• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 7
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude Statistique du Problème de la Trajectographie Passive

Landelle, Benoit 30 June 2009 (has links) (PDF)
Cette thèse présente une étude statistique du problème de la trajectographie passive. On s'intéresse dans une première partie à la question de l'observabilité pour des trajectoires paramétriques puis paramétriques par morceaux et ensuite des trajectoires à vitesse constante. La deuxième partie est consacrée à l'estimation : on présente les propriétés de l'estimateur du maximum de vraisemblance pour des trajectoires paramétriques et paramétriques par morceaux. On expose également le caractère non robuste de cette estimation en dépit de propriétés asymptotiques satisfaisantes. On s'intéresse alors à la sensibilité de l'estimation quand le modèle d'état n'est pas totalement spécifié. Son comportement est décrit pour des perturbations d'état déterministes puis stochastiques et un cadre semiparamétrique est considéré quand la loi du bruit d'état est inconnue. Dans la dernière partie, on aborde le problème de la trajectographie passive comme chaîne de Markov cachée. On s'intéresse à l'étude du filtre optimal et à sa résolution par des méthodes algorithmiques. Le filtre de Kalman étendu est expérimenté sous différentes conditions de bruit d'état. On présente ensuite des résultats de stabilité asymptotique du filtre optimal pour des chaînes de Markov cachées non ergodiques puis leur application en trajectographie passive.
2

Etude et conception d'un modèle mixte semiparamétrique stochastique pour l'analyse des données longitudinales environnementales.

Moumouni, Kairou 12 December 2005 (has links) (PDF)
Cette thèse porte sur la recherche d'un modèle statistique adapté à l'analyse de données longitudinales rencontrées dans le domaine environnemental. L'approche générale est basée sur le modèle linéaire mixte stochastique. Nous proposons une extension de ce modèle par l'utilisation des techniques sémiparamétriques, en particulier les splines cubiques pénalisées. Des méthodes d'estimation adaptées au modèle mixte sémiparamétrique stochastique sont proposées. Des simulations sont ensuite effectuées pour l'évaluation des performances des estimateurs construits.<br />Dans une deuxième partie, une extension de la méthode d'influence locale de Cook au modèle mixte modifié est proposée, elle fournit une analyse de sensibilité permettant de détecter les effets de certaines perturbations sur les composantes structurelles du modèle. Quelques propriétés asymptotiques de la matrice d'influence locale sont exhibées.<br />Enfin, le modèle proposé est appliqué à deux jeux de données réelles : une analyse des données de concentrations de nitrates issues de différentes stations de mesures d'un bassin versant, puis une analyse de la pollution bactériologiques d'eaux de baignades.
3

Modélisation conjointe de données longitudinales et de durées de vie

Dupuy, Jean-François 19 November 2002 (has links) (PDF)
Le modèle de régression semiparamétrique de Cox est l'un des plus utilisés pour l'analyse statistique des durées de vie issues du domaine médical ou de la fiabilité. Ses paramètres sont un paramètre de régression et une fonction de risque de base positive et inconnue. L'inférence statistique pour ce modèle, basée sur la vraisemblance partielle de Cox, est souvent compliquée par la présence de données manquantes des covariables. Dans cette thèse, nous proposons une méthode d'estimation des paramètres du modèle de Cox adaptée à cette situation, et nous étudions les propriétés asymptotiques des estimateurs obtenus. La méthode proposée consiste à modéliser conjointement les durées censurées et le processus de covariable afin d'en déduire, par intégration sur les valeurs manquantes de cette covariable, une vraisemblance conjointe permettant d'estimer les paramètres du modèle de Cox au vu des données incomplètes. Dans un premier temps, nous proposons et formalisons un modèle conjoint pour les durées de vie et la covariable longitudinale. Ce modèle est construit à partir du modèle de Cox et d'un modèle de covariable choisi comme étant une fonction en escalier. Nous établissons ensuite l'identifiabilité de ce modèle sous des conditions de régularité peu contraignantes. Puis, nous adaptons au modèle conjoint la méthode du maximum de vraisemblance semiparamétrique. Nous montrons l'existence d'estimateurs semiparamétriques de ses paramètres, et en particulier de ses paramètres d'intérêt, qui sont les paramètres du modèle de Cox. L'expression compliquée de la vraisemblance conjointe ne permet pas d'obtenir analytiquement ces estimateurs. Nous mettons alors en oeuvre l'estimation à l'aide d'un algorithme EM. Nous montrons ensuite la consistance et la normalité asymptotique de nos estimateurs. Puis, nous proposons un estimateur consistant de leur variance asymptotique. Dans une dernière partie, nous appliquons la méthode proposée sur un jeu de données réelles, et nous comparons nos résultats avec deux autres méthodes d'estimation du modèle de Cox avec covariable manquante proposées dans la littérature.
4

Estimation d'un modèle de mélange paramétrique et semiparamétrique par des phi-divergences / Estimation of parametric and semiparametric mixture models using phi-divergences

Al-Mohamad, Diaa 17 November 2016 (has links)
L’étude des modèles de mélanges est un champ très vaste en statistique. Nous présentons dans la première partie de la thèse les phi-divergences et les méthodes existantes qui construisent des estimateurs robustes basés sur des phi-divergences. Nous nous intéressons en particulier à la forme duale des phi-divergences et nous construisons un nouvel estimateur robuste basant sur cette formule. Nous étudions les propriétés asymptotiques de cet estimateur et faisons une comparaison numérique avec les méthodes existantes. Dans un seconde temps, nous introduisons un algorithme proximal dont l’objectif est de calculer itérativement des estimateurs basés sur des critères de divergences statistiques. La convergence de l’algorithme est étudiée et illustrée par différents exemples théoriques et sur des données simulées. Dans la deuxième partie de la thèse, nous construisons une nouvelle structure pour les modèles de mélanges à deux composantes dont l’une est inconnue. La nouvelle approche permet d’incorporer une information a priori linéaire de type moments ou L-moments. Nous étudions les propriétés asymptotiques des estimateurs proposés. Des simulations numériques sont présentées afin de montrer l’avantage de la nouvelle approche en comparaison avec les méthodes existantes qui ne considèrent pas d’information a priori à part une hypothèse de symétrie sur la composante inconnue. / The study of mixture models constitutes a large domain of research in statistics. In the first part of this work, we present phi-divergences and the existing methods which produce robust estimators. We are more particularly interested in the so-called dual formula of phi-divergences. We build a new robust estimator based on this formula. We study its asymptotic properties and give a numerical comparison with existing methods on simulated data. We also introduce a proximal-point algorithm whose aim is to calculate divergence-based estimators. We give some of the convergence properties of this algorithm and illustrate them on theoretical and simulated examples. In the second part of this thesis, we build a new structure for two-component mixture models where one component is unknown. The new approach permits to incorporate a prior linear information about the unknown component such as moment-type and L-moments constraints. We study the asymptotic properties of the proposed estimators. Several experimental results on simulated data are illustrated showing the advantage of the novel approach and the gain from using the prior information in comparison to existing methods which do not incorporate any prior information except for a symmetry assumption over the unknown component.
5

Contribution à la statistique des diffusions. Estimation semiparamétrique et efficacité au second ordre.<br />Agrégation et réduction de dimension pour le modèle de régression.

Dalalyan, Arnak 22 November 2007 (has links) (PDF)
Ce texte constitue une synthèse de mes travaux de recherche menés depuis 2000 en statistique mathématique. Ces travaux s'articulent autour de 4 thèmes: la statistique non paramétrique pour les processus de diffusion, efficacité au second ordre pour l'estimation semiparamétrique, agrégation par des poids exponentiels et réduction de dimension pour la régression non paramétrique. <br />Le premier chapitre contient une description générale des résultats obtenus en les replaçant dans un contexte historique et en présentant les motivations qui nous ont animées pour étudier ces problèmes. J'y décris également de façon informelle les idées clés des démonstrations. <br /><br />Au second chapitre, je présente les définitions principales nécessaires pour énoncer de façon rigoureuse les résultats les plus importants. Ce chapitre contient également une discussion plus formelle permettant de mettre en lumière certains aspects théoriques et pratiques de nos résultats.
6

Non- and semiparametric models for conditional probabilities in two-way contingency tables / Modèles non-paramétriques et semiparamétriques pour les probabilités conditionnelles dans les tables de contingence à deux entrées

Geenens, Gery 04 July 2008 (has links)
This thesis is mainly concerned with the estimation of conditional probabilities in two-way contingency tables, that is probabilities of type P(R=i,S=j|X=x), for (i,j) in {1, . . . , r}×{1, . . . , s}, where R and S are the two categorical variables forming the contingency table, with r and s levels respectively, and X is a vector of explanatory variables possibly associated with R, S, or both. Analyzing such a conditional distribution is often of interest, as this allows to go further than the usual unconditional study of the behavior of the variables R and S. First, one can check an eventual effect of these covariates on the distribution of the individuals through the cells of the table, and second, one can carry out usual analyses of contingency tables, such as independence tests, taking into account, and removing in some sense, this effect. This helps for instance to identify the external factors which could be responsible for an eventual association between R and S. This also gives the possibility to adapt for a possible heterogeneity in the population of interest, when analyzing the table.
7

Contributions à la réduction de dimension

Kuentz, Vanessa 20 November 2009 (has links)
Cette thèse est consacrée au problème de la réduction de dimension. Cette thématique centrale en Statistique vise à rechercher des sous-espaces de faibles dimensions tout en minimisant la perte d'information contenue dans les données. Tout d'abord, nous nous intéressons à des méthodes de statistique multidimensionnelle dans le cas de variables qualitatives. Nous abordons la question de la rotation en Analyse des Correspondances Multiples (ACM). Nous définissons l'expression analytique de l'angle de rotation planaire optimal pour le critère de rotation choisi. Lorsque le nombre de composantes principales retenues est supérieur à deux, nous utilisons un algorithme de rotations planaires successives de paires de facteurs. Nous proposons également différents algorithmes de classification de variables qualitatives qui visent à optimiser un critère de partitionnement basé sur la notion de rapports de corrélation. Un jeu de données réelles illustre les intérêts pratiques de la rotation en ACM et permet de comparer empiriquement les différents algorithmes de classification de variables qualitatives proposés. Puis nous considérons un modèle de régression semiparamétrique, plus précisément nous nous intéressons à la méthode de régression inverse par tranchage (SIR pour Sliced Inverse Regression). Nous développons une approche basée sur un partitionnement de l'espace des covariables, qui est utilisable lorsque la condition fondamentale de linéarité de la variable explicative est violée. Une seconde adaptation, utilisant le bootstrap, est proposée afin d'améliorer l'estimation de la base du sous-espace de réduction de dimension. Des résultats asymptotiques sont donnés et une étude sur des données simulées démontre la supériorité des approches proposées. Enfin les différentes applications et collaborations interdisciplinaires réalisées durant la thèse sont décrites. / This thesis concentrates on dimension reduction approaches, that seek for lower dimensional subspaces minimizing the lost of statistical information. First we focus on multivariate analysis for categorical data. The rotation problem in Multiple Correspondence Analysis (MCA) is treated. We give the analytic expression of the optimal angle of planar rotation for the chosen criterion. If more than two principal components are to be retained, this planar solution is used in a practical algorithm applying successive pairwise planar rotations. Different algorithms for the clustering of categorical variables are also proposed to maximize a given partitioning criterion based on correlation ratios. A real data application highlights the benefits of using rotation in MCA and provides an empirical comparison of the proposed algorithms for categorical variable clustering. Then we study the semiparametric regression method SIR (Sliced Inverse Regression). We propose an extension based on the partitioning of the predictor space that can be used when the crucial linearity condition of the predictor is not verified. We also introduce bagging versions of SIR to improve the estimation of the basis of the dimension reduction subspace. Asymptotic properties of the estimators are obtained and a simulation study shows the good numerical behaviour of the proposed methods. Finally applied multivariate data analysis on various areas is described.

Page generated in 0.0897 seconds