• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 7
  • 5
  • 2
  • 1
  • Tagged with
  • 69
  • 69
  • 69
  • 25
  • 24
  • 18
  • 16
  • 15
  • 14
  • 14
  • 11
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Particle Filter Bridge Interpolation in GANs / Brygginterpolation med partikelfilter i GANs

Käll, Viktor, Piscator, Erik January 2021 (has links)
Generative adversarial networks (GANs), a type of generative modeling framework, has received much attention in the past few years since they were discovered for their capacity to recover complex high-dimensional data distributions. These provide a compressed representation of the data where all but the essential features of a sample is extracted, subsequently inducing a similarity measure on the space of data. This similarity measure gives rise to the possibility of interpolating in the data which has been done successfully in the past. Herein we propose a new stochastic interpolation method for GANs where the interpolation is forced to adhere to the data distribution by implementing a sequential Monte Carlo algorithm for data sampling. The results show that the new method outperforms previously known interpolation methods for the data set LINES; compared to the results of other interpolation methods there was a significant improvement measured through quantitative and qualitative evaluations. The developed interpolation method has met its expectations and shown promise, however it needs to be tested on a more complex data set in order to verify that it also scales well. / Generative adversarial networks (GANs) är ett slags generativ modell som har fått mycket uppmärksamhet de senaste åren sedan de upptäcktes för sin potential att återskapa komplexa högdimensionella datafördelningar. Dessa förser en komprimerad representation av datan där enbart de karaktäriserande egenskaperna är bevarade, vilket följdaktligen inducerar ett avståndsmått på datarummet. Detta avståndsmått möjliggör interpolering inom datan vilket har åstadkommits med framgång tidigare. Häri föreslår vi en ny stokastisk interpoleringsmetod för GANs där interpolationen tvingas följa datafördelningen genom att implementera en sekventiell Monte Carlo algoritm för dragning av datapunkter. Resultaten för studien visar att metoden ger bättre interpolationer för datamängden LINES som användes; jämfört med resultaten av tidigare kända interpolationsmetoder syntes en märkbar förbättring genom kvalitativa och kvantitativa utvärderingar. Den framtagna interpolationsmetoden har alltså mött förväntningarna och är lovande, emellertid fordras att den testas på en mer komplex datamängd för att bekräfta att den fungerar väl även under mer generella förhållanden.
62

Initialiser et calibrer un modèle de microsimulation dynamique stochastique : application au modèle SimVillages / Initialize and Calibrate a Dynamic Stochastic Microsimulation Model : application to the SimVillages Model

Lenormand, Maxime 12 December 2012 (has links)
Le but de cette thèse est de développer des outils statistiques permettant d'initialiser et de calibrer les modèles de microsimulation dynamique stochastique, en partant de l’exemple du modèle SimVillages (développé dans le cadre du projet Européen PRIMA). Ce modèle couple des dynamiques démographiques et économiques appliquées à une population de municipalités rurales. Chaque individu de la population, représenté explicitement dans un ménage au sein d’une commune, travaille éventuellement dans une autre, et possède sa propre trajectoire de vie. Ainsi, le modèle inclut-il des dynamiques de choix de vie, d’étude, de carrière, d’union, de naissance, de divorce, de migration et de décès. Nous avons développé, implémenté et testé les modèles et méthodes suivants : 1 / un modèle permettant de générer une population synthétique à partir de données agrégées, où chaque individu est membre d’un ménage, vit dans une commune et possède un statut au regard de l’emploi. Cette population synthétique est l’état initial du modèle. 2 / un modèle permettant de simuler une table d’origine-destination des déplacements domicile-travail à partir de données agrégées. 3 / un modèle permettant d’estimer le nombre d’emplois dans les services de proximité dans une commune donnée en fonction de son nombre d’habitants et de son voisinage en termes de service. 4 / une méthode de calibration des paramètres inconnus du modèle SimVillages de manière à satisfaire un ensemble de critères d'erreurs définis sur des sources de données hétérogènes. Cette méthode est fondée sur un nouvel algorithme d’échantillonnage séquentiel de type Approximate Bayesian Computation. / The purpose of this thesis is to develop statistical tools to initialize and to calibrate dynamic stochastic microsimulation models, starting from their application to the SimVillages model (developed within the European PRIMA project). This model includes demographic and economic dynamics applied to the population of a set of rural municipalities. Each individual, represented explicitly in a household living in a municipality, possibly working in another, has its own life trajectory. Thus, model includes rules for the choice of study, career, marriage, birth children, divorce, migration, and death. We developed, implemented and tested the following models : • a model to generate a synthetic population from aggregate data, where each individual lives in a household in a municipality and has a status with regard to employment. The synthetic population is the initial state of the model. • a model to simulate a table of origin-destination commuting from aggregate data in order to assign a place of work for each individual working outside his municipality of residence. • a sub-model to estimate the number of jobs in local services in a given municipality in terms of its number of inhabitants and its neighbors in terms of service. • a method to calibrate the unknown SimVillages model parameters in order to satisfy a set of criteria. This method is based on a new Approximate Bayesian Computation algorithm using importance sampling. When applied to a toy example and to the SimVillages model, our algorithm is 2 to 8 times faster than the three main sequential ABC algorithms currently available.
63

Initialiser et calibrer un modèle de microsimulation dynamique stochastique : application au modèle SimVillages

Lenormand, Maxime 12 December 2012 (has links) (PDF)
Le but de cette thèse est de développer des outils statistiques permettant d'initialiser et de calibrer les modèles de microsimulation dynamique stochastique, en partant de l'exemple du modèle SimVillages (développé dans le cadre du projet Européen PRIMA). Ce modèle couple des dynamiques démographiques et économiques appliquées à une population de municipalités rurales. Chaque individu de la population, représenté explicitement dans un ménage au sein d'une commune, travaille éventuellement dans une autre, et possède sa propre trajectoire de vie. Ainsi, le modèle inclut-il des dynamiques de choix de vie, d'étude, de carrière, d'union, de naissance, de divorce, de migration et de décès. Nous avons développé, implémenté et testé les modèles et méthodes suivants : 1 / un modèle permettant de générer une population synthétique à partir de données agrégées, où chaque individu est membre d'un ménage, vit dans une commune et possède un statut au regard de l'emploi. Cette population synthétique est l'état initial du modèle. 2 / un modèle permettant de simuler une table d'origine-destination des déplacements domicile-travail à partir de données agrégées. 3 / un modèle permettant d'estimer le nombre d'emplois dans les services de proximité dans une commune donnée en fonction de son nombre d'habitants et de son voisinage en termes de service. 4 / une méthode de calibration des paramètres inconnus du modèle SimVillages de manière à satisfaire un ensemble de critères d'erreurs définis sur des sources de données hétérogènes. Cette méthode est fondée sur un nouvel algorithme d'échantillonnage séquentiel de type Approximate Bayesian Computation.
64

Modèle bayésien non paramétrique pour la segmentation jointe d'un ensemble d'images avec des classes partagées / Bayesian nonparametric model for joint segmentation of a set of images with shared classes

Sodjo, Jessica 18 September 2018 (has links)
Ce travail porte sur la segmentation jointe d’un ensemble d’images dans un cadre bayésien.Le modèle proposé combine le processus de Dirichlet hiérarchique (HDP) et le champ de Potts.Ainsi, pour un groupe d’images, chacune est divisée en régions homogènes et les régions similaires entre images sont regroupées en classes. D’une part, grâce au HDP, il n’est pas nécessaire de définir a priori le nombre de régions par image et le nombre de classes, communes ou non.D’autre part, le champ de Potts assure une homogénéité spatiale. Les lois a priori et a posteriori en découlant sont complexes rendant impossible le calcul analytique d’estimateurs. Un algorithme de Gibbs est alors proposé pour générer des échantillons de la loi a posteriori. De plus,un algorithme de Swendsen-Wang généralisé est développé pour une meilleure exploration dela loi a posteriori. Enfin, un algorithme de Monte Carlo séquentiel a été défini pour l’estimation des hyperparamètres du modèle.Ces méthodes ont été évaluées sur des images-test et sur des images naturelles. Le choix de la meilleure partition se fait par minimisation d’un critère indépendant de la numérotation. Les performances de l’algorithme sont évaluées via des métriques connues en statistiques mais peu utilisées en segmentation d’image. / This work concerns the joint segmentation of a set images in a Bayesian framework. The proposed model combines the hierarchical Dirichlet process (HDP) and the Potts random field. Hence, for a set of images, each is divided into homogeneous regions and similar regions between images are grouped into classes. On the one hand, thanks to the HDP, it is not necessary to define a priori the number of regions per image and the number of classes, common or not.On the other hand, the Potts field ensures a spatial consistency. The arising a priori and a posteriori distributions are complex and makes it impossible to compute analytically estimators. A Gibbs algorithm is then proposed to generate samples of the distribution a posteriori. Moreover,a generalized Swendsen-Wang algorithm is developed for a better exploration of the a posteriori distribution. Finally, a sequential Monte Carlo sampler is defined for the estimation of the hyperparameters of the model.These methods have been evaluated on toy examples and natural images. The choice of the best partition is done by minimization of a numbering free criterion. The performance are assessed by metrics well-known in statistics but unused in image segmentation.
65

Advanced signal processing techniques for multi-target tracking

Daniyan, Abdullahi January 2018 (has links)
The multi-target tracking problem essentially involves the recursive joint estimation of the state of unknown and time-varying number of targets present in a tracking scene, given a series of observations. This problem becomes more challenging because the sequence of observations is noisy and can become corrupted due to miss-detections and false alarms/clutter. Additionally, the detected observations are indistinguishable from clutter. Furthermore, whether the target(s) of interest are point or extended (in terms of spatial extent) poses even more technical challenges. An approach known as random finite sets provides an elegant and rigorous framework for the handling of the multi-target tracking problem. With a random finite sets formulation, both the multi-target states and multi-target observations are modelled as finite set valued random variables, that is, random variables which are random in both the number of elements and the values of the elements themselves. Furthermore, compared to other approaches, the random finite sets approach possesses a desirable characteristic of being free of explicit data association prior to tracking. In addition, a framework is available for dealing with random finite sets and is known as finite sets statistics. In this thesis, advanced signal processing techniques are employed to provide enhancements to and develop new random finite sets based multi-target tracking algorithms for the tracking of both point and extended targets with the aim to improve tracking performance in cluttered environments. To this end, firstly, a new and efficient Kalman-gain aided sequential Monte Carlo probability hypothesis density (KG-SMC-PHD) filter and a cardinalised particle probability hypothesis density (KG-SMC-CPHD) filter are proposed. These filters employ the Kalman- gain approach during weight update to correct predicted particle states by minimising the mean square error between the estimated measurement and the actual measurement received at a given time in order to arrive at a more accurate posterior. This technique identifies and selects those particles belonging to a particular target from a given PHD for state correction during weight computation. The proposed SMC-CPHD filter provides a better estimate of the number of targets. Besides the improved tracking accuracy, fewer particles are required in the proposed approach. Simulation results confirm the improved tracking performance when evaluated with different measures. Secondly, the KG-SMC-(C)PHD filters are particle filter (PF) based and as with PFs, they require a process known as resampling to avoid the problem of degeneracy. This thesis proposes a new resampling scheme to address a problem with the systematic resampling method which causes a high tendency of resampling very low weight particles especially when a large number of resampled particles are required; which in turn affect state estimation. Thirdly, the KG-SMC-(C)PHD filters proposed in this thesis perform filtering and not tracking , that is, they provide only point estimates of target states but do not provide connected estimates of target trajectories from one time step to the next. A new post processing step using game theory as a solution to this filtering - tracking problem is proposed. This approach was named the GTDA method. This method was employed in the KG-SMC-(C)PHD filter as a post processing technique and was evaluated using both simulated and real data obtained using the NI-USRP software defined radio platform in a passive bi-static radar system. Lastly, a new technique for the joint tracking and labelling of multiple extended targets is proposed. To achieve multiple extended target tracking using this technique, models for the target measurement rate, kinematic component and target extension are defined and jointly propagated in time under the generalised labelled multi-Bernoulli (GLMB) filter framework. The GLMB filter is a random finite sets-based filter. In particular, a Poisson mixture variational Bayesian (PMVB) model is developed to simultaneously estimate the measurement rate of multiple extended targets and extended target extension was modelled using B-splines. The proposed method was evaluated with various performance metrics in order to demonstrate its effectiveness in tracking multiple extended targets.
66

Stochastic models and methods for multi-object tracking

Pace, Michele 13 July 2011 (has links) (PDF)
La poursuite multi-cibles a pour objet le suivi d'un ensemble de cibles mobiles à partir de données obtenues séquentiellement. Ce problème est particulièrement complexe du fait du nombre inconnu et variable de cibles, de la présence de bruit de mesure, de fausses alarmes, d'incertitude de détection et d'incertitude dans l'association de données. Les filtres PHD (Probability Hypothesis Density) constituent une nouvelle gamme de filtres adaptés à cette problématique. Ces techniques se distinguent des méthodes classiques (MHT, JPDAF, particulaire) par la modélisation de l'ensemble des cibles comme un ensemble fini aléatoire et par l'utilisation des moments de sa densité de probabilité. Dans la première partie, on s'intéresse principalement à la problématique de l'application des filtres PHD pour le filtrage multi-cibles maritime et aérien dans des scénarios réalistes et à l'étude des propriétés numériques de ces algorithmes. Dans la seconde partie, nous nous intéressons à l'étude théorique des processus de branchement liés aux équations du filtrage multi-cibles avec l'analyse des propriétés de stabilité et le comportement en temps long des semi-groupes d'intensités de branchements spatiaux. Ensuite, nous analysons les propriétés de stabilité exponentielle d'une classe d'équations à valeurs mesures que l'on rencontre dans le filtrage non-linéaire multi-cibles. Cette analyse s'applique notamment aux méthodes de type Monte Carlo séquentielles et aux algorithmes particulaires dans le cadre des filtres de Bernoulli et des filtres PHD.
67

Initialize and Calibrate a Dynamic Stochastic Microsimulation Model: Application to the SimVillages Model

Lenormand, Maxime 12 December 2012 (has links) (PDF)
Le but de cette thèse est de développer des outils statistiques permettant d'initialiser et de calibrer les modèles de microsimulation dynamique stochastique, en partant de l'exemple du modèle SimVillages (développé dans le cadre du projet Européen PRIMA). Ce modèle couple des dynamiques démographiques et économiques appliquées à une population de municipalités rurales. Chaque individu de la population, représenté explicitement dans un ménage au sein d'une commune, travaille éventuellement dans une autre, et possède sa propre trajectoire de vie. Ainsi, le modèle inclut-il des dynamiques de choix de vie, d'étude, de carrière, d'union, de naissance, de divorce, de migration et de décès. Nous avons développé, implémenté et testé les modèles et méthodes suivants: * un modèle permettant de générer une population synthétique à partir de données agrégées, où chaque individu est membre d'un ménage, vit dans une commune et possède un statut au regard de l'emploi. Cette population synthétique est l'état initial du modèle. * un modèle permettant de simuler une table d'origine-destination des déplacements domicile-travail à partir de données agrégées. * un modèle permettant d'estimer le nombre d'emplois dans les services de proximité dans une commune donnée en fonction de son nombre d'habitants et de son voisinage en termes de service. * une méthode de calibration des paramètres inconnus du modèle SimVillages de manière à satisfaire un ensemble de critères d'erreurs définis sur des sources de données hétérogènes. Cette méthode est fondée sur un nouvel algorithme d'échantillonnage séquentiel de type Approximate Bayesian Computation.
68

Stochastic models and methods for multi-object tracking / Méthodes et modèles stochastiques pour le suivi multi-objets

Pace, Michele 13 July 2011 (has links)
La poursuite multi-cibles a pour objet le suivi d’un ensemble de cibles mobiles à partir de données obtenues séquentiellement. Ce problème est particulièrement complexe du fait du nombre inconnu et variable de cibles, de la présence de bruit de mesure, de fausses alarmes, d’incertitude de détection et d’incertitude dans l’association de données. Les filtres PHD (Probability Hypothesis Density) constituent une nouvelle gamme de filtres adaptés à cette problématique. Ces techniques se distinguent des méthodes classiques (MHT, JPDAF, particulaire) par la modélisation de l’ensemble des cibles comme un ensemble fini aléatoire et par l’utilisation des moments de sa densité de probabilité. Dans la première partie, on s’intéresse principalement à la problématique de l’application des filtres PHD pour le filtrage multi-cibles maritime et aérien dans des scénarios réalistes et à l’étude des propriétés numériques de ces algorithmes. Dans la seconde partie, nous nous intéressons à l’étude théorique des processus de branchement liés aux équations du filtrage multi-cibles avec l’analyse des propriétés de stabilité et le comportement en temps long des semi-groupes d’intensités de branchements spatiaux. Ensuite, nous analysons les propriétés de stabilité exponentielle d’une classe d’équations à valeurs mesures que l’on rencontre dans le filtrage non-linéaire multi-cibles. Cette analyse s’applique notamment aux méthodes de type Monte Carlo séquentielles et aux algorithmes particulaires dans le cadre des filtres de Bernoulli et des filtres PHD. / The problem of multiple-object tracking consists in the recursive estimation ofthe state of several targets by using the information coming from an observation process. The objective of this thesis is to study the spatial branching processes andthe measure-valued systems arising in multi-object tracking. We focus on a class of filters called Probability Hypothesis Density (PHD) filters by first analyzing theirperformance on simulated scenarii and then by studying their properties of stabilityand convergence. The thesis is organized in two parts: the first part overviewsthe techniques proposed in the literature and introduces the Probability Hypothesis Density filter as a tractable approximation to the full multi-target Bayes filterbased on the Random Finite Sets formulation. A series of contributions concerning the numerical implementation of PHD filters are proposed as well as the analysis of their performance on realistic scenarios.The second part focuses on the theoretical aspects of the PHD recursion in the context of spatial branching processes. We establish the expression of the conditional distribution of a latent Poisson point process given an observation process and propose an alternative derivation of the PHD filter based on this result. Stability properties, long time behavior as well as the uniform convergence of a general class of stochastic filtering algorithms are discussed. Schemes to approximate the measure valued equations arising in nonlinear multi-target filtering are proposed and studied.
69

Monte Carlo identifikační strategie pro stavové modely / Monte Carlo-Based Identification Strategies for State-Space Models

Papež, Milan January 2019 (has links)
Stavové modely jsou neobyčejně užitečné v mnoha inženýrských a vědeckých oblastech. Jejich atraktivita vychází především z toho faktu, že poskytují obecný nástroj pro popis široké škály dynamických systémů reálného světa. Nicméně, z důvodu jejich obecnosti, přidružené úlohy inference parametrů a stavů jsou ve většině praktických situacích nepoddajné. Tato dizertační práce uvažuje dvě zvláště důležité třídy nelineárních a ne-Gaussovských stavových modelů: podmíněně konjugované stavové modely a Markovsky přepínající nelineární modely. Hlavní rys těchto modelů spočívá v tom, že---navzdory jejich nepoddajnosti---obsahují poddajnou podstrukturu. Nepoddajná část požaduje abychom využily aproximační techniky. Monte Carlo výpočetní metody představují teoreticky a prakticky dobře etablovaný nástroj pro řešení tohoto problému. Výhoda těchto modelů spočívá v tom, že poddajná část může být využita pro zvýšení efektivity Monte Carlo metod tím, že se uchýlíme k Rao-Blackwellizaci. Konkrétně, tato doktorská práce navrhuje dva Rao-Blackwellizované částicové filtry pro identifikaci buďto statických anebo časově proměnných parametrů v podmíněně konjugovaných stavových modelech. Kromě toho, tato práce adoptuje nedávnou particle Markov chain Monte Carlo metodologii pro návrh Rao-Blackwellizovaných částicových Gibbsových jader pro vyhlazování stavů v Markovsky přepínajících nelineárních modelech. Tyto jádra jsou posléze použity pro inferenci parametrů metodou maximální věrohodnosti v uvažovaných modelech. Výsledné experimenty demonstrují, že navržené algoritmy překonávají příbuzné techniky ve smyslu přesnosti odhadu a výpočetního času.

Page generated in 0.0573 seconds