• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 49
  • 25
  • 17
  • 14
  • 14
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Nuclear Organization of Gene Expression in Adenovirus Infected Cells

Aspegren, Anders January 2001 (has links)
<p>Adenovirus infected cells provide a good model system for studying nuclear organization during RNA production and transport. This thesis is focused on the dynamic organization of splicing factors during the late phase of Adenovirus infection in HeLa cells, the nuclear localization of viral RNA, and the pathway used for viral RNA transport to the cytoplasm.</p><p>Splicing factors are relocalized from interchromatin granule clusters to sites of transcription in Adenovirus infected cells at intermediate times of infection. Later, splicing factors and viral RNA accumulate posttranscriptionally in interchromatin granule clusters. The release of the splicing factors from transcription sites was energy dependent or preceded by energy requiring mechanisms. Our data indicated that phosphorylation events inhibited by staurosporine, and 3' cleavage of the transcript are two possible mechanisms involved prior to the release of the RNP complex from transcription sites.</p><p>A viral protein derived from orf6 of early region 4, 34K, is important for the nuclear stability and transport of late viral mRNA derived from the major late transcription unit. A viral mutant lacking this region is defective for posttranscriptional accumulation of viral mRNA in interchromatin granule clusters, and for the accumulation of viral RNA in the cytoplasm. These results suggest that posttranscriptional accumulation of viral RNA in interchromatin granule clusters may contribute to the maturation of the RNP complex or sorting of RNAs and proteins, to prepare the final RNP complex for transport to the cytoplasm.</p><p>A previous model suggested that adenoviral late mRNA is transported to the cytoplasm by utilizing the CRM-1 pathway. This pathway can be blocked by the drug leptomycin B. The data presented in paper IV suggests that this model might not be applicable, since leptomycin B did not inhibit adenoviral late gene expression.</p>
22

Nuclear Organization of Gene Expression in Adenovirus Infected Cells

Aspegren, Anders January 2001 (has links)
Adenovirus infected cells provide a good model system for studying nuclear organization during RNA production and transport. This thesis is focused on the dynamic organization of splicing factors during the late phase of Adenovirus infection in HeLa cells, the nuclear localization of viral RNA, and the pathway used for viral RNA transport to the cytoplasm. Splicing factors are relocalized from interchromatin granule clusters to sites of transcription in Adenovirus infected cells at intermediate times of infection. Later, splicing factors and viral RNA accumulate posttranscriptionally in interchromatin granule clusters. The release of the splicing factors from transcription sites was energy dependent or preceded by energy requiring mechanisms. Our data indicated that phosphorylation events inhibited by staurosporine, and 3' cleavage of the transcript are two possible mechanisms involved prior to the release of the RNP complex from transcription sites. A viral protein derived from orf6 of early region 4, 34K, is important for the nuclear stability and transport of late viral mRNA derived from the major late transcription unit. A viral mutant lacking this region is defective for posttranscriptional accumulation of viral mRNA in interchromatin granule clusters, and for the accumulation of viral RNA in the cytoplasm. These results suggest that posttranscriptional accumulation of viral RNA in interchromatin granule clusters may contribute to the maturation of the RNP complex or sorting of RNAs and proteins, to prepare the final RNP complex for transport to the cytoplasm. A previous model suggested that adenoviral late mRNA is transported to the cytoplasm by utilizing the CRM-1 pathway. This pathway can be blocked by the drug leptomycin B. The data presented in paper IV suggests that this model might not be applicable, since leptomycin B did not inhibit adenoviral late gene expression.
23

Interaction du snARN U1 de l'épissage avec l'ARN polymérase II

Spiluttini, Béatrice 24 March 2009 (has links) (PDF)
Les ARNs non codants sont des régulateurs de l'expression génétique à plusieurs niveaux. Chez la bactérie et chez la souris, des ARNs non codants (6S et B2) ont la propriété de se lier à l'ARN polymérase et d'inhiber son activité. Afin de déterminer si l'ARN polymérase II (RNAPII) humaine était associée à des ARNs non codants, une immunoprécipitation anti-RNAPII a été réalisée sur des cellules HeLa mitotiques. Les ARNs co-immunoprécipités ont été purifiés et marqués et l'ARN U1 s'est trouvé particulièrement enrichi par rapport au contrôle. Cette co-immunoprécipitation reflète l'association de la snRNP U1 avec la RNAPII. Pour vérifier cette association sur un site de transcription actif, des lignées ont été établies avec l'insertion en multiples copies d'un gène à un site unique, créant ainsi un unique super site de transcription visualisable par FISH (Fluorescence In Situ Hybridization). Deux lignées distinctes ont été créées, l'une avec un gène comportant un intron, l'autre avec le même gène où l'intron comporte trois mutations ponctuelles abolissant l'épissage. Alors que les snARNs U2, U4, U5 et U6 sont absents du site non épissé, l'ARN U1 est enrichi de la même façon indépendamment de l'épissage. La présence des protéines spécifiques de la snRNP U1 indique que la snRNP U1 est recrutée au complet au site de transcription. Ces résultats laissent supposer un rôle pour l'association RNAPII - U1snRNP dans l'épissage cotranscriptionnel.
24

Purification and crystallization of spliceosomal snRNPs / Reinigung und Kristallisation von spleißosomalen snRNPs

Weber, Gert 01 July 2008 (has links)
No description available.
25

Caracterização molecular de UsnRNAs em trypanosoma cruzi

Ambrósio, Daniela Luz [UNESP] 24 February 2005 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:23:01Z (GMT). No. of bitstreams: 0 Previous issue date: 2005-02-24Bitstream added on 2014-06-13T20:29:39Z : No. of bitstreams: 1 ambrosio_dl_me_arafcf.pdf: 2442154 bytes, checksum: cc3386b51bef3a73071ee6043f88fc0e (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Universidade Estadual Paulista (UNESP) / Alguns fatores importantes no funcionamento das células eucarióticas correspondem à pequenos complexos de RNA e proteínas; essas partículas de ribonucleoproteínas (UsnRNPs) têm um papel essencial no processamento do pré-mRNA, principalmente durante o splicing (corte de íntrons e união de éxons). Embora as snRNPs estejam definidas em mamíferos, ainda não estão bem caracterizadas em certos tripanosomatídeos como o Trypanosoma cruzi. Assim, este trabalho propôs a caracterização molecular dos snRNAs (U2, U4, U5 e U6), por PCR e RT-PCR de formas epimastigotas de T. cruzi (cepa Y). Essas seqüências amplificadas foram clonadas, seqüenciadas e comparadas entre os tripanosomatídeos e o alinhamento múltiplo apresentou mais de 70% de identidade, exceto da U5 snRNA, que se mostrou menos conservada. Árvores filogenéticas mostraram a proximidade evolutiva dos snRNAs analisados em Trypanosoma brucei e Trypanosoma cruzi. As respectivas estruturas secundárias foram preditas, confirmando-se também as semelhanças com aquelas de T. brucei. O alinhamento das snRNAs de T. cruzi com as seqüências de Homo sapiens mostrou regiões únicas em U2, U4 e U5 snRNAs, nessa espécie, enquanto U6 mostrou-se fortemente conservada. Até o momento, ainda não foi possível a obtenção da seqüência completa de U1 snRNA de T. cruzi. / Some important factors in functioning of the eucariotic cells are the small complexes of RNA and proteins; these particles of ribonucleoproteins (UsnRNPs) have an essential role in the pre-mRNA processing, mainly during splicing (cut of introns and union of exons). Even though they are well defined in mammals, snRNPs are still not characterized in certain Trypanosomatids, as well, Trypanosoma cruzi. So, this work proposed the molecular characterization of the snRNAs (U2, U4, U5 and U6), by PCR and RT-PCR with T. cruzi epimastigote forms (Y strain). These amplified sequences were cloned, sequenced and compared among the Trypanosomatids and the multiple alignment presented more than 70% of identity, except for U5 snRNA, which showed less conserved. Phylogenetic trees showed the evolutionary proximity between the Trypanosoma brucei and Trypanosoma cruzi snRNAs analysed. The respective secondary structures were predicted and also confirmed similarity with T. brucei. The alignment of T. cruzi snRNAs with Homo sapiens sequences showed unique regions in U2, U4 and U5 snRNAs in this species, while U6 was strongly conserved. Until this moment, it was not still possible to obtain U1 snRNA of T. cruzi complete sequence.
26

Caracterização molecular de UsnRNAs em trypanosoma cruzi /

Ambrósio, Daniela Luz. January 2005 (has links)
Orientador: Regina Maria Barretto Cicarelli / Banca: Marcia Aparecida Silva Graminha / Banca: Lucile Maria Floeter-Winter / Resumo: Alguns fatores importantes no funcionamento das células eucarióticas correspondem à pequenos complexos de RNA e proteínas; essas partículas de ribonucleoproteínas (UsnRNPs) têm um papel essencial no processamento do pré-mRNA, principalmente durante o splicing (corte de íntrons e união de éxons). Embora as snRNPs estejam definidas em mamíferos, ainda não estão bem caracterizadas em certos tripanosomatídeos como o Trypanosoma cruzi. Assim, este trabalho propôs a caracterização molecular dos snRNAs (U2, U4, U5 e U6), por PCR e RT-PCR de formas epimastigotas de T. cruzi (cepa Y). Essas seqüências amplificadas foram clonadas, seqüenciadas e comparadas entre os tripanosomatídeos e o alinhamento múltiplo apresentou mais de 70% de identidade, exceto da U5 snRNA, que se mostrou menos conservada. Árvores filogenéticas mostraram a proximidade evolutiva dos snRNAs analisados em Trypanosoma brucei e Trypanosoma cruzi. As respectivas estruturas secundárias foram preditas, confirmando-se também as semelhanças com aquelas de T. brucei. O alinhamento das snRNAs de T. cruzi com as seqüências de Homo sapiens mostrou regiões únicas em U2, U4 e U5 snRNAs, nessa espécie, enquanto U6 mostrou-se fortemente conservada. Até o momento, ainda não foi possível a obtenção da seqüência completa de U1 snRNA de T. cruzi. / Abstract: Some important factors in functioning of the eucariotic cells are the small complexes of RNA and proteins; these particles of ribonucleoproteins (UsnRNPs) have an essential role in the pre-mRNA processing, mainly during splicing (cut of introns and union of exons). Even though they are well defined in mammals, snRNPs are still not characterized in certain Trypanosomatids, as well, Trypanosoma cruzi. So, this work proposed the molecular characterization of the snRNAs (U2, U4, U5 and U6), by PCR and RT-PCR with T. cruzi epimastigote forms (Y strain). These amplified sequences were cloned, sequenced and compared among the Trypanosomatids and the multiple alignment presented more than 70% of identity, except for U5 snRNA, which showed less conserved. Phylogenetic trees showed the evolutionary proximity between the Trypanosoma brucei and Trypanosoma cruzi snRNAs analysed. The respective secondary structures were predicted and also confirmed similarity with T. brucei. The alignment of T. cruzi snRNAs with Homo sapiens sequences showed unique regions in U2, U4 and U5 snRNAs in this species, while U6 was strongly conserved. Until this moment, it was not still possible to obtain U1 snRNA of T. cruzi complete sequence. / Mestre
27

Kontrola kvality v průběhu biogeneze snRNP částic / Quality control in snRNP biogenesis

Roithová, Adriana January 2018 (has links)
(English) snRNPs are key components of the spliceosome. During their life, they are found in the cytoplasm and also in the nucleus, where carry out their function. There are five major snRNPs named according to RNA they contain U1, U2, U4, U5 and U6. Each snRNP consists from RNA, ring of seven Sm or LSm proteins and additional proteins specific for each snRNP. Their biogenesis starts in the nucleus, where they are transcribed. Then they are transported into the cytoplasm. During their cytoplasmic phase, the SMN complex forms the Sm ring around the specific sequence on snRNA and cap is trimethylated. These two modifications are the signals for reimport of snRNA into the nucleus, where they accumulate in the nuclear structures called Cajal bodies (CBs), where the final maturation steps occur. There are several quality control points during snRNP biogenesis that ensure that only fully assembled particles reach the spliceosome. The first checkpoint is in the nucleus immediately after the transcription, when the export complex is formed. The second checkpoint is in the cytoplasm and proofreads Sm ring assembly. If the Sm ring formation fails, the defective snRNPs are degraded in the cytoplasm by Xrn1 exonuclease. However, it is still unclear, how the cell distinguishes between normal and defective...
28

Kontrola kvality v průběhu biogeneze snRNP částic / Quality control in snRNP biogenesis

Roithová, Adriana January 2018 (has links)
(English) snRNPs are key components of the spliceosome. During their life, they are found in the cytoplasm and also in the nucleus, where carry out their function. There are five major snRNPs named according to RNA they contain U1, U2, U4, U5 and U6. Each snRNP consists from RNA, ring of seven Sm or LSm proteins and additional proteins specific for each snRNP. Their biogenesis starts in the nucleus, where they are transcribed. Then they are transported into the cytoplasm. During their cytoplasmic phase, the SMN complex forms the Sm ring around the specific sequence on snRNA and cap is trimethylated. These two modifications are the signals for reimport of snRNA into the nucleus, where they accumulate in the nuclear structures called Cajal bodies (CBs), where the final maturation steps occur. There are several quality control points during snRNP biogenesis that ensure that only fully assembled particles reach the spliceosome. The first checkpoint is in the nucleus immediately after the transcription, when the export complex is formed. The second checkpoint is in the cytoplasm and proofreads Sm ring assembly. If the Sm ring formation fails, the defective snRNPs are degraded in the cytoplasm by Xrn1 exonuclease. However, it is still unclear, how the cell distinguishes between normal and defective...
29

Molekulární mechanizmy kontroly kvality při skládání snRNP částic / Molecular mechanism of quality control during snRNP biogenesis

Klimešová, Klára January 2021 (has links)
The spliceosome is one of the largest and most dynamic molecular machines in the cell. The central part of the complex is formed by five small nuclear ribonucleoproteins (snRNPs) which are generated in a multi-step biogenesis pathway. Moreover, the snRNPs undergo extensive rearrangements during the splicing and require reassembly after every intron removal. Both de novo assembly and post-splicing recycling of snRNPs are guided and facilitated by specific chaperones. Here, I reveal molecular details of function of two snRNP chaperones, SART3 and TSSC4. While TSSC4 is a previously uncharacterized protein, SART3 has been described before as a U6 snRNP-specific factor which assists in association of U6 and U4 particles into di-snRNP, and is important for the U4/U6 snRNP recycling. However, the mechanism of its function has been unclear. Here, I provide an evidence that SART3 interacts with a post-splicing complex and propose that SART3 could promote its disassembly. Our data further suggest that SART3 binds U6 snRNP already within the post-splicing complex and thus participates in the whole recycling phase of U6 snRNP. Then, I show that TSSC4 is a novel U5 snRNP-specific chaperone which promotes an assembly of U5 and U4/U6 snRNPs into a splicing-competent tri-snRNP particle. We identified...
30

Elucidating the Mechanism of Disease Pathogenesis in SMA by Studying SMN Missense Mutant Function

Blatnik, Anton J., III January 2020 (has links)
No description available.

Page generated in 0.0164 seconds