• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 8
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 96
  • 70
  • 19
  • 16
  • 15
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A study of mutual coupling as an alternative feed method in phased array antennas

Luther, Justin J. 01 January 2008 (has links)
The use of phased array antennas in present day technology is limited, primarily due to the extremely high cost of implementation. This cost is contributed to the expense of phase shifters, which are the traditional method of beam steering in phased arrays. The need to alleviate this cost and avail the technology for commercial use necessitates study into alternative mechanisms for accomplishing beam steering. To this effect, this research is an exploration of one such mechanism. To characterize mutual coupling between microstrip patch antennas and explore its practicality as a feed mechanism, it is necessary to understand the factors controlling the phenomenon. A parametric study of the spacing between patch antennas and the consequent coupling is presented, the results of which are discussed in detail. further study into bandwidth extension and steer controlling techniques are also shown, with discussion on the practicality and future of the mechanism as a candidate for widespread application.
42

Aging Analysis and Aging-Resistant Design for Low-Power Circuits

Parthasarathy, Krupa January 2014 (has links)
No description available.
43

Optimization of BST Thin Film Phase Shifters for Beam Steering Applications

Spatz, Devin 24 May 2017 (has links)
No description available.
44

Generalized Concept and MATLAB Code for Modeling and Analyzing Wideband 90◦ Stub-Loaded Phase Shifters with Simulation and Experimental Verifications

Alnahwi, F.M., Al-Yasir, Yasir I.A., See, C.H., Abdullah, A.S., Abd-Alhameed, Raed 09 September 2023 (has links)
Yes / In the design of phase shifters, the modeling equations are too complicated and require some approximations to be derived correctly by hand. In response to this problem, this paper presents a generalized concept, algorithm, and MATLAB code that provide the exact modeling equations of the transmission parameters and the scattering parameters of any 90^o wideband stub-loaded phase shifter. The proposed code gives the modeling equations in term of variables for any number of stubs and characteristic impedance value by utilizing the symbol-based analysis of the MATLAB. It also illustrates the results as a function of normalized frequency relative to the center frequency f_o, and can be and can be tailored to any user-defined frequency range. As a matter of comparison, a three-stub wideband 90^o stub-loaded phase shifter is simulated using CST Microwave Studio and experimentally fabricated on Rogers RT5880 dielectric substrate with dimensions of 30×40×0.8 〖mm〗^3. The comparison reveals the accuracy of the proposed computerized modeling with -10 dB impedance bandwidth equal to 90% (0.55 fo-1.45 fo), (90∓5 degrees ) phase difference bandwidth equal to 100% (0.5 fo-1.5 fo), and negligible insertion loss. The novelty of this work is that the proposed code provides the exact modeling equations of the stub-loaded phase shifter for any number of stubs regardless the complexity of the mathematical derivations.
45

Subharmonic and Non-Subharmonic Pulsed Control of Thermoacoustic Instabilities: Analysis and Experiment

Carson, J. Matthew 14 January 2002 (has links)
Thermoacoustic instabilities are a problem in modern pre-mixed combustors causing reduced performance and leading in the extreme to combustor failure from excessive pressure cycles. Much work has been done using linear controllers to eliminate these instabilities. Many experimenters in the field have used pulsed and subharmonic fuel controllers to eliminate these instabilities, but very little investigative work has been done on these controllers. The goal of this work is to explain the mechanism of control behind pulsed controllers. It is shown that the combustion system can be treated as a linear system, thus meaning that frequency components of the control signal at the desired instability frequency are the dominant means of control, with nonlinear effects only serving to slightly reduce the gain necessary for control. Fourier analysis is thus performed on pulsed signals and the components analyzed, showing that there will indeed be a component of a pulsed signal at the frequency of the instability, aside from a few select cases. It is then proven that this frequency component is largely responsible for control of the thermoacoustic system using proportional height pulse train signals, which will change pulse height based on the amplitude of the instability. This analysis is then used to predict the height of instabilities resulting from the use of fixed height pulse control signals. Finally, numerical simulations and experimental observations support the analytical constructs. Acoustic control is mainly used for these experiments, although some preliminary work with liquid fuel controllers is also presented. / Master of Science
46

Phase Shift Control: Application and Performance Limitations With Respect to Thermoacoustic Instabilities

Webber, Michael L. 06 January 2004 (has links)
Lean premixed fuel-air conditions in large gas turbines are used to improve efficiency and reduce emissions. These conditions give rise to large undamped pressure oscillations at the combustor's natural frequencies which reduce the turbine's longevity and reliability. Active control of the pressure oscillations, called thermoacoustic instabilities, has been sought as passive abatement of these instabilities does not provide adequate damping and is often impractical on a large scale. Phase shift control of the instabilities is perhaps the simplest and most popular technique employed but often does not provide good performance in that controller induced secondary instabilities are generated with increasing loop gain. This thesis investigates the general underlying cause of the secondary instabilities and shows that high average group delay through the frequency region of the instability is the root of the problem. This average group delay is then shown to be due not only the controller itself but can also be associated with other components and inherent characteristics of the control loop such as actuators and time delay, respectively. An "optimum" phase shift controller, consisting of an appropriate shift in phase and a low order, wide bandwidth bandpass filter, is developed for a Rijke tube combustor and shown to closely match the response of an LQG controller designed only for system stabilization. Both the optimal phase shifter and the LQG controller are developed based on a modified model of the thermoacoustic loop which takes into account the change in density of the combustion reactants at the flame location. Additionally, the system model is coupled with a model of the control loop and then validated by comparison of simulated results to experimental results using nearly identical controllers. / Master of Science
47

Desenvolvimento de defasadores baseados em MEMS e linhas de transmissão de ondas lentas para aplicações em 60 GHz. / Development of phase shifters based on shielded CPW and MEMS for 60 GHz.

Bedoya Llano, Franz Sebastian 28 November 2017 (has links)
Este trabalho, desenvolvido junto ao Grupo de Novos Materiais e Dispositivos (GNMD) pertencente ao Laboratório de Microeletrônica (LME) da Universidade de São Paulo, apresenta a modelagem de um defasador passivo miniaturizado com baixas perdas para aplicações em ondas milimétricas (mmW-milimeter waves). Este defasador é baseado em um conceito inovador utilizando sistemas micro-eletromecânicos (MEMS) distribuídos e linhas de transmissão coplanares de ondas lentas. Este conceito é proposto no projeto Jovem Pesquisador FAPESP (Processo no. 2011/18167-3), ao qual este projeto está vinculado. A defasagem neste tipo de dispositivo é conseguida pela liberação das fitas da camada de blindagem de uma linha de transmissão tipo S-CPW (Shielded-Coplanar Waveguide). As fitas liberadas podem ser movimentadas eletrostaticamente, o que praticamente não consome energia. Este projeto pretende projetar um defasador para fabricação com a tecnologia do Laboratório de Microeletrônica da Escola Politécnica da Universidade de São Paulo. Adicionalmente, este trabalho apresenta resultados experimentais de um processo de fabricação IN-HOUSE baseado na metodologia de integração por flip-chip. A tecnologia de integração implementada é baseada na soldagem de um chip sobre um substrato, no qual são construídos uma nova geração de pilares de cobre finos, cujo espaçamento entre pilares é menor que 100 ?m. Essa redução nas dimensões pode ser usada com a nova geração de dispositivos de comunicações na faixa das mmW. Em termos de fabricação, foram obtidos pilares de cobre altamente miniaturizados com uma altura significativa e uniforme que permite a integração com o chip. Além do mais, os resultados obtidos representam avanços significativos no processo de fabricação que será usado como tecnologia de integração híbrida em um interposer baseado em substrato de alumina nanoporosa (MnM-Metallic Nanowire Membrane). Esse interposer desempenha um papel indispensável no GNMD, já que atualmente estão sendo estudadas suas propriedades elétricas e já foram construídos dispositivos sobre o substrato com resultados promissores. / This work, performed at the New Materials and Devices Group (GNMD) of the Microelectronics Laboratory of the Polytechnic School of the University of São Paulo, presents the modeling of a miniaturized passive phase shifter with low losses for applications in millimeter waves. It is based on an innovated concept, which uses distributed MEMS phase shifters and slow-wave coplanar wave guides. Such concept is proposed under the FAPESP Youth Researcher project (Process number 2011/18167-3). The phase shifter on this kind of device is achieved by releasing the shielding layer of the Shielded-Coplanar Waveguide. The released ribbons are electrostatically displaced, which does not consume energy. The aim of this project is to design a phase shifter for fabrication with the technology available at the Microelectronics Laboratory. Additionally, this work presents experimental results of a flip-chip fabrication process. This technology is based on next generation of fine pitch copper pillar bumping, with pillar pitch of less than 100 ?m that support next generation of communication devices at the millimeter wave frequency range. From the fabrication point-of-view, highly miniaturized copper pillars with appropriate thicknesses were obtained. Furthermore, the results obtained represent a significant advance in the fabrication process that will be used as a hybrid integration technology on an interposer based on a nanoporous alumina substrate (MnM-Metallic Nanowire Membrane).
48

Voltage scaling interfaces for multi-voltage digital systems / Interfaces de escalonamento de tensão para sistemas digitais de multiplas tensões

Llanos, Roger Vicente Caputo January 2015 (has links)
Os Sistemas Digitais de Múltiplas Tensões exploram o conceito de dimensionamento da tensão de alimentação através da aplicação de diferentes fontes para regiões específicas do chip. Cada uma destas regiões pertence a um domínio de energia e pode ter duas ou mais configurações de voltagens. Independentemente dos distintos níveis de energia em diferentes domínios de tensão, os blocos devem processar sinais com níveis lógicos coerentes. Nestes sistemas, os Conversores de Nível (LS do inglês Level Shifters) são componentes essenciais que atuam como interfaces de escalonamento da tensão entre domínios de energia, garantindo a correta transmissão dos sinais. Com a apropriada interface de escalonamento de tensão e sua correta implementação, pode-se evitar o consumo excessivo de potência dinâmica e estática. Portanto, a concepção e implementação de conversores de nível deve ser um processo consciente que garanta o menor sobrecusto no tamanho, consumo de energia, e tempo de atraso. Neste trabalho estudam-se as principais características das interfaces de escalonamento de tensão e se introduce um conversor de tensão com eficiência energética e área reduzida, adequado para a conversão de baixo a alto nível. Apresentam-se os conversores de nível com o melhor desempenho encontrados na literatura, os quais são categorizados em dois principais grupos: Dois trilhos (Dual-rail) e Único trilho (Single-rail), de acordo ao número de linhas de alimentação necessárias. O circuito proposto foi comparado com a topologia tradicional de cada grupo, o Differential Cascode Voltage Switch (DCVS) e o conversor de Puri respectivamente. Simulações na tecnologia CMOS 130nm da IBMTM mostram que a topologia proposta requer até 93,79% menos energia em determinadas condições. Esta apresentou 88,03% menor atraso e uma redução de 39,6% no Produto Potência-Atraso (PDP), quando comparada com a topologia DCVS. Em contraste com o conversor Puri, obteve-se uma redução de 32,08% no consumo de energia, 13,26% diminuição no atraso e 15,37% inferior PDP. Além disso, o conversor de nível proposto foi o único capaz de trabalhar a 35% da tensão nominal de alimentação. / Multiple Voltage Digital Systems exploit the concept of voltage scaling by applying different supplies to particular regions of the chip. Each of those regions belongs to a power domain and may have two or more supply voltage configurations. Regardless of distinct energy levels on different power domains, the blocks shall process signals with coherent logic levels. In these systems, the Level Shifters (LS) are essential components that act as voltage scaling interfaces between power domains, guaranteeing the correct signal transmission. With the appropriate voltage scaling interface and its proper implementation, we can avoid excessive static and dynamic power consumption. Therefore, the design and implementation of level shifters should be a conscientious process and must guarantee the lowest overhead in size, energy consumption, and delay time. In this work, we study the main characteristics of voltage scaling interfaces and introduce an energy-efficient level shifter with reduced area, and suitable for low-to-high level conversion. We present the level shifters with the best performance that we found in the literature and categorize them into two main groups: Dual-rail and Single-rail, according to the number of power rails required. The proposed circuit was compared to the traditional topology of each group, Differential Cascode Voltage Switch (DCVS) and Puri’s level shifter respectively. Simulations on an IBMTM 130nm CMOS technology show that the proposed topology requires up to 93.79% less energy under certain conditions. It presented 88.03% smaller delay and 39.6% less Power-Delay Product (PDP) when compared to the DCVS topology. In contrast with the Puri’s level shifter, we obtained a reduction of 32.08% in power consumption, 13.26% smaller delay and 15.37% lower PDP. Besides, our level shifter was the only one capable of working at 35% of the nominal supply voltage.
49

Multi-actor optimization-based coordination of interacting power flow control devices or competing transaction schedulers in overlapping electricity markets

Marinakis, Adamantios 18 June 2010 (has links)
This work deals with problems where multiple actors simultaneously take control decisions and implement the corresponding actions in large multi-area power systems. The fact that those actions take place in the same transmission grid introduces a coupling between the various decision-making problems. First, transmission constraints involving all actors' controls must be satisfied, while, second, the satisfaction of an actor's operational objective depends, in general, not only on its own actions but on the others' too. Algorithms and/or operational procedures are, thus, developed seeking to reconcile the multiple actors' simultaneous decisions. The confidentiality and operational autonomy of the actors' decision-making procedures are preserved. In particular, two specific problems leading to such a multi-actor situation have been treated. The first is drawn from a recently emerging situation, at least in Europe, where several Transmission System Operators (TSOs) have installed and/or are planning to install Phase Shifting Transformers (PSTs) in such locations in their areas that, by properly adjusting the PST phase angle settings, they can significantly control the power flows entering and exiting their systems. A general framework is proposed for the control of PSTs owned by several TSOs, taking into account their interactions. The proposed solution is the Nash equilibrium of a sequence of optimizations performed by the various TSOs, each of them taking into account the other TSOs' control settings as well as operating constraints relative to the whole system. The method is applied to a linearized network model and illustrated on the IEEE 118-bus system. The second multi-actor situation dealt with in this work stems from the recently increasing amount of discussions and efforts made towards creating the right market structures and operational practices that would facilitate a seamless inter-area trade of electricity throughout large interconnections. In this respect, in accordance with European Union's goal of a fully functional Internal Electricity Market where ideally every consumer will be able to buy electric energy from every producer all across the interconnection, the possibility of every market participant to place its bid in whatever electricity market of an interconnection has been considered. This results in overlapping markets, each with its own schedule of power injections and withdraws, comprising buses all around the interconnection, that are cleared simultaneously by Transaction Schedulers (TSs). An iterative procedure is proposed to reconcile the various TS schedules such that congestion is managed in a fair and efficient way. The procedure converges to such schedules that the various TS market clearings are in a Nash equilibrium. The method is then extended towards several directions: enabling market participants to place their bids simultaneously in more than one TS's market, incorporating $N-1$ security constraints, allowing for joint energy-reserve dispatch, and, accounting for transmission losses. The corresponding iterative algorithms are thoroughly illustrated in detail on a 15-bus as well as the IEEE RTS-96 system.
50

Fully integrated cmos phase shifter/vco for mimo/ism application

Tavakoli Hosseinabadi, Ahmad Reza 15 May 2009 (has links)
A fully integrated CMOS 0 – 900 phase shifter in 0.18um TSMC technology is presented. With the increasing use of wireless systems in GHz range, there is high demand for integrated phase shifters in phased arrays and MIMO on chip systems. Integrated phase shifters have quite a high number of integrated inductors which consume a lot of area and introduce a huge amount of loss which make them impractical for on chip applications. Also tuning the phase shift is another concern which seems difficult with use of passive elements for integrated applications. This work is presents a new method for implementing phase shifters using only active CMOS elements which dramatically reduce the occupied area and make the tuning feasible. Also a fully integrated millimeter-wave VCO is implemented using the same technology. This VCO can be part of a 24 GHz frequency synthesizer for 24 GHz ISM band transceivers. The 24 GHz ISM band is the unlicensed band and available for commercial communication and automotive radar use, which is becoming attractive for high bandwidth data rate.

Page generated in 0.0538 seconds