11 |
Etudes de la dynamique structurale des récepteurs métabotropiques du glutamate par fluorescence en molécule unique / Structural dynamics of metabotropic glutamate receptors by single-molecule FRETCao, Anne-Marinette Hanh 01 December 2016 (has links)
Les récepteurs métabotropiques au glutamate (mGluR), qui appartiennent à la classe C des récepteurs couplés aux protéines G (RCPG), sont bien connus pour leurs rôles importants dans les troubles neurologiques et psychiatriques. La compréhension de leur mécanisme d’activation est essentielle pour la mise au point de nouveaux agents thérapeutiques. Récemment, le nombre de structures de RCPG cristallisées a augmenté de façon exponentielle grâce à l'application des méthodes de stabilisation de la protéine. Cependant, certaines ambiguïtés et incohérences ont été révélées au cours des études cristallographiques. En outre, des études en molécules uniques, y compris par transfert d'énergie d’excitation électronique de Förster (smFRET), ont montré la nature très dynamique des RCPG en général, et du domaine d’activation de mGluR en particulier. Ici, nous nous sommes intéressés au mécanisme d'activation des mGluR entiers en utilisant des techniques de FRET d’ensemble et sur molécules uniques. Les techniques de HTRF ont permis l’optimisation de la préparation des échantillons. Un protocole a été mis au point, permettant d'extraire les mGlu2 entiers dans du détergent, à partir de cellules HEK293T, sans affecter de manière importante la pharmacologie et de la stabilité des récepteurs. Les expériences de FRET en molécules uniques ont été effectuées avec la technique MFD-PIE. Une analyse poussée de ces données, par mesure de l'efficacité de FRET ratiométrique, de durée de vie des fluorophores dans l’état excité, et d’analyse en corrélation (FCS), ont permis de montrer un changement conformationel rapide (sub-milliseconde) des récepteurs mGlu2 entiers. Par ailleurs, le rôle de stabilisation du domaine transmembranaire en faveur de l’état actif a été prouvé. / Metabotropic glutamate receptors (mGluR), which belong to class C of G protein-coupled receptors (GPCR), are well-known for their important roles in neurological and psychiatric disorders. Understanding of receptor activation is essential to decipher the receptor functioning, and thus orientate drugs design for targeted therapeutics. Recently, the number of GPCR crystal structures has increased exponentially thanks to the application of protein stabilization methods. However, these crystallography studies have revealed certain ambiguities and discrepancies, and these approaches do not take into account the dynamic nature of GPCR activation. Indeed, single-molecule studies, including single-molecule FRET (smFRET), have revealed the highly dynamic nature of GPCR in general, and fast conformational changes of mGluR domains in particular. Here, we study the activation mechanism of the full-length mGluR by FRET techniques at ensemble and single-molecule level. Homogenous time-resolved fluorescence (HTRF) was applied for optimizing the sample preparation. An appropriate protocol was established, allowing to extract mGlu2 full-length in detergent from the HEK293T cells without significantly affecting its pharmacology and stability. smFRET experiments were performed using the combination of multiparameter fluorescence detection (MFD) with pulsed interleaved excitation (PIE). Advanced data analysis such as ratiometric FRET efficiency, lifetime-based FRET measurement, and fluorescence correlation spectroscopy (FCS) revealed that the fast dynamic oscillation in sub-millisecond timescale of the full-length mGlu2, and prove the stabilization role of the transmembrane domain of the full-length receptor in favor of the active state.
|
12 |
Electrically driven fluorescence of single molecule junctions / Excitation électrique de la fluorescence de jonctions à une moléculeChong, Michael 01 December 2016 (has links)
Les propriétés optoélectroniques de jonctions moléculaires sont étudiées par microscopie à effet tunnel (STM). Premièrement, les structures moléculaires sont synthétisées sur une surface Au(111). Puis, par manipulation, nous soulevons et suspendons une molécule entre la pointe du STM et la surface d’or pour obtenir une jonction moléculaire. En appliquant une tension entre la pointe et l'échantillon, un courant est généré, ce qui conduit à l'excitation de la molécule. Ce processus est médié par des modes de plasmons de surface localisé de la pointe. Finalement, la molécule se désexcite de manière radiative et génère un signal de fluorescence. On utilise cette technique pour étudier deux systèmes moléculaires. Dans le premier, un émetteur (porphyrin) est suspendu dans la jonction grâce à des fils organiques (oligothiophène). Ce type de jonction génère une émission de lumière étroite dont la couleur est contrôlée en sélectionnant la structure chimique de l'émetteur. Le contrôle de la largeur du pic d’émission est obtenu en détachant progressivement l'unité émettrice de la surface. On observe aussi des pics vibroniques décalés vers le rouge qui fournissent une empreinte chimique de l’émetteur, et des pics décalés vers le bleu, signe d’une deséxcitation d’un exciton non-thermalisé. Le deuxième type de jonction est composé de nano-rubans de graphène (GNRs) dont la largeur et la structure de l’arrête sont définis avec une précision atomique. Une fois suspendu dans la jonction, les GNRs qui présentent une terminaison spécifique (terminaison C) montrent un spectre d’émission de lumière avec un pic principal et deux pics vibroniques décalés vers le rouge. Le pic principale est associé à une transition intra-ruban entre un état Tamm localisé et un état delocalisé. / This thesis presents a study of the optoelectronic properties of molecular junctions performed by scanning tunneling microscopy (STM). First, the molecular structures are synthesized on a Au(111) surface. Then, by manipulation we lift and suspend a molecule between the tip of the STM and the gold surface, creating a single molecule junction. By applying a voltage bias between the tip and the sample, a current is generated, which leads to the excitation of the molecule. This process is mediated by the localized surface plasmon modes of the tip. Eventually, the molecule de-excites in a radiative way, generating a fluorescence signal. We use this technique to study two different molecular junctions. First, an emitting unit (fused-porphyrin) is suspended in the junction by means of organic linkers (oligothiophene). This type of junction generates a narrow-line emission of light whose color is controlled by selecting the chemical structure of the emitting unit. Moreover, control over the linewidth is obtained by progressively detaching the emitting unit from the surface. Also, we observe red-shifted vibronic features that provide a chemical fingerprint of the emitter, and blue- shifted vibronic features that are a sign of hot-luminescence. For the second type of junctions we use graphene nanoribbons (GNRs) of atomically precise width and edge structure. When lifted in the junction, GNRs with a specific type of termination (C-terminated) exhibit a light emission spectrum with a main peak and two red-shifted vibrational features. The main peak is associated to an intra-ribbon transition between a localized state (Tamm) and a delocalized state.
|
13 |
On surface spin detection and doping of metallocenes / Détection et dopage in situ du spin de métallocènes adsorbés sur surface métalliqueBachellier, Nicolas 13 December 2016 (has links)
Le sujet principal de cette thèse est l'étude de métallocènes déposés sur une surface de cuivre. Leurs adsorptions et propriétés électroniques sont expérimentalement étudiées par microscopie à effet tunnel (STM) et spectroscopie par effet tunnel (STS). Nos résultats ont été validés par des calculs se basant sur la théorie de la fonctionnelle de la densité (DFT). Plus précisément, nous avons étudié la façon dont le ferrocène FeC10H10 et le nickelocène NiC10H10s'adsorbent sur le cuivre. Nous avons découvert que ces métallocènes forment spontanément des réseaux alternant molécules horizontales et verticales. Nous avons ensuite modifié la structure du ferrocène par l'ajout d'un atome de cobalt et caractérisé les propriétés magnétiques de la nouvelle molécule ainsi créée, notamment l'apparition d'un effet Kondo témoignant de l'apparition de propriétés magnétiques au sein de la molécule. L'étude spectroscopique du nickelocène a révélé une excitation de la molécule à basse énergie.Cette excitation se traduit par une réorientation du moment de spin de la molécule, passant d'une orientation perpendiculaire à l'axe principal de la molécule à une orientation parallèle à cet axe.Nous avons finalement transféré un nickelocène sur la pointe STM et utilisé cette pointe moléculaire pour sonder les états d'une seconde molécule. Nous avons alors obtenu une double excitation de spin dans notre jonction tunnel, avec une augmentation significative de la conductance due aux excitations. / The main subject of this PhD thesis is the study of metallocenes deposited on copper surfaces. Their adsorptions and electronic properties are experimentally studied by scanning tunnelling microscopy(STM) and scanning tunnelling spectroscopy (STS). Our results were confirmed by density functional theory (DFT) computations. More precisely, we studied how ferrocene FeC10H10 and nickelocene NiC10H10 are adsorbed on copper. We found that these metallocenes spontaneously create networks alternating horizontal and vertical molecules. We added a cobalt atom to the ferrocene in order to modify its structure and we characterized the magnetic properties of the new molecule we created, in particular the appearance of a Kondo effect showing that magnetic properties appeared in the molecule. The spectroscopic study of nickelocene revealed an excitation of the molecule at low bias. This excitation consist in a change in the spin orientation of the molecule, going from an orientation perpendicular to the main molecule axis to an orientation parallel to this axis. We finally transferred a nickelocene to the STM tip and used this molecular tip to probe the states of a second molecule. We consequently obtained a double spin excitation in our tunnel junction, with a significant increase of the conductance due to excitations.
|
14 |
How Kinesin-1 Deals With Roadblocks: Biophysical Description and Nanotechnological ApplicationKorten, Till 10 December 2009 (has links)
Proteins have been optimized by evolution for billions of years to work on a nanometer scale. Therefore, they are extremely promising for nanotechnological applications. Cytoskeletal filaments propelled by surface-attached motor proteins have been recently established as versatile transport platforms for nano-sized cargo in molecular sorting and nano-assembly devices. However, in this gliding motility setup, cargo and motors share the filament lattice as a common substrate for their activity. Therefore, it is important to understand the influence of cargo-loading on transport properties.
By performing single molecule stepping assays on biotinylated microtubules, it was shown that kinesin-1 motors first stop and then detach when they encounter a streptavidin obstacle on their path along the microtubule. Consequently, the deceleration of streptavidin coated microtubules in gliding assays could be attributed to an obstruction of kinesin-1's path on the microtubule rather than to "frictional" streptavidin-surface interactions.
The insights gained by studying kinesin-1's behavior at obstacles were then used to demonstrate a novel sensing application: Using a mixture of two distinct microtubule populations that each bind a different kind of protein, the presence of these proteins was detected via speed changes in the respective microtubule populations. In future applications, this detection scheme could be combined with other recent advancements in the field, creating highly integrated lab-on-a-chip devices that use microtubule based transport to detect, sort and concentrate analytes.
It has been envisioned that the kinesin-1-microtubule system could be used for even more complex appliances like nano-assembly lines. However, currently available control mechanisms for kinesin-1 based transport are not precise enough. Therefore, improved temporal control mechanisms for kinesin-1 were investigated: Using a polymer that changes its size in solution with temperature, starting and stopping of gliding microtubules was demonstrated. In combination with local heating by light, this effect could be used to control the gliding of single microtubules. Finally, a strategy to create photo-switchable kinesin-1 was developed and tested for feasibility using molecular modeling.
|
15 |
Investigation of the Formation of some Biologically Relevant Small Molecules Using Laser Tweezers and Capillary ElectrophoresisYangyuoru, Philip 31 July 2014 (has links)
No description available.
|
16 |
Etude à l'échelle de la molécule unique des changements conformationnels de la molécule d'ADN : influence de la présence de défauts locaux présents sur l'ADN et de paramètres physico-chimiques de la solution environnante / Study at the single molecule level of conformational changes of the DNA molecule : impact of local defects included in the DNA molecule of a large set of physicochemical conditionsBrunet, Annaël 16 October 2015 (has links)
Les ions jouent un rôle majeur sur les processus biologiques affectant la molécule d'ADN que ce soit en termes d'activité de liaison de protéines à l'ADN ou d'encapsulation de l'ADN dans les capsides virales ou le noyau. L'activité de protéines sur l'ADN est, par ailleurs, fréquemment liée à une courbure locale de l'axe de la double hélice, que ce soit en raison d'une séquence intrinsèquement courbée, ou, via la capacité de protéines à courber la séquence sur laquelle elles se fixent. Être capable de caractériser et comprendre l'effet des ions présents en solution, de la courbure et de la dénaturation locale de la molécule d'ADN sur les conformations de cette dernière est donc crucial pour approfondir la compréhension de nombreux processus biologiques. Des travaux, tant expérimentaux que théoriques, ont déjà été menés sur ces questions mais celles-ci sont encore largement débattues. En effet, pour y répondre, doivent notamment être développées des méthodes expérimentales qui ne perturbent pas significativement la conformation de l'ADN ou le complexe ADN-protéine, ainsi que des modèles théoriques associés permettant une analyse précise des données expérimentales et leur compréhension physique. L'objectif de ce travail est de proposer des outils expérimentaux et théoriques permettant de décrire physiquement l'influence de défauts locaux présents sur la molécule d'ADN et de paramètres physico-chimiques de la solution environnante. A cette fin, des données expérimentales ont été acquises à l'échelle de la molécule unique grâce à la technique haut-débit de "Tethered Particle Motion" (HT-TPM). Le TPM consiste à enregistrer, au cours du temps, les positions d'une particule accrochée à l'extrémité d'une molécule d'ADN, immobilisée par son autre extrémité sur un support en verre. L'utilisation d'une biopuce permettant la parallélisation des complexes ADN/particule et l'acquisition "à haut débit" de données TPM a permis d'obtenir une grande accumulation de statistiques individuelles. Une procédure d'analyse efficace a été élaborée afin de déterminer les amplitudes du mouvement des assemblages ADN-particules valides. En parallèle, ont été effectuées des simulations basées sur un modèle de physique statistique mésoscopique dans lequel la molécule d'ADN est assimilée à une chaîne de billes de rayons variables dont les déplacements sont régis par la diffusion brownienne et une énergie potentielle d'interaction prenant en compte notamment l'énergie de courbure du polymère ADN. Une première étude a porté sur l'effet de la force ionique de la solution environnante sur la longueur de persistance Lp, qui traduit la rigidité du polymère d'ADN. Les valeurs de Lp extraites des données de HT-TPM ont fait apparaître une décroissance de la longueur de persistance de 55 à 30 nm, corrélée à l'augmentation de la force ionique, avec une décroissance plus forte observée pour les ions divalents Mg2+ que pour les ions monovalents Na+. Les valeurs de Lp déterminées sur une plage étendue de force ionique ont permis de valider l'approche théorique proposée par Manning en 2006 dans la cas Na+. Une deuxième étude a conduit à l'élaboration d'une méthode permettant de quantifier l'angle de courbure locale induite par une séquence spécifique ou la liaison d'une protéine sur la molécule d'ADN. L'échantillon modèle a été obtenu en insérant de une à sept séquences CAAAAAACGG en phase. Une description théorique de la chaîne d'ADN appelée "kinked Worm-Like Chain" a été proposée. Elle conduit à une formule simple de la distance bout-à-bout de l'ADN qui permet d'extraire la valeur de l'angle de courbure à partir des mesures de HT-TPM. Ainsi, il a pu être montré que la séquence CAAAAAACGG induit un angle de 19° ± 4° en accord avec les données de la littérature. Une troisième étude concernant la mesure de l'impact de la dénaturation partielle de l'ADN, induite par la température, sur sa rigidité apparente globale a été menée. Des résultats préliminaires sont proposés. / Ions play an important role in many biological processes affecting the DNA molecule, both for binding activities of DNA-protein interaction, and the DNA packaging in viral capsids or in the cell nucleus. Proteins actions on DNA are also often associated to the double helix curvature, be it because of an intrinsic curved sequence, or of the ability of the proteins, to curve the sequence they are trying to bind. Being able to characterize and understand the effects on the DNA conformation of ions present in solution, DNA local curvature, and local denaturation bubble is essential and crucial for the thorough understanding of many biological processes. Many experimental, and theoretical studies have already been conducted to address these questions. However they remain highly debated. To answer then one must notably develop experimental approaches that minimize alteration of the conformation of the DNA molecule or the complex protein-DNA, as well as associated theoretical models that permit a precise analysis of experimental data as well as their physical understanding. The goal of this work is to develop and propose experimental and theoretical tools which would provide a physical description of the influence of DNA local defects on the DNA molecule as well as of physicochemical conditions of the DNA environmental solution. For this purpose, experimental data have been collected, at a single molecule level, using the High-Throughput Tethered Particle Motion" (HT-TPM) technique. TPM consists of recording the location of a particle grafted by one end of a single DNA molecule and immobilized, at the other end, to a glass surface. The use of a biochip that enables the parallelization of DNA/particle complexes and the ensuing high-throughput data acquisition permitted to obtain a large accumulation of individual statistics. A strong analysis procedure has been developed to extract and quantify the amplitude of motion of the valid DNA/particle complexes . Alongside that, simulations have been run, based on a mesoscopic statistical mechanics model in which the DNA molecule is related to a chain of monomers with varying radius and in which the amplitude of motion is governed by both the Brownian motion and by the interaction potential associated to stretching and bending energies of the polymer. A first study was conducted on the effect of the ionic strength induced by surrounding ions in solution on the DNA persistence length (Lp) which characterizes the DNA polymer rigidity. The extracted Lp values of HT-TPM measurement decrease from 55 to 30 nm when the ionic strength increases. A stronger decrease was observed in presence of divalent ions Mg2+ than with monovalent ions Na+. This quantification of Lp dependence, on a large and strongly prospected range of ionic strengthes, tends to validate the theoretical approach proposed in 2006 by Manning in presence of monovalent ions Na+. A second project allows us to develop a method of evaluation and quantification of local DNA bending angles, induced either by specific intrinsic sequence, or by the binding of proteins on DNA. Constructs made of 575 base-pair DNAs with in-phase assemblies of one to seven sequences CAAAAAACGG was used. A theoretical description of the polymer chain, named "kinked Worm-Like Chain" was proposed which leads to a simple formulation of the end-to-end distance of DNA molecules allowing to extract local bend angles from HT-TPM measurement. As a result, we find that the sequence CAAAAAACGG induces a bend angle of 19° ± 4° in agreement with other value from the literature. A third study concerning the influence of temperature-induced partial denaturation on the global apparent rigidity parameters of the polymer was conducted. Preliminary results are proposed.
|
17 |
Multivalency in the interaction of biological polymersReiter-Scherer, Valentin D. 14 September 2020 (has links)
Diese Dissertation konzentriert sich auf die Untersuchung multivalenter Wechselwirkungen zwischen Hämagglutinin (HA) sowie Neuraminidase (NA) zweier Stämme des Influenzavirus (H1N1 und H3N2) und dem zellulären Liganden Sialinsäure (SA) unter Verwendung von Rasterkraftmikroskopie und Einzelmolekülkraftspektroskopie (SMFS). Bindungskräfte sowie Dissoziations- und Assoziationskinetiken, zusammen mit den intermolekularen Potentiallandschaften wurden, nach bestem Wissen erstmalig, auf Einzelmolekülebene mittels SMFS quantifiziert. Zu diesem Zweck wurden mono- und multivalente SA-Liganden (SAPEGLA und dPGSA) eingesetzt. Abweichungen der experimentellen Kraftspektren vom klassischen Kramers-Bell-Evans-Modell vorhergesagten Verhalten wurden durch das Friddle-Noy-De Yoreo-Model berücksichtigt. NA beider Virusstämme zeigte trotz ähnlicher Bindungskräfte eine stabilere Bindung mit SA als HA und dissoziierte 3 – 7 mal langsamer. Es wird vermutet, dass die höhere Stabilität die geringere Oberflächendichte von NA auf der Virushülle im Vergleich zu HA ausgleicht. Die Bindungskräfte eines SAPEGLA-Clusters nehmen mit der Anzahl der Bindungen und die Dissoziationskinetik folgt dem theoretisch vorhergesagten Trend. Die Dissoziationsrate von NA ist etwa 6-mal höher ist als ihre katalytische Rate, weshalb Mehrfachbindungen zur Spaltung von SA erforderlich sind. Die Dissoziationsrate von N1 in der gleichen Größenordnung wie die von H3 und es wird vermutet, dass derartige Ähnlichkeiten die Übertragbarkeit des Virus begünstigen. Darüber hinaus wird gezeigt, dass die thermische Stabilität von HA-dPGSA höher ist als von HA-SAPEGLA und im Bereich von 3 - 4 Einzelbindungen liegt, was für NA-dPGSA nicht beobachtet werden konnte. Daher bindet dPGSA spezifisch und kooperativ multivalent an HA. Kompetitive Bindungstests zeigen, dass SMFS zum Screening von antiviralen Inhibitoren verwendet werden und Zugang zu deren Design auf Einzelmolekülebene liefern könnte. / This thesis focuses on studying multivalent interactions between influenza virus hemagglutinin (HA) as well
as neuraminidase (NA) of two viral strains (H1N1 and H3N2) and the cellular ligand sialic acid (SA) by using scanning force microscopy and single molecule force spectroscopy (SMFS). Unbinding forces as well as dissociation and association kinetics together with the free energy landscapes were, to the best knowledge for the first time, individually quantified on the single molecule level using SMFS.
To this extent, designed synthetic monovalent (SAPEGLA) and multivalent (dPGSA) SA displaying ligands were employed. Surprisingly, the experimental force spectra did not show the log-linear trend predicted by the classical Kramers-Bell-Evans model, but rather follow the more recent Friddle-Noy-De Yoreo model. NA of both viral strains forms a more stable bond with SA than HA, and dissociates 3 to 7 times slower. It is reasoned that the higher stability compensates for the lesser amount of NA compared to HA that is typically found on the viral envelope. The unbinding forces of the cluster of SAPEGLA increased gradually with the number of bonds in the cluster and the dissociation kinetics follow the theoretically predicted trend.
The dissociation rate of NA was found to be about 6 times higher than its catalytic rate, indicating that multiple bonds are needed for cleavage of SA. The dissociation rate of N1 is on the same order as that of H3, suggesting that these similarities between the two strains favor transmissibility. The thermal stability of the HA-dPGSA bond is higher than the HA-SAPEGLA reaching that of three to four single bonds, proving specificity and cooperativity. Such an enhancement could not be observed for the binding of NA. This thesis also shows that SMFS could be used as a tool to screen antiviral inhibitors in competitive binding assays, which may contribute insight into the design of antiviral inhibitors on the single molecule level.
|
18 |
Molecular biophysics of strong DNA bending and the RecQ DNA helicaseHarrison, Ryan M. January 2014 (has links)
Molecular biophysics is a rapidly evolving field aimed at the physics-based investigation of the biomolecular processes that enable life. In this thesis, we explore two such processes: the thermodynamics of DNA bending, and the mechanism of the RecQ DNA helicase. A computational approach using a coarse-grained model of DNA is employed for the former; an experimental approach relying heavily on single-molecule fluorescence for the latter. There is much interest in understanding the physics of DNA bending, due to both its biological role in genome regulation and its relevance to nanotechnology. Small DNA bending fluctuations are well described by existing models; however, there is less consensus on what happens at larger bending fluctuations. A coarse-grained simulation is used to fully characterize the thermodynamics and mechanics of duplex DNA bending. We then use this newfound insight to harmonize experimental results between four distinct experimental systems: a 'molecular vise', DNA cyclization, DNA minicircles and a 'strained duplex'. We find that a specific structural defect present at large bending fluctuations, a 'kink', is responsible for the deviation from existing theory at lengths below about 80 base pairs. The RecQ DNA helicase is also of much biological and clinical interest, owing to its essential role in genome integrity via replication, recombination and repair. In humans, heritable defects in the RecQ helicases manifest clinically as premature aging and a greatly elevated cancer risk, in disorders such as Werner and Bloom syndromes. Unfortunately, the mechanism by which the RecQ helicase processes DNA remains poorly understood. Although several models have been proposed to describe the mechanics of helicases based on biochemical and structural data, ensemble experiments have been unable to address some of the more nuanced questions of helicase function. We prepare novel substrates to probe the mechanism of the RecQ helicase via single-molecule fluorescence, exploring DNA binding, translocation and unwinding. Using this insight, we propose a model for RecQ helicase activity.
|
Page generated in 0.0939 seconds