1 |
Single nucleotide polymorphisms and haplotypes associated with feed efficiency in beef cattleSerao, Nick, Gonzalez-Pena, Dianelys, Beever, Jonathan, Faulkner, Dan, Southey, Bruce, Rodriguez-Zas, Sandra January 2013 (has links)
BACKGROUND:General, breed- and diet-dependent associations between feed efficiency in beef cattle and single nucleotide polymorphisms (SNPs) or haplotypes were identified on a population of 1321 steers using a 50K SNP panel. Genomic associations with traditional two-step indicators of feed efficiency - residual feed intake (RFI), residual average daily gain (RADG), and residual intake gain (RIG) - were compared to associations with two complementary one-step indicators of feed efficiency: efficiency of intake (EI) and efficiency of gain (EG). Associations uncovered in a training data set were evaluated on independent validation data set. A multi-SNP model was developed to predict feed efficiency. Functional analysis of genes harboring SNPs significantly associated with feed efficiency and network visualization aided in the interpretation of the results.RESULTS:For the five feed efficiency indicators, the numbers of general, breed-dependent, and diet-dependent associations with SNPs (P-value<0.0001) were 31, 40, and 25, and with haplotypes were six, ten, and nine, respectively. Of these, 20 SNP and six haplotype associations overlapped between RFI and EI, and five SNP and one haplotype associations overlapped between RADG and EG. This result confirms the complementary value of the one and two-step indicators. The multi-SNP models included 89 SNPs and offered a precise prediction of the five feed efficiency indicators. The associations of 17 SNPs and 7 haplotypes with feed efficiency were confirmed on the validation data set. Nine clusters of Gene Ontology and KEGG pathway categories (mean P-value<0.001) including, 9nucleotide binding / ion transport, phosphorous metabolic process, and the MAPK signaling pathway were overrepresented among the genes harboring the SNPs associated with feed efficiency.CONCLUSIONS:The general SNP associations suggest that a single panel of genomic variants can be used regardless of breed and diet. The breed- and diet-dependent associations between SNPs and feed efficiency suggest that further refinement of variant panels require the consideration of the breed and management practices. The unique genomic variants associated with the one- and two-step indicators suggest that both types of indicators offer complementary description of feed efficiency that can be exploited for genome-enabled selection purposes.
|
2 |
Us3 disrupts PML nuclear bodies through its interaction with KLHL21 to promote viral gene transcription in interferon-exposed cellsJung, Masany 28 April 2014 (has links)
Us3, a serine/threonine kinase encoded by all alphaherpesviruses, plays diverse roles
during virus infection. Recently, work done in our laboratory determined that Us3 orthologues from herpes simplex type 2 (HSV-2) and pseudorabies virus (PRV) are capable of disrupting promyelocytic leukaemia (PML) protein nuclear bodies (-NBs). PML-NBs are discrete, dynamic nuclear bodies named for PML, their essential structural component and one that plays a key role in diverse cellular processes, including transcriptional regulation, apoptosis, and cellular antiviral defense. In infected cells, PML-NBs exert transcriptional silencing on the viral genome to prevent viral gene expression and virus replication.
Based on this finding, my studies were aimed to understand the mechanism and physiological function of Us3-mediated PML-NB disruption. The degradation of one or more cellular proteins seems necessary for this Us3 activity, as the proteasome inhibitor, MG132,
dramatically reduced Us3-mediated PML-NB disruption. The target of this proteasome activity is not likely PML protein, as Us3 expression did not lead to detectable PML protein degradation. Nonetheless, the involvement of proteasome activity suggests that Us3 may utilize the host ubiquitylation pathway to disrupt PML-NBs. Supporting this hypothesis, PRV and HSV-2 Us3 orthologues were shown to interact with KLHL21, a substrate adaptor protein for cullin-3 ubiquitin ligase. PRV and HSV-2 Us3 were re-localized to PML-NBs when co-expressed with KLHL21, and knock-down of KLHL21 prevented Us3-mediated PML-NB disruption. Taken together, these findings suggest that Us3-KLHL21 complex recruits the cullin-3 ubiquitin ligase to PML-NBs, where subsequent ubiquitylation of unknown target(s) leads to PML-NB disassembly.
Since it is well established that PML is an important antiviral effector induced by
interferon (IFN), Us3 may contribute to viral resistance to IFN by disrupting PML-NBs.
Favoring this hypothesis, virus yield and viral gene transcription were dramatically reduced in IFN-exposed cells in the absence of Us3. These reductions were associated with an increased number of PML-NBs in the absence of Us3, and were partially recovered in cells knocked down for PML. Therefore, by disrupting PML-NBs, Us3 may alleviate IFN-induced, host-mediated transcriptional silencing of the viral genome, allowing efficient viral gene transcription and replication in cells exposed to IFN. / Thesis (Ph.D, Microbiology & Immunology) -- Queen's University, 2014-04-28 16:36:54.079
|
3 |
Caractérisation de nouveaux substrats de la sérine/thréonine kinase Stk1 de Staphylococcus aureus / Characterization of new substrates of the serine/threonine kinase Stk1 of Staphylococcus aureusCluzel, Marie-Ève 25 September 2012 (has links)
La phosphorylation de protéines correspond à l’addition covalente d’un groupement phosphate (PO4 3-) par une protéine kinase sur un substrat. Cette réaction est réversible : la déphosphorylation est catalysée par des protéines phosphatases. Chez S. aureus, la sérine/thréonine kinase Stk1 phosphoryle des acides aminés sérines et thréonines et a été montrée impliquée dans la régulation de la virulence du pathogène : nous avons approfondi les connaissances sur ce mécanisme en identifiant trois nouveaux substrats et en étudiant les effets de la phosphorylation sur leur activité : - l’enzyme LuxS, responsable de la synthèse de l’AI-2 impliqué dans la communication intra bactérienne, voit son activité enzymatique drastiquement diminuée en étant phosphorylée par Stk1 sur un site thréonine unique (T14) ; - le régulateur CcpA, dont la fixation sur l’ADN module l’expression de nombreux gènes de virulence, est phosphorylée par Stk1 sur deux sites (T18 et T33) et cette phosphorylation diminue l’affinité de la protéine régulatrice CcpA pour l’ADN de ses gènes cibles ; - l’élément réponse du système à deux composants SaeR est phosphorylé sur deux sites thréonines (T87 et T192) de la région impliquée dans l’affinité de SaeR pour l’ADN. Les rôles de la kinase Stk1 sont donc multiples et liés à la régulation de la virulence de S. aureus. Les autres voies mettant en jeu la phosphorylation de protéines bactériennes, comme les systèmes à deux composants ou le système CcpA/HPr, sont couplées à cette phosphorylation par la sérine/thréonine kinase : ces résultats soulignent à la fois la diversité et la complexité de la régulation des mécanismes responsables de la virulence de S. aureus / Protein phosphorylation consists in the catalyzed addition of a phosphate group on a substrate. This reversible reaction is ensured by both kinase and phosphatase proteins. S. aureus is a human prokaryote pathogen and a part of its virulence is known to be regulated by the serine/threonine kinase Stk1, which phosphorylates serine or threonine residues of its substrates. We investigated the mechanisms of this virulence regulation and newly identified three substrates of Stk1: the quorumsensing LuxS protein, the catabolite carbon protein CcpA and the two components system response element SaeR. LuxS is phosphorylated on a unique threonine residue in position 14 and phosphorylation dramatically influences its enzymatic activity on AI-2 production. CcpA phosphorylation on two threonine residues in the DNA-binding region of the protein (T18 and T33) decreases the affinity of the protein for its targeted DNA sequences. Besides, Stk1 also phosphorylates the response element SaeR on two threonine residues (T87 and T192) in the DNAbinding region. Therefore Stk1 kinase plays numerous roles in S. aureus virulence regulation and the complexity of this regulation pattern increases when considering that three of the phosphorylation pathways in prokaryotes are crossed over: the two components system phosphorylation, the HPr/HPrK system and the serine/threonine kinase proteins phosphorylation. These results highlight the need to focus on Stk1 as a key element in the complexity of virulence regulation in S. aureus
|
4 |
Pim1 kinase regulates c-Kit gene translationAn, Ningfei, Cen, Bo, Cai, Houjian, Song, Jin H., Kraft, Andrew, Kang, Yubin 30 December 2016 (has links)
Background: Receptor tyrosine kinase, c-Kit (CD117) plays a pivotal role in the maintenance and expansion of hematopoietic stem/progenitor cells (HSPCs). Additionally, over-expression and/or mutational activation of c-Kit have been implicated in numerous malignant diseases including acute myeloid leukemia. However, the translational regulation of c-Kit expression remains largely unknown. Methods and results: We demonstrated that loss of Pim1 led to specific down-regulation of c-Kit expression in HSPCs of Pim1(-/-)mice and Pim1(-/-)2(-/-)3(-/-) triple knockout (TKO) mice, and resulted in attenuated ERK and STAT3 signaling in response to stimulation with stem cell factor. Transduction of c-Kit restored the defects in colony forming capacity seen in HSPCs from Pim1 (-/-) and TKO mice. Pharmacologic inhibition and genetic modification studies using human megakaryoblastic leukemia cells confirmed the regulation of c-Kit expression by Pim1 kinase: i.e., Pim1-specific shRNA knockdown down-regulated the expression of c-Kit whereas overexpression of Pim1 up-regulated the expression of c-Kit. Mechanistically, inhibition or knockout of Pim1 kinase did not affect the transcription of c-Kit gene. Pim1 kinase enhanced c-Kit S-35 methionine labeling and increased the incorporation of c-Kit mRNAs into the polysomes and monosomes, demonstrating that Pim1 kinase regulates c-Kit expression at the translational level. Conclusions: Our study provides the first evidence that Pim1 regulates c-Kit gene translation and has important implications in hematopoietic stem cell transplantation and cancer treatment.
|
5 |
Régulation du cycle cellulaire de la bactérie pathogène Streptococcus pneumoniae par la tyrosine-kinase CpsD et la sérine/thréonine-kinase StkP / Regulation of the cell cycle of Streptococcus pneumoniae by the BY-kinase CpsD and the Serine/threonine-kinase StkPMercy, Chryslène 05 July 2018 (has links)
La bactérie pathogène, Streptococcus pneumoniae (ou pneumocoque), produit une sérinethréonine-kinase membranaire, StkP, et une tyrosine-kinase, CpsD, qui sont respectivement des régulateurs importants de la division cellulaire et de la synthèse de la capsule polysaccharidique. Ces observations ont été directement la base de mon projet de thèse. Au cours de mon étude, j'ai participé à la mise en évidence du mécanisme par lequel CpsD coordonne la synthèse de la capsule polysaccharidique avec le cycle cellulaire du pneumocoque, en contrôlant via son autophosphorylation la mobilité de la protéine ParB de la ségrégation du chromosome. Pour mieux comprendre le mécanisme moléculaire sous jacent, j'ai caractérisé un nouveau partenaire de CpsD et de ParB appelé RocS. J'ai montré que cette protéine est indispensable pour la ségrégation du chromosome. J'ai ensuite identifié que CpsD et RocS constituent un nouveau mécanisme de protection du nucléoïde, qui était jusque-là inconnu chez le pneumocoque. D'autre part, j'ai contribué à la caractérisation du rôle des sousdomaines PASTA du domaine extracellulaire de StkP dans la régulation de l'épaisseur de la paroi cellulaire septale ainsi que dans le degré d'activation de StkP. Plus particulièrement j'ai mis en évidence que le quatrième sous-domaine PASTA de StkP contrôle la fonction de l'hydrolase de la paroi cellulaire LytB, qui est nécessaire pour les étapes finales de la division cellulaire. Mon travail suggère donc l'existence de réseaux de régulation interconnectés du cycle cellulaire du pneumocoque impliquant ces deux protéine-kinases / The pathogenic bacterium, Streptococcus pneumoniae (the pneumococcus), produces a membrane serine threonine kinase, StkP, and a tyrosine kinase, CpsD, which are important regulators of cell division and polysaccharide capsule synthesis, respectively. These observations were directly at the basis of my thesis project. During my thesis, I participated in the identification of the mechanism by which CpsD coordinates the synthesis of the polysaccharide capsule with the cell cycle of the pneumococcus. Indeed, CpsD autophosphorylation controls the mobility of the chromosome partioning protein ParB protein of the chromosome segregation. To better understand the underlying molecular mechanism, I characterized a new CpsD and ParB partner that we called RocS. I showed that this protein is required for chromosome segregation. I also identified that CpsD and RocS form an atypical nucloied occlusion system, which was previously unknown in pneumococcus. On the other hand, I have contributed to the characterization of the role of the PASTA sub-domains of the StkP extracellular domain in the regulation of the septal cell wall thickness as well as in the degree of activation of StkP. More specifically I showed that the fourth PASTA sub domain of StkP controls the function of the cell wall hydrolase LytB, which is required for the final steps of cell division. My work therefore suggests the existence of interconnected regulation networks of the pneumococcal cell cycle and involving these two protein kinases
|
6 |
Xenopus Laevis TGF-ß: Cloning And Characterization Of The Signaling ReceptorsMohan, D Saravana 01 1900 (has links)
The amphibian species Xenopus laevis, along with mouse and chicken is a very important model system, used widely to dissect the molecular intricacies of various aspects of vertebrate development. Study with Xenopus has clear advantages in terms of various technical considerations including the ease of handling early stage of embryos and due to the remarkable documentation of several early molecular events during development. The concept of inductive interactions between various cell types during early development was first revealed by the studies performed in Xenopus, and among the various factors proposed for mesoderm induction, the members of transforming growth factor-β (TGF- β) superfamily have been considered to be the most probable candidates. About forty different members of the TGF-β superfamily have been cloned and characterized from various organisms. The superfamily members like activins and BMPs have been studied extensively with respect to their functional role during development. While BMPs were assigned as candidates for inducing ventral mesoderm, activins oppose the role of BMPs by inducing dorsal mesoderm. Studies that helped in delineating their roles were performed using three approaches that utilized the ligands, receptors or down stream signaling components (Smads). All the three components were studied with respect to their endogenous expression pattern and effects of ectopic expressions of the wild type or dominant negative mutants. These approaches led to the accumulation of evidences supporting the importance of these signaling molecules. All the above mentioned studies were only possible due to the cloning and characterization of cDNAs of the various proteins involved in the signaling pathway including the ligands. TGF-β2 and 5 are the two isoforms of TGF-β cloned from the amphibian system. We have earlier cloned and characterized the promoter for TGF-β5 gene, which suggested possible regulation of this factor by tissue specific transcription factors. Messenger RNA in situ hybridization analysis to study the TGF-β5-expression pattern during Xenopus development, showed spatial and temporal expression pattern. The expression was confined to specific regions that include notochord, somites, and tail bud among others,
in the various stages analyzed. This suggested a possible role for TGF-β5 in organogenesis during the amphibian development. To better understand the role of TGF-β in Xenopus development, studies to examine the specific receptor expression pattern for this growth factor is very essential. With the lack of any reports on cloning of TGF-β receptors from this system, the aim of the present study was to isolate and characterize the receptors for TGF-β from Xenopus laevis. PCR cloning using degenerate primers based on the conserved kinase domains of this class of receptors, coupled to library screenings enabled the identification of two novel receptor cDNAs of the TGF-β receptor superfamily. Characterization of the isolated cDNAs suggested that one of them codes for a type II receptor for TGF-β. Further the cDNAs were found to be ubiquitously expressed during development, as judged by RT-PCR analysis. The cloned cDNAs can now be employed as tools, to study the expression pattern by means of mRNA in situ hybridization, on the various developmental stage embryos and to perform studies using antisense and dominant negative mRNA injection experiments in vivo. Such studies will greatly assist in delineating the role of TGF-β ligands and receptors during amphibian development.
|
7 |
Physiological roles of Eukaryotic Hanks type Ser/Thr kinase in transition to stationary phase in Bacillus subtilisKobir, Ahasanul 30 October 2012 (has links) (PDF)
Bacillus subtilis is the model organism for low GC Gram-positive bacteria and is of great biotechnological interest. Protein phosphorylation is an important regulatory mechanism in bacteria and it has not been extensively studied yet. Recent site-specific phosphoproteomic studies identified a large number of novel serine/threonine phosphorylation sites in B. subtilis, including a) two transition phase global gene regulators DegS and AbrB and b) RecA, that plays a major role in double-strand break repair and DNA recombination. .B. subtilis disposes of several putative Ser/Thr kinases like PrkA, YbdM, YabT and a characterizd kinase PrkC, but very few physiological substrates for these have been defined so far. In vitro phosphorylation assays were used to identify which of these kinases were able to phosphorylate DegS, RecA and AbrB. DegS phosphorylation on serine 76 by the kinase YbdM influenced its activity towards DegU both in vitro and in vivo, and expression of DegS S76D( on replacing serine to aspartate) in B. subtilis perturbed cellular processes regulated by the DegS/DegU two component system. This suggests a link between DegS phosphorylation at serine 76 and the level of DegU phosphorylation, establishing this post-translational modification as an additional trigger for this two-component system. At the onset of sporulation, B. subtilis expresses an unusual serine/threonine kinase YabT, which exhibits a septal localization and is activated by non-sequence-specific DNA binding. Activated YabT phosphorylates RecA at the residue serine 2, which in turn promotes the formation of RecA foci at the onset of spore development. On the other hand, non-phosphorylatable RecA or inactivated YabT lead to reduced spore formation in the presence of DNA lesions . This suggests a functional similarity between B. subtilis developmental stage dependent RecA phosphorylation and its eukaryal homologous Rad51 phosphorylation, which leads to its recruitment to the lesion sites. We therefore proposed that RecA phosphorylation serves as an additional signal mechanism that promotes focus formation during spore development. AbrB is phosphorylated by YabT, YbdM and PrkC in vitro and AbrB phosphorylation leads to reduced affinity for its target DNA and abolished binding cooperativity in vitro and in vivo. Expression of the phosphomimetic AbrB-S86D or of the non-phosphorylatable AbrB-S86A mutant protein in B. subtilis disturbed some stationary phase phenomena such as exoprotease production, competence and the onset of sporulation, probably by deregulation of AbrB-target genes and operons. We therefore, proposed that AbrB phosphorylation as an additional regulatory mechanism needed to switch off this ambiactive gene regulator during the transition phase.
|
8 |
The Role of Rip2 Protein in the Nod Mediated Innate Immune Response: A DissertationYang, Yibin 16 April 2010 (has links)
The Rip2 kinase contains a caspase recruitment domain (CARD) and has been implicated in the activation of the transcriptional factor NF-кB downstream of Nod-like receptors. However, how Rip2 mediates innate immune responses is still largely unclear. We show that Rip2 and IKK-γ become stably polyubiquitinated upon treatment of cells with the Nod2 ligand, muramyl dipeptide. We demonstrate a requirement for the E2 conjugating enzyme Ubc13, the E3 ubiquitin ligase Traf6 and the ubiquitin activated kinase Tak1 in Nod2-mediated NF-кB activation. We also show that M. tuberculosisinfection stimulates Rip2 polyubiquitination. Collectively, this study revealed that the Nod2 pathway is ubiquitin regulated and that Rip2 employs a ubiquitin-dependent mechanism to achieve NF-кB activation.
We also demonstrate that intraphagosomal M. tuberculosis stimulates the cytosolic Nod2 pathway. We show that upon Mtb infection, Nod2 recognition triggers the expression of type I interferons in a Tbk1- and Irf5-dependent manner. This response is only partially impaired by the loss of Irf3 and therefore, differs fundamentally from those stimulated by bacterial DNA, which depends entirely on this transcription factor. This difference appears to result from the unusual peptidoglycan produced by mycobacteria, which we show is a uniquely potent agonist of the Nod2/Rip2/Irf5 pathway. Thus, the Nod2 system is specialized to recognize bacteria that actively perturb host membranes and is remarkably sensitive to Mycobacteria, perhaps reflecting the strong evolutionary pressure exerted by these pathogens on the mammalian immune system.
|
9 |
Chararcterisation of fungal protein kinases involved in the regulation of the cell cycle of Saccharomyces cerevisiae and of sexual development in Aspergillus nidulans / Charakterisierung von Proteinkinasen die an der Regulation des Zellzyklus von Saccharomyces cerevisiae und der sexuellen Entwicklung von Aspergillus nidulans beteiligt sindSari, Fatih 01 November 2007 (has links)
No description available.
|
10 |
Physiological roles of Eukaryotic Hanks type Ser/Thr kinase in transition to stationary phase in Bacillus subtilis / Rôle physiologique des Ser/Thr kinases-Hanks de type eukaryote au cours de la transition vers la phase stationnaire chez Bacillus subtilisKobir, Ahasanul 30 October 2012 (has links)
Bacillus subtilis est la bactérie modèle des bactéries Gram-positif à bas pourcentage en GC et possède un intérêt marqué en biotechnologie. Par ailleurs, la phosphorylation des protéines est un mécanisme de régulation essentiel chez les bactéries qui reste encore largement à explorer. B. subtilis possède plusieurs ser/thr kinases potentielles (PrkA, YbdM, YabT et PrkC, qui a été déjà largement caractérisée), mais très peu de substrats de ces kinases ont été mis en évidence. Récemment, des études phosphoprotéomiques ont permis d’identifier de nombreux peptides phosphorylés sur des sérines ou des thréonines chez B. subtilis, incluant: a) deux régulateurs globaux de la phase de transition, DegS et AbrB et b) RecA, qui joue un rôle essentiel dans la réparation des cassures double-brin de l’ADN et la recombinaison. Des tests de phosphorylation in vitro nous ont permis d’identifier les ser/thr kinases capables de phosphoryler DegS, RecA et AbrB. La phosphorylation de DegS sur son résidu sérine 76 par la kinase YbdM influence, in vitro et in vivo, son activité kinase vis à vis de son substrat DegU. L’expression chez B. subtilis d’un allèle codant la protéine DegS-S76D (la sérine étant remplacée par un aspartate phosphomimétique) perturbe l’ensemble des processi cellulaires régulés par le système à deux composants DegS/DegU. Ces résultats suggèrent un lien entre la phosphorylation de DegS sur sa sérine 78 et le niveau de phosphorylation de son substrat DegU, cette modification post-traductionnelle représentant un degré supplémentaire de régulation pour ce système à deux composants. Au cours du démarrage de la sporulation, B. subtilis exprime une ser/thr kinase atypique, YabT, qui localise au septum et est activée grâce à la liaison de séquences ADN non spécifiques. YabT activée phosphoryle RecA sur sa sérine 2, ce qui induit la formation de foci RecA. Dans une souche exprimant une protéine RecA non phosphorylable (RecA-S2A) ou inactivée pour yabT, la formation de spores en présence de lésions de l’ADN est diminuée. Ces résultats suggèrent une homologie fonctionnelle au cours du développement entre la phosphorylation de RecA chez B. subtilis et la phosphorylation de son homologue eukaryote Rad51, qui permet leur recrutement sur des lésions de l’ADN. Nous proposons donc que la phosphorylation de RecA serve de signal pour promouvoir la formation de foci au cours de la sporulation. In vitro, le régulateur transcriptionnel AbrB est phosphorylé par les kinases YabT, YbdM et PrkC, L’utilisation de protéines mutées AbrB-S86A (non phosphorylable) et AbrB-S86D (forme phosphomimétique) nous a permis de montrer que la phosphorylation d’AbrB diminue son affinité pour l’ADN cible. L’expression chez B. subtilis des protéines AbrB-S86A et –S86D perturbe des phénomènes mis en place au cours de la phase stationnaire comme la production d’exoprotéases, la compétence et la sporulation via la dérégulation des gènes et opérons AbrB-dépendants correspondants. Nous proposons donc que la phosphorylation d’AbrB par les Hanks-kinases constitue un mécanisme de contrôle supplémentaire nécessaire à l’inactivation de ce régulateur transcriptionnel, qui peut être activateur ou répresseur, pendant la phase de transition. / Bacillus subtilis is the model organism for low GC Gram-positive bacteria and is of great biotechnological interest. Protein phosphorylation is an important regulatory mechanism in bacteria and it has not been extensively studied yet. Recent site-specific phosphoproteomic studies identified a large number of novel serine/threonine phosphorylation sites in B. subtilis, including a) two transition phase global gene regulators DegS and AbrB and b) RecA, that plays a major role in double-strand break repair and DNA recombination. .B. subtilis disposes of several putative Ser/Thr kinases like PrkA, YbdM, YabT and a characterizd kinase PrkC, but very few physiological substrates for these have been defined so far. In vitro phosphorylation assays were used to identify which of these kinases were able to phosphorylate DegS, RecA and AbrB. DegS phosphorylation on serine 76 by the kinase YbdM influenced its activity towards DegU both in vitro and in vivo, and expression of DegS S76D( on replacing serine to aspartate) in B. subtilis perturbed cellular processes regulated by the DegS/DegU two component system. This suggests a link between DegS phosphorylation at serine 76 and the level of DegU phosphorylation, establishing this post-translational modification as an additional trigger for this two-component system. At the onset of sporulation, B. subtilis expresses an unusual serine/threonine kinase YabT, which exhibits a septal localization and is activated by non-sequence-specific DNA binding. Activated YabT phosphorylates RecA at the residue serine 2, which in turn promotes the formation of RecA foci at the onset of spore development. On the other hand, non-phosphorylatable RecA or inactivated YabT lead to reduced spore formation in the presence of DNA lesions . This suggests a functional similarity between B. subtilis developmental stage dependent RecA phosphorylation and its eukaryal homologous Rad51 phosphorylation, which leads to its recruitment to the lesion sites. We therefore proposed that RecA phosphorylation serves as an additional signal mechanism that promotes focus formation during spore development. AbrB is phosphorylated by YabT, YbdM and PrkC in vitro and AbrB phosphorylation leads to reduced affinity for its target DNA and abolished binding cooperativity in vitro and in vivo. Expression of the phosphomimetic AbrB-S86D or of the non-phosphorylatable AbrB-S86A mutant protein in B. subtilis disturbed some stationary phase phenomena such as exoprotease production, competence and the onset of sporulation, probably by deregulation of AbrB-target genes and operons. We therefore, proposed that AbrB phosphorylation as an additional regulatory mechanism needed to switch off this ambiactive gene regulator during the transition phase.
|
Page generated in 0.093 seconds