• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 33
  • 14
  • 8
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 136
  • 136
  • 55
  • 55
  • 41
  • 41
  • 36
  • 30
  • 27
  • 26
  • 25
  • 22
  • 21
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Single event kinetic modeling of solid acid alkylation of isobutane with butenes over proton-exchanged Y-Zeolites

Martinis Coll, Jorge Maximiliano 12 April 2006 (has links)
Complex reaction kinetics of the solid acid alkylation of isobutane with butenes over a proton-exchanged Y-zeolite has been modeled at the elementary step level. Starting with a computer algorithm that generated the reaction network based on the fundamentals of the carbenium ion chemistry, the formation of over 100+ product species has been modeled in order to gain understanding of the underlying phenomena leading to rapid catalyst deactivation and product selectivity shifts observed in experimental runs. An experimental investigation of the solid acid alkylation process was carried out in a fixed bed catalytic reactor operating with an excess of isobutane under isothermal conditions at moderate temperatures (353-393 K) in liquid phase. Experimental data varying with run-time for a set of butene space-times and reaction temperatures were collected for parameter estimation purposes. A kinetic model was formulated in terms of rate expressions at the elementary step level including a rigorous modeling of deactivation through site coverage. The single event concept was applied to each rate coefficient at the elementary step level to achieve a significant reduction in the number of model parameters. Based on the identification of structural changes leading to the creation or destruction of symmetry axes and chiral centers in an elementary step, formulae have been developed for the calculation of the number of single events. The Evans-Polanyi relationship and the concept of stabilization energy were introduced to account for energy levels in surface-bonded carbenium ions. A novel functional dependency of the stabilization energy with the nature of the carbenium ion and the carbon number was proposed to account for energy effects from the acid sites on the catalyst. Further reductions in the number of parameters and simplification of the equations for the transient pseudohomogeneous one-dimensional plug-flow model of the reactor were achieved by means of thermodynamic constraints. Altogether, the single event concept, the Evans-Polanyi relationship, the stabilization energy approach and the thermodynamic constraints led to a set of 14 parameters necessary for a complete description of solid acid alkylation at the elementary step level.
52

Reliability-centric probabilistic analysis of VLSI circuits

Rejimon, Thara 01 June 2006 (has links)
Reliability is one of the most serious issues confronted by microelectronics industry as feature sizes scale down from deep submicron to sub-100-nanometer and nanometer regime. Due to processing defects and increased noise effects, it is almost impractical to come up with error-free circuits. As we move beyond 22nm, devices will be operating very close to their thermal limit making the gates error-prone and every gate will have a finite propensity of providing erroneous outputs. Additional factors increasing the erroneous behaviors are low operating voltages and extremely high frequencies. These types of errors are not captured by current defect and fault tolerant mechanisms as they might not be present during the testing and reconfiguration. Hence Reliability-centric CAD analysis tool is becoming more essential not only to combat defect and hard faults but also errors that are transient and probabilistic in nature.In this dissertation, we address three broad categories of errors. First, we focus on random pattern testability of logic circuits with respect to hard or permanent faults. Second, we model the effect of single-event-upset (SEU) at an internal node to primary outputs. We capture the temporal nature of SEUs by adding timing information to our model. Finally, we model the dynamic error in nano-domain computing, where reliable computation has to be achieved with "systemic" unreliable devices, thus making the entire computation process probabilistic rather than deterministic in nature.Our central theoretical scheme relies on Bayesian Belief networks that are compact efficient models representing joint probability distribution in a minimal graphical structure that not only uses conditional independencies to model the underlying probabilistic dependence but also uses them for computational advantage. We used both exact and approximate inference which has let us achieve order of magnitude improvements in both accuracy and speed and have enabled us t o study larger benchmarks than the state-of-the-art. We are also able to study error sensitivities, explore design space, and characterize the input space with respect to errors and finally, evaluate the effect of redundancy schemes.
53

STUDY OF SINGLE-EVENT EFFECTS ON DIGITAL SYSTEMS

2015 August 1900 (has links)
Microelectronic devices and systems have been extensively utilized in a variety of radiation environments, ranging from the low-earth orbit to the ground level. A high-energy particle from such an environment may cause voltage/current transients, thereby inducing Single Event Effect (SEE) errors in an Integrated Circuit (IC). Ever since the first SEE error was reported in 1975, this community has made tremendous progress in investigating the mechanisms of SEE and exploring radiation tolerant techniques. However, as the IC technology advances, the existing hardening techniques have been rendered less effective because of the reduced spacing and charge sharing between devices. The Semiconductor Industry Association (SIA) roadmap has identified radiation-induced soft errors as the major threat to the reliable operation of electronic systems in the future. In digital systems, hardening techniques of their core components, such as latches, logic, and clock network, need to be addressed. Two single event tolerant latch designs taking advantage of feedback transistors are presented and evaluated in both single event resilience and overhead. These feedback transistors are turned OFF in the hold mode, thereby yielding a very large resistance. This, in turn, results in a larger feedback delay and higher single event tolerance. On the other hand, these extra transistors are turned ON when the cell is in the write mode. As a result, no significant write delay is introduced. Both designs demonstrate higher upset threshold and lower cross-section when compared to the reference cells. Dynamic logic circuits have intrinsic single event issues in each stage of the operations. The worst case occurs when the output is evaluated logic high, where the pull-up networks are turned OFF. In this case, the circuit fails to recover the output by pulling the output up to the supply rail. A capacitor added to the feedback path increases the node capacitance of the output and the feedback delay, thereby increasing the single event critical charge. Another differential structure that has two differential inputs and outputs eliminates single event upset issues at the expense of an increased number of transistors. Clock networks in advanced technology nodes may cause significant errors in an IC as the devices are more sensitive to single event strikes. Clock mesh is a widely used clocking scheme in a digital system. It was fabricated in a 28nm technology and evaluated through the use of heavy ions and laser irradiation experiments. Superior resistance to radiation strikes was demonstrated during these tests. In addition to mitigating single event issues by using hardened designs, built-in current sensors can be used to detect single event induced currents in the n-well and, if implemented, subsequently execute fault correction actions. These sensors were simulated and fabricated in a 28nm CMOS process. Simulation, as well as, experimental results, substantiates the validity of this sensor design. This manifests itself as an alternative to existing hardening techniques. In conclusion, this work investigates single event effects in digital systems, especially those in deep-submicron or advanced technology nodes. New hardened latch, dynamic logic, clock, and current sensor designs have been presented and evaluated. Through the use of these designs, the single event tolerance of a digital system can be achieved at the expense of varying overhead in terms of area, power, and delay.
54

Equipment for measuring cosmic-ray effects on DRAM

Jonsson, Per-Axel January 2007 (has links)
Nuclear particles hitting the silicon in a electronic device can cause a change in the data in a memory bit cell or in a flip-flop. The device is still working, but the data is corrupted and this is called a soft error. A soft error caused by a single nuclear particle is called a single event upset and is a growing problem. Research is ongoing at Saab aiming at how susceptible random access memories are to protons and neutrons. This thesis describes the development of equipment for measuring cosmic-ray effects on DRAM in laboratories. The system is built on existing hardware with a FPGA as the core unit. A short history of soft errors is also given and what causes it. How a DRAM works and basic operation is explained and the difference between a SRAM. The result is a working system ready to be used.
55

SINGLE-EVENT EFFECT STUDY ON A DC/DC PWM USING MULTIPLE TESTING METHODOLOGIES

2015 February 1900 (has links)
As the technology advances, the feature size of the modern integrated circuits (ICs) has decreased dramatically to nanometer amplitude. On one hand, the shrink brings benefits, such as high speed and low power consumption per transistor. On the other hand, it poses a threat to the reliable operation of the ICs by the increased radiation sensitivity, such as single event effects (SEEs). For example, in 2010, a commercial-off-the-shelf (COTS) BiCMOS DC/DC pulse width modulator (PWM) IC was observed to be sensitive to neutrons on terrestrial real-time applications, where negative 6-μs glitches were induced by the single event transient (SET) effects. As a result, a project was set up to comprehensively study the failure mechanisms with various test methodologies and to develop SET-tolerant circuits to mitigate the SET sensitivity. First, the pulsed laser technique is adopted to perform the investigation on the SET response of the DC/DC PWM chip. A Ti:Sapphire single photon absorption (SPA) laser with different wavelengths and repetition rates is used as an irradiation source in this study. The sensitive devices in the chip are found to be the bandgap voltage reference circuit thanks to the well-controlled location information of the pulsed laser. The result is verified by comparing with the previous alpha particle and neutron testing data as well as circuit simulation using EDA tools. The root cause for the sensitivity is also acquired by analyzing the circuit. The temperature is also varied to study the effect of the temperature-induced quiescent point shift on the SET sensitivity of the chip. The experimental results show that the quiescent point shifts have different impacts on SET sensitivities due to the different structures and positions of the circuitries. After that, heavy ions, protons, and the pulsed X-ray are used as irradiation sources to further study the SET response of the DC/DC chip. The heavy ion and pulsed laser data are correlated to each other. And the equivalent LETs for laser with wavelengths of 750 nm, 800 nm, 850 nm and 920 nm are acquired. This conclusion can be used to obtain the equivalent heavy ion cross section of any area in a chip by using the pulsed laser technique, which will facilitate the SET testing procedure dramatically. The proton and heavy ion data are also correlated to each other based on a rectangular parallel piped (RPP) model, which gives convenience in Soft Error Rate (SER) estimation. The potential application of pulsed X-ray technique in SET field is also investigated. It is capable of generating similar results with those of heavy ion and pulsed laser testing. Both the advantages and disadvantages of this technique are explained. This provides an alternative choice for the SET testing in the future. Finally, the bandgap voltage reference circuit in the DC/DC PWM is redesigned and fabricated in bulk CMOS 130nm technology and a SET hardened bandgap circuit is proposed and investigated. The CMOS substrate PNP transistor is much less sensitive to SETs than the BiCMOS NPN transistor according to the pulsed laser test results. The reason is analyzed to be the different fabrication processes of the two technologies. The laser test results also indicate that the SET hardened bandgap circuit can mitigate the SET amplitude dramatically, which is consistent with the SPICE simulation results. These researches provide more understandings on the design of SET hardened bandgap voltage reference circuit.
56

Designing single event upset mitigation techniques for large SRAM-Based FPGA components / Desenvolvimento de técnicas de tolerância a falhas transientes em componentes programáveis por SRAM

Kastensmidt, Fernanda Gusmão de Lima January 2003 (has links)
Esse trabalho consiste no estudo e desenvolvimento de técnicas de proteção a falhas transientes, também chamadas single event upset (SEU), em circuitos programáveis customizáveis por células SRAM. Os projetistas de circuitos eletrônicos estão cada vez mais predispostos a utilizar circuitos programáveis, conhecidos como Field Programmable Gate Array (FPGA), para aplicações espaciais devido a sua alta flexibilidade lógica, alto desempenho, baixo custo no desenvolvimento, rapidez na prototipação e principalmente pela reconfigurabilidade. Em particular, FPGAs customizados por SRAM são muito importantes para missões espaciais pois podem ser rapidamente reprogramados à distância quantas vezes for necessário. A técnica de proteção baseada em redundância tripla, conhecida como TMR, é comumente utilizada em circuitos integrados de aplicações específicas e pode também ser aplicada em circuitos programáveis como FPGAs. A técnica TMR foi testada no FPGA Virtex® da Xilinx em aplicações como contadores e micro-controladores. Falhas foram injetadas em todos as partes sensíveis da arquitetura e seus efeitos foram detalhadamente analisados. Os resultados de injeção de falhas e dos experimentos sob radiação em laboratório comprovaram a eficácia do TMR em proteger circuitos sintetizados em FPGAs customizados por SRAM. Todavia, essa técnica possui algumas limitações como aumento em área, uso de três vezes mais pinos de entrada e saída (E/S) e conseqüentemente, aumento na dissipação de potência. Com o objetivo de reduzir custos no TMR e melhorar a confiabilidade, uma técnica inovadora de tolerância a falhas para FPGAs customizados por SRAM foi desenvolvida para ser implementada em alto nível, sem modificações na arquitetura do componente. Essa técnica combina redundância espacial e temporal para reduzir custos e assegurar confiabilidade. Ela é baseada em duplicação com um circuito comparador e um bloco de detecção concorrente de falhas. Esta nova técnica proposta neste trabalho foi especificamente projetada para tratar o efeito de falhas transientes em blocos combinacionais e seqüenciais na arquitetura reconfigurável, reduzir o uso de pinos de E/S, área e dissipação de potência. A metodologia foi validada por injeção de falhas emuladas em uma placa de prototipação. O trabalho mostra uma comparação nos resultados de cobertura de falhas, área e desempenho entre as técnicas apresentadas. / This thesis presents the study and development of fault-tolerant techniques for programmable architectures, the well-known Field Programmable Gate Arrays (FPGAs), customizable by SRAM. FPGAs are becoming more valuable for space applications because of the high density, high performance, reduced development cost and re-programmability. In particular, SRAM-based FPGAs are very valuable for remote missions because of the possibility of being reprogrammed by the user as many times as necessary in a very short period. SRAM-based FPGA and micro-controllers represent a wide range of components in space applications, and as a result will be the focus of this work, more specifically the Virtex® family from Xilinx and the architecture of the 8051 micro-controller from Intel. The Triple Modular Redundancy (TMR) with voters is a common high-level technique to protect ASICs against single event upset (SEU) and it can also be applied to FPGAs. The TMR technique was first tested in the Virtex® FPGA architecture by using a small design based on counters. Faults were injected in all sensitive parts of the FPGA and a detailed analysis of the effect of a fault in a TMR design synthesized in the Virtex® platform was performed. Results from fault injection and from a radiation ground test facility showed the efficiency of the TMR for the related case study circuit. Although TMR has showed a high reliability, this technique presents some limitations, such as area overhead, three times more input and output pins and, consequently, a significant increase in power dissipation. Aiming to reduce TMR costs and improve reliability, an innovative high-level technique for designing fault-tolerant systems in SRAM-based FPGAs was developed, without modification in the FPGA architecture. This technique combines time and hardware redundancy to reduce overhead and to ensure reliability. It is based on duplication with comparison and concurrent error detection. The new technique proposed in this work was specifically developed for FPGAs to cope with transient faults in the user combinational and sequential logic, while also reducing pin count, area and power dissipation. The methodology was validated by fault injection experiments in an emulation board. The thesis presents comparison results in fault coverage, area and performance between the discussed techniques.
57

Análise automatizada dos efeitos do alargamento de pulso induzido em single event transients

Silva, Michele Gusson Vieira da January 2017 (has links)
Aplicações em ambientes expostos a elevados níveis de radiação ionizante impõem uma série de desafios ao desenvolvimento de projetos de circuitos integrados na tecnologia Complementary Metal–Oxide–Semiconductor (CMOS), uma vez que circuitos CMOS estão sujeitos às falhas transientes oriundas de radiação externa. Num circuito do tipo CMOS, as áreas sensíveis aos efeitos da incidência de partículas ionizantes são as regiões dreno-substrato reversamente polarizadas, existentes nos transistores em regime de corte (VARGAS; NICOLAIDIS, 1994). Com o avanço tecnológico e consequente diminuição das dimensões dos dispositivos semicondutores, estes efeitos degradantes tornam-se uma preocupação constante devido às menores características físicas dos transistores (WANG et al., 2007). Os circuitos integrados apresentam, durante a sua vida útil, um processo de degradação das suas características iniciais. Assim, a esse processo de degradação também chamamos de envelhecimento (aging). É um processo lento e cumulativo provocado por todos os mecanismos que acabam por alterar os parâmetros físicos e eléctricos dos circuitos, diminuindo o seu tempo de vida útil (FU; LI; FORTES, 2008). Dentre os efeitos de variabilidade temporal, os que mais têm causado interesse da comunidade científica são o Randon Telegraph Noise (RTN) com sua origem na atividade de traps (armadilhas) de interface e Single Event Transients (SET) com sua origem na radiação ionizante ao qual o circuito é exposto. Em relação aos efeitos de degradação destaca-se o efeito Bias Temperature Instability (BTI) (VALDUGA, 2012), que da mesma forma que o RTS, tem sua origem vinculada aos efeitos das traps.Modelos padrão para simulação elétrica de circuitos não levam em consideração os efeitos causados por armadilhas de cargas tais como Bias Temperature Instability (BTI) e Random Telegraph Noise (RTN). Tais variabilidades em nível de dispositivo podem causar perda de confiabilidade, como por exemplo, o surgimento de Propagation-Induced Pulse Broadening (PIPB). Conforme o escalonamento (scaling) tecnológico, a velocidade das portas lógicas aumenta e os SETs podem ser propagados através de circuito combinacional e, inclusive, sofrer alargamento, caso a largura do pulso transiente supere um valor mínimo crítico que depende da tecnologia (DODD et al., 2004), caracterizando assim um PIPB. Com base nisso, técnicas de injeção de falhas usadas em circuitos complexos não se mostram eficientemente previsíveis, levando a uma subestimativa da sensibilidade de circuitos à propagação de SETs. Com a utilização de um simulador elétrico que agrega a análise de BTI, temos melhores estimativas dos efeitos de PIPB na degradação de um circuito, que pode provocar violações de temporização em sistemas síncronos. Dessa forma, pode-se então trabalhar em uma projeção do circuito de forma a torná-lo mais robusto em relação aos efeitos de envelhecimento e na proteção às falhas transientes. Com base no que foi anteriormente apresentado, este trabalho analisa o comportamento de circuitos através de simulações elétricas de radiação ionizante, permitindo avaliações da suscetibilidade e confiabilidade de circuitos integrados aos efeitos de falhas transientes. Para a realização destes experimentos, foram realizadas simulações elétricas considerando-se os efeitos de envelhecimento. Para uma cadeia lógica de 2000 inversores sequencialmente dispostos na tecnologia 32nm pode-se prever que o pulso transiente está sujeito a um alargamento de sete vezes sua largura inicial no momento da incidência, para transistores em suas dimensões mínimas. A partir da proposta apresentada, pode-se determinar a possibilidade de alargamento ou atenuação de um SET ao longo do circuito de maneira eficiente para que as devidas precauções possam ser tomadas. / Applications in environments exposed to high levels of ionizing radiation impose a number of challenges for the development of integrated circuit designs in CMOS technology. CMOS circuits are vulnerable to transient faults from external radiation. In a CMOS circuit, areas sensitive to the effects of ionizing particle incidence are as reverse polarized drain-substrate regions in the transistors at cut-off (VARGAS; NICOLAIDIS, 1994). The technological advance and consequent downscaling of semiconductor devices, these degrading factors become a constant concern due to the higher vulnerability to transient faults (WANG et al., 2007). The integrated circuits have during their useful life a process of degradation of their initial characteristics. Thus, this process of degradation is also called aging. It is a slow and cumulative process caused by all the mechanisms that end up changing the physical and electrical parameters of the circuits, decreasing their useful timing life (FU; LI; FORTES, 2008). Among the temporal variability effects, the Randon Telegraph Noise (RTN) with its origin in the activity of traps (interface traps) and Single Event Transients (SET) with their origin in the ionizing radiation circuit is exposed. In terms of the effects of degradation, the Bias Temperature Instability (BTI) effect (VALDUGA, 2012) stands out, which, like the RTS, has its origin linked to the effects of the traps. Standard electrical simulation models do not take into account the effects caused by charged traps such as Bias temperature instability (BTI) and random telegraph noise (RTN). Such device-level variability can cause reduced reliability, for example, the Propagation-Induced Pulse Broadening (PIPB). According to the technological scaling, the speed of the logic gates increases and the SETs can be propagated through a combinational circuit and even may suffer broadening if the transient pulse width exceeds a critical minimum value that depends on the technology (DODD et al., 2004 ), characterizing a PIPB. Based on this, fault injection techniques in complex circuits are not efficiently in predicting, leading to an underestimation of circuit sensitivity to propagation of Single Event Transients (SETs). Using an electrical simulator that aggregates a BTI analysis, we have better estimates of PIPB effects on circuit degradation, which may lead to timing violations in synchronous systems. Then we can put effort in circuit design in order to make it more robust regarding to aging effects and transient faults protection. Based on what has been previously presented, this thesis analyzes the behavior of circuits through electrical simulations of ionizing radiation, allowing susceptibility and reliability evaluations of integrated circuits to the effects of transient faults using electrical simulations. For the accomplishment of these experiments, electrical simulations were performance considering the effects of aging. For a logic chain of 2000 inverters sequentially arranged in the 32nm technology it can be predicted that the transient pulse is subjected to a broadening of seven times its initial width at the time of incidence for transistors with minimum dimensions. From the analysis presented, we can evaluate the possibility of broadening or shrinking of SETs thought the circuit in an efficient way to improve radiation-hardening techniques.
58

Avaliação de atraso, consumo e proteção de somadores tolerantes a falhas / Evaluating delay, power and protection of fault tolerant adders

Franck, Helen de Souza January 2011 (has links)
Nos últimos anos, os sistemas integrados em silício (SOCs - Systems-on-Chip) têm se tornado menos imunes a ruído, em decorrência dos ajustes necessários na tecnologia CMOS (Complementary Metal-Oxide-Silicon) para garantir o funcionamento dos transistores com dimensões nanométricas. Dentre tais ajustes, a redução da tensão de alimentação e da tensão de limiar (threshold) tornam os SOCs mais suscetíveis a falhas transientes, principalmente aquelas provocadas pela colisão de partículas energéticas que provêm do espaço e encontram-se presentes na atmosfera terrestre. Quando uma partícula energética de alta energia colide com o dreno de um transistor que está desligado, ela perde energia e produz pares elétron-lacuna livres, resultando em uma trilha de ionização. A ionização pode gerar um pulso transiente de tensão que pode ser interpretado como uma mudança no sinal lógico. Em um circuito combinacional, o pulso pode propagar-se até ser armazenado em um elemento de memória. Tal fenômeno é denominado Single-Event Transient (SET). Como a tendência é que as dimensões dos dispositivos fabricados com tecnologia CMOS continuem reduzindo por mais alguns anos, a ocorrência de SETs em SOCs operando na superfície terrestre tende a aumentar, exigindo a adoção de técnicas de tolerância a falhas no projeto de SOCs. O presente trabalho tem por objetivo avaliar circuitos somadores tolerantes a falhas transientes encontrados na literatura. Duas arquiteturas de somadores foram escolhidas: Ripple Carry Adder (RCA) e Binary Signed Digit Adder (BSDA). O RCA foi escolhido por ser o tipo de somador de menor custo e por isso, amplamente utilizado em SOCs. Já o BSDA foi escolhido porque utiliza o sistema numérico de dígito binário com sinal (Binary Signed Digit – BSD). Por ser um sistema de representação redundante, o uso de BSD facilita a aplicação de técnicas de tolerância a falhas baseadas em redundância de informação. Os somadores protegidos avaliados foram projetados com as seguintes técnicas: Redundância Modular Tripla (Triple Modular Redundancy - TMR) e Recomputação com Entradas e Saídas Invertidas (RESI), no caso do RCA, e codificação 1 de 3 e verificação de paridade, no caso do BSDA. As 9 arquiteturas de somadores foram simuladas no nível elétrico usando o Modelo Tecnológico Preditivo (Predictive Technology Model - PTM) de 45nm e considerando quatro comprimentos de operandos: 4, 8, 16 e 32 bits. Os resultados obtidos permitiram quantificar o número de transistores, o atraso crítico e a potência média consumida por cada arquitetura protegida. Também foram realizadas campanhas de injeção de falhas, por meio de simulações no nível elétrico, para estimar o grau de proteção de cada arquitetura. Os resultados obtidos servem para guiar os projetistas de SOCs na escolha da arquitetura de somador tolerante a falhas mais adequada aos requisitos de cada projeto. / In the past recent years, integrated systems on a chip (Systems-on-chip - SOCs) became less immune to noise due to the adjusts in CMOS technology needed to assure the operation of nanometric transistors. Among such adjusts, the reductions in supply voltage and threshold voltage make SOSs more susceptible to transient faults, mainly those provoked by the collision of charged particles coming from the outer space that are present in the atmosphere. When a heavily energy charged particle hits the drain region of a transistor that is at the off state it produces free electron-hole pairs, resulting in an ionizing track. The ionization may generate a transient voltage pulse that can be interpreted as a change in the logic signal. In a combinational circuit, the pulse may propagate up to the primary outputs and may be captured by the output storage element. Such phenomenon is referred to as Single-Event Transient (SET). Since it is expected that transistor dimensions will continue to reduce in the next technological nodes, the occurrence of SETs at Earth surface will increase and therefore, fault tolerance techniques will become a must in the design of SOSs. The present work targets the evaluation of transient fault-tolerant adders found in the literature. Two adder architectures were chosen: the Ripple-Carry Adder (RCA) and the Binary Signed Digit Adder (BSDA). The RCA was chosen because it is the least expensive and therefore, the most used architecture for SOS design. The BSDA, in turn, was chosen because it uses the Binary Signed Digit (BSD) system. As a redundant number system, the BSD paves the way to the implementation of fault-tolerant adders using information redundancy. The evaluated fault-tolerant adders were implemented by using the following techniques: Triple Module Redundancy (TMR) and Recomputing with Inverted Inputs and Outputs (RESI), in the case of the RCA, and 1 out of 3 coding and parity verification, in the case of the BSDA. A total of 9 adder architectures were simulated at the electric-level using the Predictive Technology Model (PTM) for 45nm in four different bitwidths: 4, 8, 16 and 32. The obtained results allowed for quantifying the number of transistors, critical delay and average power consumption for each fault-tolerant architecture. Fault injection campaigns were also accomplished by means of electric-level simulations to estimate the degree of protection of each architecture. The results obtained in the present work may be used to guide SOS designers in the choice of the fault-tolerant adder architecture that is most likely to satisfy the design requirements.
59

Investigating techniques to reduce soft error rate under single-event-induced charge sharing / Investigando técnicas para reduzir a taxa de erro de soft sob evento único induzido de carga compartilhada

Almeida, Antonio Felipe Costa de January 2014 (has links)
The interaction of radiation with integrated circuits can provoke transient faults due to the deposit of charge in sensitive nodes of transistors. Because of the decrease the size in the process technology, charge sharing between transistors placed close to each other has been more and more observed. This phenomenon can lead to multiple transient faults. Therefore, it is important to analyze the effect of multiple transient faults in integrated circuits and investigate mitigation techniques able to cope with multiple faults. This work investigates the effect known as single-event-induced charge sharing in integrated circuits. Two main techniques are analyzed to cope with this effect. First, a placement constraint methodology is proposed. This technique uses placement constraints in standard cell based circuits. The objective is to achieve a layout for which the Soft-Error Rate (SER) due charge shared at adjacent cell is reduced. A set of fault injection was performed and the results show that the SER can be minimized due to single-event-induced charge sharing in according to the layout structure. Results show that by using placement constraint, it is possible to reduce the error rate from 12.85% to 10.63% due double faults. Second, Triple Modular Redundancy (TMR) schemes with different levels of granularities limited by majority voters are analyzed under multiple faults. The TMR versions are implemented using a standard design flow based on a traditional commercial standard cell library. An extensive fault injection campaign is then performed in order to verify the softerror rate due to single-event-induced charge sharing in multiple nodes. Results show that the proposed methodology becomes crucial to find the best trade-off in area, performance and soft-error rate when TMR designs are considered under multiple upsets. Results have been evaluated in a case-study circuit Advanced Encryption Standard (AES), synthesized to 90nm Application Specific Integrated Circuit (ASIC) library, and they show that combining the two techniques, the error rate resulted from multiple faults can be minimized or masked. By using TMR with different granularities and placement constraint methodology, it is possible to reduce the error rate from 11.06% to 0.00% for double faults. A detailed study of triple, four and five multiple faults combining both techniques are also described. We also tested the TMR with different granularities in SRAM-based FPGA platform. Results show that the versions with a fine grain scheme (FGTMR) were more effectiveness in masking multiple faults, similarly to results observed in the ASICs. In summary, the main contribution of this master thesis is the investigation of charge sharing effects in ASICs and the use of a combination of techniques based on TMR redundancy and placement to improve the tolerance under multiple faults.
60

Designing single event upset mitigation techniques for large SRAM-Based FPGA components / Desenvolvimento de técnicas de tolerância a falhas transientes em componentes programáveis por SRAM

Kastensmidt, Fernanda Gusmão de Lima January 2003 (has links)
Esse trabalho consiste no estudo e desenvolvimento de técnicas de proteção a falhas transientes, também chamadas single event upset (SEU), em circuitos programáveis customizáveis por células SRAM. Os projetistas de circuitos eletrônicos estão cada vez mais predispostos a utilizar circuitos programáveis, conhecidos como Field Programmable Gate Array (FPGA), para aplicações espaciais devido a sua alta flexibilidade lógica, alto desempenho, baixo custo no desenvolvimento, rapidez na prototipação e principalmente pela reconfigurabilidade. Em particular, FPGAs customizados por SRAM são muito importantes para missões espaciais pois podem ser rapidamente reprogramados à distância quantas vezes for necessário. A técnica de proteção baseada em redundância tripla, conhecida como TMR, é comumente utilizada em circuitos integrados de aplicações específicas e pode também ser aplicada em circuitos programáveis como FPGAs. A técnica TMR foi testada no FPGA Virtex® da Xilinx em aplicações como contadores e micro-controladores. Falhas foram injetadas em todos as partes sensíveis da arquitetura e seus efeitos foram detalhadamente analisados. Os resultados de injeção de falhas e dos experimentos sob radiação em laboratório comprovaram a eficácia do TMR em proteger circuitos sintetizados em FPGAs customizados por SRAM. Todavia, essa técnica possui algumas limitações como aumento em área, uso de três vezes mais pinos de entrada e saída (E/S) e conseqüentemente, aumento na dissipação de potência. Com o objetivo de reduzir custos no TMR e melhorar a confiabilidade, uma técnica inovadora de tolerância a falhas para FPGAs customizados por SRAM foi desenvolvida para ser implementada em alto nível, sem modificações na arquitetura do componente. Essa técnica combina redundância espacial e temporal para reduzir custos e assegurar confiabilidade. Ela é baseada em duplicação com um circuito comparador e um bloco de detecção concorrente de falhas. Esta nova técnica proposta neste trabalho foi especificamente projetada para tratar o efeito de falhas transientes em blocos combinacionais e seqüenciais na arquitetura reconfigurável, reduzir o uso de pinos de E/S, área e dissipação de potência. A metodologia foi validada por injeção de falhas emuladas em uma placa de prototipação. O trabalho mostra uma comparação nos resultados de cobertura de falhas, área e desempenho entre as técnicas apresentadas. / This thesis presents the study and development of fault-tolerant techniques for programmable architectures, the well-known Field Programmable Gate Arrays (FPGAs), customizable by SRAM. FPGAs are becoming more valuable for space applications because of the high density, high performance, reduced development cost and re-programmability. In particular, SRAM-based FPGAs are very valuable for remote missions because of the possibility of being reprogrammed by the user as many times as necessary in a very short period. SRAM-based FPGA and micro-controllers represent a wide range of components in space applications, and as a result will be the focus of this work, more specifically the Virtex® family from Xilinx and the architecture of the 8051 micro-controller from Intel. The Triple Modular Redundancy (TMR) with voters is a common high-level technique to protect ASICs against single event upset (SEU) and it can also be applied to FPGAs. The TMR technique was first tested in the Virtex® FPGA architecture by using a small design based on counters. Faults were injected in all sensitive parts of the FPGA and a detailed analysis of the effect of a fault in a TMR design synthesized in the Virtex® platform was performed. Results from fault injection and from a radiation ground test facility showed the efficiency of the TMR for the related case study circuit. Although TMR has showed a high reliability, this technique presents some limitations, such as area overhead, three times more input and output pins and, consequently, a significant increase in power dissipation. Aiming to reduce TMR costs and improve reliability, an innovative high-level technique for designing fault-tolerant systems in SRAM-based FPGAs was developed, without modification in the FPGA architecture. This technique combines time and hardware redundancy to reduce overhead and to ensure reliability. It is based on duplication with comparison and concurrent error detection. The new technique proposed in this work was specifically developed for FPGAs to cope with transient faults in the user combinational and sequential logic, while also reducing pin count, area and power dissipation. The methodology was validated by fault injection experiments in an emulation board. The thesis presents comparison results in fault coverage, area and performance between the discussed techniques.

Page generated in 0.0507 seconds