Spelling suggestions: "subject:"shallowwater equations"" "subject:"shallowwaters equations""
41 |
Compressible-incompressible transitions in fluid mechanics : waves-structures interaction and rotating fluids / Transitions compressible-incompressible en mécanique des fluides : interaction vagues-structures et fluides en rotationBocchi, Edoardo 23 September 2019 (has links)
Ce manuscrit porte sur les transitions compressible-incompressible dans les équations aux dérivées partielles de la mécanique des fluides. On s'intéresse à deux problèmes : les structures flottantes et les fluides en rotation. Dans le premier problème, l'introduction d'un objet flottant dans les vagues induit une contrainte sur le fluide et les équations gouvernant le mouvement acquièrent une structure compressible-incompressible. Dans le deuxième problème, le mouvement de fluides géophysiques compressibles est influencé par la rotation de la Terre. L'étude de la limite à rotation rapide montre que le champ vectoriel de vitesse tend vers une configuration horizontale et incompressible.Les structures flottantes constituent un exemple particulier d'interaction fluide-structure, où un solide partiellement immergé flotte à la surface du fluide. Ce problème mathématique modélise le mouvement de convertisseurs d'énergie marine. En particulier, on s'intéresse aux bouées pilonnantes, installées proche de la côte où les modèles asymptotiques en eaux peu profondes sont valables. On étudie les équations de Saint-Venant axisymétriques en dimension deux avec un objet flottant à murs verticaux se déplaçant seulement verticalement. Les hypothèses sur le solide permettent de supprimer le problème à bord libre associé avec la ligne de contact entre l'air, le fluide et le solide. Les équations pour le fluide dans le domaine extérieur au solide sont donc écrites comme un problème au bord quasi-linéaire hyperbolique. Celui-ci est couplé avec une EDO non-linéaire du second ordre qui est dérivée de l'équation de Newton pour le mouvement libre du solide. On montre le caractère bien posé localement en temps du système couplé lorsque que les données initiales satisfont des conditions de compatibilité afin de générer des solutions régulières.Ensuite on considère une configuration particulière: le retour à l'équilibre. Il s'agit de considérer un solide partiellement immergé dans un fluide initialement au repos et de le laisser retourner à sa position d'équilibre. Pour cela, on utilise un modèle hydrodynamique différent, où les équations sont linearisées dans le domaine extérieur, tandis que les effets non-linéaires sont considérés en dessous du solide. Le mouvement du solide est décrit par une équation intégro-différentielle non-linéaire du second ordre qui justifie rigoureusement l'équation de Cummins, utilisée par les ingénieurs pour les mouvements des objets flottants. L'équation que l'on dérive améliore l'approche linéaire de Cummins en tenant compte des effets non-linéaires. On montre l'existence et l'unicité globale de la solution pour des données petites en utilisant la conservation de l'énergie du système fluide-structure.Dans la deuxième partie du manuscrit, on étudie les fluides en rotation rapide. Ce problème mathématique modélise le mouvement des flots géophysiques à grandes échelles influencés par la rotation de la Terre. Le mouvement est aussi affecté par la gravité, ce qui donne lieu à une stratification de la densité dans les fluides compressibles. La rotation génère de l'anisotropie dans les flots visqueux et la viscosité turbulente verticale tend vers zéro dans la limite à rotation rapide. Notre interêt porte sur ce problème de limite singulière en tenant compte des effets gravitationnels et compressibles. On étudie les équations de Navier-Stokes-Coriolis anisotropes compressibles avec force gravitationnelle dans la bande infinie horizontale avec une condition au bord de non glissement. Celle-ci et la force de Coriolis donnent lieu à l'apparition des couches d'Ekman proche du bord. Dans ce travail on considère des données initiales bien préparées. On montre un résultat de stabilité des solutions faibles globales pour des lois de pression particulières. La dynamique limite est décrite par une équation quasi-géostrophique visqueuse en dimension deux avec un terme d'amortissement qui tient compte des couches limites. / This manuscript deals with compressible-incompressible transitions arising in partial differential equations of fluid mechanics. We investigate two problems: floating structures and rotating fluids. In the first problem, the introduction of a floating object into water waves enforces a constraint on the fluid and the governing equations turn out to have a compressible-incompressible structure. In the second problem, the motion of geophysical compressible fluids is affected by the Earth's rotation and the study of the high rotation limit shows that the velocity vector field tends to be horizontal and with an incompressibility constraint.Floating structures are a particular example of fluid-structure interaction, in which a partially immersed solid is floating at the fluid surface. This mathematical problem models the motion of wave energy converters in sea water. In particular, we focus on heaving buoys, usually implemented in the near-shore zone, where the shallow water asymptotic models describe accurately the motion of waves. We study the two-dimensional nonlinear shallow water equations in the axisymmetric configuration in the presence of a floating object with vertical side-walls moving only vertically. The assumptions on the solid permit to avoid the free boundary problem associated with the moving contact line between the air, the water and the solid. Hence, in the domain exterior to the solid the fluid equations can be written as an hyperbolic quasilinear initial boundary value problem. This couples with a nonlinear second order ODE derived from Newton's law for the free solid motion. Local in time well-posedness of the coupled system is shown provided some compatibility conditions are satisfied by the initial data in order to generate smooth solutions.Afterwards, we address a particular configuration of this fluid-structure interaction: the return to equilibrium. It consists in releasing a partially immersed solid body into a fluid initially at rest and letting it evolve towards its equilibrium position. A different hydrodynamical model is used. In the exterior domain the equations are linearized but the nonlinear effects are taken into account under the solid. The equation for the solid motion becomes a nonlinear second order integro-differential equation which rigorously justifies the Cummins equation, assumed by engineers to govern the motion of floating objects. Moreover, the equation derived improves the linear approach of Cummins by taking into account the nonlinear effects. The global existence and uniqueness of the solution is shown for small data using the conservation of the energy of the fluid-structure system.In the second part of the manuscript, highly rotating fluids are studied. This mathematical problem models the motion of geophysical flows at large scales affected by the Earth's rotation, such as massive oceanic and atmospheric currents. The motion is also influenced by the gravity, which causes a stratification of the density in compressible fluids. The rotation generates anisotropy in viscous flows and the vertical turbulent viscosity tends to zero in the high rotation limit. Our interest lies in this singular limit problem taking into account gravitational and compressible effects. We study the compressible anisotropic Navier-Stokes-Coriolis equations with gravitational force in the horizontal infinite slab with no-slip boundary condition. Both this condition and the Coriolis force cause the apparition of Ekman layers near the boundary. They are taken into account in the analysis by adding corrector terms which decay in the interior of the domain. In this work well-prepared initial data are considered. A stability result of global weak solutions is shown for power-type pressure laws. The limit dynamics is described by a two-dimensional viscous quasi-geostrophic equation with a damping term that accounts for the boundary layers.
|
42 |
Simulating Flood Propagation in Urban Areas using a Two-Dimensional Numerical ModelGonzalez-Ramirez, Noemi 12 May 2010 (has links)
A two-dimensional numerical model (RiverFLO-2D) has been enhanced to simulate flooding of urban areas by developing an innovative wet and dry surface algorithm, accounting for variable rainfall, and recoding the model computer program for parallel computing. The model formulation is based on the shallow water equations solved with an explicit time-stepping element-by-element finite element method. The dry-wet surface algorithm is based on a local approximation of the continuity and momentum equations for elements that are completely dry. This algorithm achieves global volume conservation in the finite element, even for flows over complex topographic surfaces. A new module was implemented to account for variable rainfall in space and time using NEXRAD precipitation estimates. The resulting computer code was parallelized using OpenMP Application Program Interface, which allows the model to run up to 5 times faster on multiple core computers. The model was verified with analytical solutions and validated with laboratory and field data. Model application to the Malpasset dam break and Sumacarcel flooding event show that the model accurately predicts flood wave travel times and water depths for these numerically demanding real cases. To illustrate the predictive capability of the enhanced model, an application was made of the city of Sweetwater flooding in Miami-Dade County, FL caused by the Hurricane Irene. The simulation starts with dry bed and rainfall is provided by NEXRAD estimates. Integrating NEXRAD rainfall estimates, developing a novel dry-wet area algorithm and parallelizing RiverFLO-2D code, this dissertation presents a proof of concept to accurately and efficiently predict floods in urban areas, identifying future improvements along this line of research.
|
43 |
Inversion of Nonlinear Dispersive Wave and its Application in Determining Tsunami Wave SoureLi, Lieh-Yu 13 April 2011 (has links)
In this study, the method of deciding the water level of the initial tsunami is proposed by using spatial-temporal focusing (Coalescence) theory and waveform inversion reciprocal with Green function. Tsunami and earthquake are so closely bonded that the current tsunami numerical model is dependent on the parameters of the fault and the initial tsunami water level by calculating the theory of
half flexibility. But in fact, it is not easy to have the parameters of seabed fault so that the initial tsunami water level is very hard to get a accurate value. On the other hand, although the parameters of fault can be speculated by seismic waves, because ground is uneven medium, therefore, it is still a lot of improvement to get the parameters of fault by using seismic waves. For the tsunami simulation, if you have the value of the initial tsunami water level, the fault parameters can be estimated.Since the propagation of tsunami in the ocean is a linear behavior, the propagating process is affected by the topography of the ocean and the nonlinear effect
so minimal that it is to satisfy the linear shallow water equations and the requirement of reversibility;However, in fact, the values of the water level measured by the tide stations on the coast are influenced by the shoaling effect so that the reversibility of linear system can not be directly applied to Coastal areas.Therefore, the overall Inversion procedure on this study consists of two parts; the first one is that the usage of variable
coefficient Korteweg-de Vries (vKdV) equation and the Coalescence theory inverses the data gathered by the Coastal tide stations to the water level data where the depth is more than 50m on the linear region, and compares the above results with the stimulation and confirms the accuracy of the inversed waveform;The second one is that according to the reversibility of the linear system the use of least squares and least squares QR- decomposition (LSQR) method reproduce the initial tsunami wave source that compares with the initial tsunami wave source by stimulating and has a very good conformity. The seismic parameters can be easily decided by the above results.
|
44 |
Modelování globálních barotropních oceánských slapů v časové oblasti / Time-domain modelling of global barotropic ocean tidesEinšpigel, David January 2017 (has links)
Traditionally, ocean tides have been modelled in frequency domain with forcing of selected tidal constituents. It is a natural approach, however, non-linearities of ocean dynamics are implicitly neglected. An alternative approach is time-domain modelling with forcing given by the full lunisolar potential, i.e., all tidal constituents are included. This approach has been applied in several ocean tide models, however, a few challenging tasks still remain to solve, for example, the assimilation of satellite altimetry data. In this thesis, we present DEBOT, a global and time-domain barotropic ocean tide model with the full lunisolar forcing. DEBOT has been developed "from scratch". The model is based on the shallow water equations which are newly derived in geographical (spherical) coordinates. The derivation includes the boundary conditions and the Reynolds tensor in a physically consistent form. The numerical model employs finite differences in space and a generalized forward-backward scheme in time. The validity of the code is demonstrated by the tests based on integral invariants. DEBOT has two modes for ocean tide modelling: DEBOT-h, a purely hydrodynamical mode, and DEBOT-a, an assimilative mode. We introduce the assimilative scheme applicable in a time-domain model, which is an alternative to existing...
|
45 |
Variedades inerciais em um modelo atmosférico de LorenzDomínguez Rodríguez, Jorge Luis January 2006 (has links)
Estimativas de erro são estabelecidas em termos do número de Rossby para a aproximação de Galerkin não linear nas soluções do modelo atmosférico balanceado de Lorenz com massa forçante. Desse modo a aproximação espectral da aproximação de Galerkin não linear é ligada ao número de Rossby. / Error estimates are established in terms of the Rossby number for a nonlinear Galerkin approximation to the solutions of the balanced atmosphere model of Lorenz with mass forcing. Thereby, the approximation spectral dimension of the nonlinear Galerkin approximation is linked to the Rossby number.
|
46 |
Variedades inerciais em um modelo atmosférico de LorenzDomínguez Rodríguez, Jorge Luis January 2006 (has links)
Estimativas de erro são estabelecidas em termos do número de Rossby para a aproximação de Galerkin não linear nas soluções do modelo atmosférico balanceado de Lorenz com massa forçante. Desse modo a aproximação espectral da aproximação de Galerkin não linear é ligada ao número de Rossby. / Error estimates are established in terms of the Rossby number for a nonlinear Galerkin approximation to the solutions of the balanced atmosphere model of Lorenz with mass forcing. Thereby, the approximation spectral dimension of the nonlinear Galerkin approximation is linked to the Rossby number.
|
47 |
Uma aplicação do método espectral no estudo das equações de águas rasas em meio heterogênio. / An application of the spectral method in the study of shallow water equations in heterogenous medium.LIMA, Hallyson Gustavo Guedes de Morais. 11 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-11T21:36:37Z
No. of bitstreams: 1
HALLYSON GUSTAVO GUEDES DE MORAIS LIMA - DISSERTAÇÃO PPGMAT 2007..pdf: 2962280 bytes, checksum: 027c0c4dc68684f41c7b168cacb0b228 (MD5) / Made available in DSpace on 2018-07-11T21:36:37Z (GMT). No. of bitstreams: 1
HALLYSON GUSTAVO GUEDES DE MORAIS LIMA - DISSERTAÇÃO PPGMAT 2007..pdf: 2962280 bytes, checksum: 027c0c4dc68684f41c7b168cacb0b228 (MD5)
Previous issue date: 2007-03 / CNPq / Neste trabalho deduzimos o sistema de Equações de Águas Rasas na forma Lagrangeana e obtemos a sua solução analítica. Aplicamos o Método Espectral na análise numérica deste sistema e mostramos que a propagação de ondas de águas rasas não depende do meio em que ela se propaga. / In this work we deduce the system of Shallow Water Equations in the Lagrangian form and we obtain its analytical solution. We have applied the spectral method in the numerical analysis of this system and we have shown that the propagation of the shallow water waves doesn't depend on the medium in which it spreads.
|
48 |
Variedades inerciais em um modelo atmosférico de LorenzDomínguez Rodríguez, Jorge Luis January 2006 (has links)
Estimativas de erro são estabelecidas em termos do número de Rossby para a aproximação de Galerkin não linear nas soluções do modelo atmosférico balanceado de Lorenz com massa forçante. Desse modo a aproximação espectral da aproximação de Galerkin não linear é ligada ao número de Rossby. / Error estimates are established in terms of the Rossby number for a nonlinear Galerkin approximation to the solutions of the balanced atmosphere model of Lorenz with mass forcing. Thereby, the approximation spectral dimension of the nonlinear Galerkin approximation is linked to the Rossby number.
|
49 |
Modelování atmosférické cirkulace exoplanet / Modelling of exoplanetary atmospheric circulationNovák, Jiří January 2014 (has links)
In this thesis we study the properties of exoplanetary atmospheres. The first part describes methods and instruments for searching exoplanets, statistics of discovered exoplanets and the sampling factor. The second part describes the properties of chosen planets and moons in the Solar system (Venus, Mars and Titan) and also possible properties of the exoplanetary atmospheres that are only briefly understood. The third part describes the atmospheric models which incorporate full 3D model of the atmosphere, dynamical core, shallow-water model and 1D spherically-symmetric model. We also show the results of exoplanetary atmospheric models published in the scientific journals. This part also describes the icosahedral geodetic grid that is advantageous for the global climatic models, and also discretisation on sphere and the application of the operators (gradient, divergence, vorticity) on geodetic grid. The fourth part discusses results of the numerical solution of the atmospheric circulation with the forcing on geodetic grid. In this part we also show global maps of the variables after a particular time of the numerical integration and also the evolution of the variables at chosen points in time. In the discussion part we examine the results of our program. The results of the numerical integrations (chosen...
|
50 |
Two-way Coupled Multiscale Tsunami Modelling from Generation to Coastal Zone Hydrodynamics / 双方向結合マルチスケールモデルによる波源から沿岸域までの津波解析William, James Pringle 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19677号 / 工博第4132号 / 新制||工||1638(附属図書館) / 32713 / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 五十嵐 晃, 准教授 米山 望, 准教授 森 信人 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
Page generated in 0.0934 seconds