31 |
A Functional Analysis of the Small Nuclear RNP Import Adaptor, Snurportin1Ospina, Jason Kerr 01 August 2005 (has links)
No description available.
|
32 |
REGULATION OF PRE-MRNA SPLICING IN MAMMALIAN CELLS: IDENTIFICATION AND CHARACTERIZATION OF INTRONIC AND EXONIC SILENCERSYu, Yang 13 July 2007 (has links)
No description available.
|
33 |
Novel Functions of SMN Complex Members and Their Implications in Spinal Muscular AtrophyWalker, Michael Patrick 21 July 2009 (has links)
No description available.
|
34 |
Electron microscopic localization of tagged proteins in the yeast S. cerevisiae spliceosomal U4/U6.U5 trisnRNP / Elektronenmikroskopische Lokalisierung markierter Proteine im spleißosomalen U4/U6.U5 tri-snRNP aus der Hefe S. cerevisaeHäcker, Irina 02 July 2008 (has links)
No description available.
|
35 |
Mechanism of regulation of the RPL30 pre-mRNA splicing in yeastMacías Ribela, Sara 13 June 2008 (has links)
The mechanisms of pre-mRNA splicing regulation are poorly understood. Here we dissect how the Saccharomyces cerevisiae ribosomal L30 protein blocks splicing of its pre-mRNA upon binding a kink-turn structure including the 5' splice site. We show that L30 binds the nascent RPL30 transcript without preventing recognition of the 5' splice site by U1 snRNP but blocking U2 snRNP association with the branch site. Interaction of the factors BBP and Mud2p with the intron, relevant for U2 snRNP recruitment, is not affected by L30. Furthermore, the functions of neither the DEAD-box protein Sub2p in the incipient spliceosome, nor of the U2 snRNP factor Cus2p on branch site recognition, are required for L30 inhibition. These findings contrast with the effects caused by binding a heterologous protein to the same region, completely blocking intron recognition. Collectively, our data suggest that L30 represses a spliceosomal rearrangement required for U2 snRNP association with the nascent RPL30 transcript.
|
36 |
Cracking the code of 3' ss selection in s.cerevisiaeMeyer, Markus 26 March 2010 (has links)
The informational content of 3' splice sites is low and the mechanisms whereby they are selected are not clear. Here we enunciate a set of rules that govern their selection. For many introns, secondary structures are a key factor, because they occlude alternative 3'ss from the spliceosome and reduce the effective distance between the BS and the 3'ss to a maximum of 45 nucleotides. Further alternative 3'ss are disregarded by the spliceosome because they lie at 9 nucleotides or less from the branch site, or because they are weak splice sites. With these rules, we are able to explain the splicing pattern of the vast majority of introns in Saccharomyces cerevisiae. When in excess, L30 blocks the splicing of its own transcript by interfering with a critical rearrangement that is required for the proper recognition of the intron 3' end, and thus for splicing to proceed. We show that the protein Cbp80 has a role in promoting this rearrangement and therefore antagonizes splicing regulation by L30. / Tanto la información que define el sitio de splicing 3' como los mecanismos de selección del mismo son poco conocidos. En este trabajo, proponemos una serie de reglas que gobiernan esta selección. Las estructuras secundarias son claves en el caso de muchos intrones, porque son capaces de ocultar sitios de splicing alternativos 3' al spliceosoma, y además reducen la distancia efectiva entre el punto de ramificación y el sitio de splicing 3' a un máximo de 45 nucleotidos. Otros sitios de splicing alternativo 3' no son considerados por el spliceosoma como tales porque se encuentran a 9 nucleotidos o menos del punto de ramificación, o porque son sitios de splicing débiles. Con estas reglas somos capaces de explicar el splicing de la mayoría de intrones de Saccharomyces cerevisiae. El exceso de proteína L30 bloquea el splicing de su propio tránscrito porque interfiere con la reorganización necesaria para el correcto reconocimiento del 3' final del intrón, y por tanto de su splicing. Demostramos que la proteína Cbp80 está implicada en promover esta reorganización y que por tanto antagoniza la regulación del splicing por L30.
|
37 |
Co-transcriptional recruitment of the U1 snRNPKotovic, Kimberly Marie 16 November 2004 (has links) (PDF)
It is currently believed that the splicing of most pre-mRNAs occurs, at least in part, co-transcriptionally. In order to validate this principle in yeast and establish an experimental system for monitoring spliceosome assembly in vivo, I have employed the chromatin immunoprecipitation (ChIP) assay to study co-transcriptional splicing events. Here, I use ChIP to examine key questions with respect to the recent proposal that RNA polymerase II (Pol II) recruits pre-mRNA splicing factors to active genes. In my thesis, I address: 1) whether the U1 snRNP, which binds to the 5¡¦ splice site of each intron, is recruited co-transcriptionally in vivo and 2) if so, where along the length of active genes the U1 snRNP is concentrated. U1 snRNP accumulates on downstream positions of genes containing introns but not within promoter regions or along intronless genes. More specifically, accumulation correlated with the presence and position of the intron, indicating that the intron is necessary for co-transcriptional U1 snRNP recruitment and/or retention (Kotovic et al., 2003). In contrast to capping enzymes, which bind directly to Pol II (Komarnitsky et al., 2000; Schroeder et al., 2000), the U1 snRNP is poorly detected in promoter regions, except in genes harboring promoter-proximal introns. Detection of the U1 snRNP is dependent on RNA synthesis and is abolished by intron removal. Microarray data reveals that intron-containing genes are preferentially selected by ChIP with the U1 snRNP furthermore indicating recruitment specificity to introns. Because U1 snRNP levels decrease on downstream regions of intron-containing genes with long second exons, our lab is expanding the study to 3¡¦ splice site factors in hopes to address co-transcriptional splicing. In my thesis, I also focus on questions pertaining to the requirements for recruitment of the U1 snRNP to sites of transcription. To test the proposal that the cap-binding complex (CBC) promotes U1 snRNP recognition of the 5¡¦ splice site (Colot et al., 1996), I use a ?´CBC mutant strain and determine U1 snRNP accumulation by ChIP. Surprisingly, lack of the CBC has no effect on U1 snRNP recruitment. The U1 snRNP component Prp40p has been identified as playing a pivotal role in not only cross-intron bridging (Abovich and Rosbash, 1997), but also as a link between Pol II transcription and splicing factor recruitment (Morris and Greenleaf, 2000). My data shows that Prp40p recruitment mirrors that of other U1 snRNP proteins, in that it is not detected on promoter regions, suggesting that Prp40p does not constitutively bind the phosphorylated C-terminal domain (CTD) of Pol II as previously proposed. This physical link between Pol II transcription and splicing factor recruitment is further tested in Prp40p mutant strains, in which U1 snRNP is detected at normal levels. Therefore, U1 snRNP recruitment to transcription units is not dependent on Prp40p activity. My data indicates that co-transcriptional U1 snRNP recruitment is not dependent on the CBC or Prp40p and that any effects of these players on spliceosome assembly must be reflected in later spliceosome events. My data contrasts the proposed transcription factory model in which Pol II plays a central role in the recruitment of mRNA processing factors to TUs. According to my data, splicing factor recruitment acts differently than capping enzyme and 3¡¦ end processing factor recruitment; U1 snRNP does not accumulate at promoter regions of intron-containing genes or on intronless genes rather, accumulation is based on the synthesis of the intron. These experiments have lead me to propose a kinetic model with respect to the recruitment of splicing factors to active genes. In this model, U1 snRNP accumulation at the 5¡¦ splice site requires a highly dynamic web of protein-protein and protein-RNA interactions to occur, ultimately leading to the recruitment and/or stabilization of the U1 snRNP.
|
38 |
Determination of the Structure of the Spliceosomal U6 snRNP from Yeast, <i>Saccharomyces cerevisiae</i> / Untersuchung der Struktur des spliceosomalen U6 snRNPs in der Hefe, <i>Saccharomyces cerevisiae</i>Karaduman, Ramazan 02 November 2006 (has links)
No description available.
|
39 |
The Molecular Architecture and Structure of the Human Prp19/CDC5L Complex and 35S U5 snRNP / Die Molekulare Architektur und Struktur des humanen Prp19/CDC5L-Komplexes und des 35S U5 snRNPsGrote, Michael 16 February 2011 (has links)
No description available.
|
40 |
Thermodynamische und strukturelle Charakterisierung Importinβ-abhängiger Kernimportprozesse / Thermodynamical and structural characterisation of importinβ dependent nuclear import processesWohlwend, Daniel 22 January 2008 (has links)
No description available.
|
Page generated in 0.0319 seconds