto the Schr\"{o}dinger wave equation, we are able to make use of the Landau-Zener result for the transition probability at an avoided crossing to obtain the conditions for adiabatic transfer.</p> / Master of Science (MS)
57

Boundary Controllability and Stabilizability of Nonlinear Schrodinger Equation in a Finite Interval

Cui, Jing 24 April 2017 (has links)
The dissertation focuses on the nonlinear Schrodinger equation iu_t+u_{xx}+kappa|u|^2u =0, for the complex-valued function u=u(x,t) with domain t>=0, 0<=x<= L, where the parameter kappa is any non-zero real number. It is shown that the problem is locally and globally well-posed for appropriate initial data and the solution exponentially decays to zero as t goes to infinity under the boundary conditions u(0,t) = beta u(L,t) and beta u_x(0,t)-u_x(L,t) = ialpha u(0,t), where L>0, and alpha and beta are any real numbers satisfying alpha*beta<0 and beta does not equal 1 or -1. Moreover, the numerical study of controllability problem for the nonlinear Schrodinger equations is given. It is proved that the finite-difference scheme for the linear Schrodinger equation is uniformly boundary controllable and the boundary controls converge as the step sizes approach to zero. It is then shown that the discrete version of the nonlinear case is boundary null-controllable by applying the fixed point method. From the new results, some open questions are presented. / Ph. D.
58

Nonhomogeneous Initial Boundary Value Problems for Two-Dimensional Nonlinear Schrodinger Equations

Ran, Yu 08 May 2014 (has links)
The dissertation focuses on the initial boundary value problems (IBVPs) of a class of nonlinear Schrodinger equations posed on a half plane R x R+ and on a strip domain R x [0,L] with Dirichlet nonhomogeneous boundary data in a two-dimensional plane. Compared with pure initial value problems (IVPs), IBVPs over part of entire space with boundaries are more applicable to the reality and can provide more accurate data to physical experiments or practical problems. Although there is less research that has been made for IBVPs than that for IVPs, more attention has been paid for IBVPs recently. In particular, this thesis studies the local well-posedness of the equation for the appropriate initial and boundary data in Sobolev spaces H^s with non-negative s and investigates the global well-posedness in the H^1-space. The main strategy, especially for the local well-posedness, is to derive an equivalent integral equation (whose solution is called mild solution) from the original equation by semi-group theory and then perform the Banach fixed-point argument. However, along the process, it is essential to select proper auxiliary function spaces and prepare all the corresponding norm estimates to complete the argument. In fact, the IBVP posed on R x R+ and the one posed on R x [0,L] are two independent problems because the techniques adopted are different. The first problem is more related to the initial value problem (IVP) posed on the whole plane R^2 and the major ingredients are Strichartz's estimate and its generalized theory. On the other hand, the second problem can be studied as an IVP over a half-line and periodic domain, which is established on the analysis for series inspired by Bourgain's work. Moreover, the corresponding smoothing properties and regularity conditions of the solution are also considered. / Ph. D.
59

Eigenvalue Statistics for Random Block Operators

Schmidt, Daniel F. 28 April 2015 (has links)
The Schrodinger Hamiltonian for a single electron in a crystalline solid with independent, identically distributed (i.i.d.) single-site potentials has been well studied. It has the form of a diagonal potential energy operator, which contains the random variables, plus a kinetic energy operator, which is deterministic. In the less-understood cases of multiple interacting charge carriers, or of correlated random variables, the Hamiltonian can take the form of a random block-diagonal operator, plus the usual kinetic energy term. Thus, it is of interest to understand the eigenvalue statistics for such operators. In this work, we establish a criterion under which certain random block operators will be guaranteed to satisfy Wegner, Minami, and higher-order estimates. This criterion is phrased in terms of properties of individual blocks of the Hamiltonian. We will then verify the input conditions of this criterion for a certain quasiparticle model with i.i.d. single-site potentials. Next, we will present a progress report on a project to verify the same input conditions for a class of one-dimensional, single-particle alloy-type models. These two results should be sufficient to demonstrate the utility of the criterion as a method of proving Wegner and Minami estimates for random block operators. / Ph. D.
60

Aplicação da q- Álgebra nos cenários de localização de gravidade e correspondência AdS/QCD

SANTOS, Fabiano Francisco dos. 15 October 2018 (has links)
Submitted by Emanuel Varela Cardoso (emanuel.varela@ufcg.edu.br) on 2018-10-15T21:50:24Z No. of bitstreams: 1 FABIANO FRANCISCO DOS SANTOS – DISSERTAÇÃO (PPGFísica) 2016.pdf: 5760014 bytes, checksum: eefa035c56062441b71e303ab5162fda (MD5) / Made available in DSpace on 2018-10-15T21:50:24Z (GMT). No. of bitstreams: 1 FABIANO FRANCISCO DOS SANTOS – DISSERTAÇÃO (PPGFísica) 2016.pdf: 5760014 bytes, checksum: eefa035c56062441b71e303ab5162fda (MD5) Previous issue date: 2016-02 / Neste trabalho abordamos a aplicação da q-álgebra nos cenários de localização de gravidade e da correspondência AdS=QCD. A motivação para introduzir esta álgebra nestes cenários consiste na ausência de uma plena compreensão da origem física em torno da q-deformação, e tentamos obtê-la com a sua aplicação via um fator de desordem, ou seja, o parâmetro q. No presente caso queremos encontrar a forma do espectro modi cada por esse tipo de álgebra q-deformada para uma equação tipo Schrodinger advinda do estudo de flutuações em torno da métrica, encontramos também as formas dos limites newtonianos para o caso Karch e Randall e para o modelo Randall e Sundrum original. Nestes dois últimos casos foi observado que essa correção para o potencial newtoniano equivale ao caso da correção da constante cosmológica do bulk de 5-dimensões em Randall e Sundrum e de Karch e Randall que é uma correção na constante cosmológica da brana. Para a AdS=QCD realizamos um estudo de uma equação tipo oscilador harmônico quântico. Nesta perspectiva introduzimos um warp factor gaussiano na equação tipo Schrodinger advinda do estudo de flutuações resultando em um espectro modi cado para o oscilador e ainda neste cenário realizamos o estudo da dualidade holográ ca para observar como a q-deformação módi ca o confi namento entre quarks. / In this paper we discuss the aplication of the q-algebra in localized gravity scenarios and correspondence AdS=QCD. For the introduction of this algebra in these scenarios is the lack of a full understanding about the physical origin around the q-deformation, and we try gets it with your application by way of a warp factor, i.e, the parameter q. In this case we nd the shape of the spectrum modi ed by this kind of q-deformed algebra for a Schr odinger-like equation which came from the uctuations around the metric. We also nd forms of Newtonian limits to Karch and Randall case and in the original Randall and Sundrum model. In these two cases it was observed that this correction to the Newtonian potential is equivalent to a of correction for the cosmological constant of the bulk in the ve-dimensional Randall and Sundrum model. And for the Karch and Randall case the Newtonian potential is a correction for the cosmological constant of the brane, morover the AdS=QCD case involvid a study of a quantum harmonic oscillator-like equation. With this in mind we have introduced a gaussian warp factor in the Schr odinger-like equation, which came from the study of uctuations such an approch resulting in a modi ed spectrum for the oscillator, furthermore we conducted a study of holographic duality in this scenario, in order to observe how the q-deformation modi es the con nement between quarks.

Page generated in 0.0565 seconds