• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 141
  • 43
  • 26
  • 17
  • 13
  • 9
  • 8
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 313
  • 137
  • 98
  • 96
  • 67
  • 54
  • 52
  • 51
  • 46
  • 45
  • 34
  • 33
  • 32
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Compositional Effect on Low-Temperature Transient Liquid Phase Sintering of Tin Indium Solder Paste

John Osarugue Obamedo (11250306) 03 January 2022 (has links)
<div> <div> <div> <p>Transient liquid phase sintering (TLPS) technologies are potential low-temperature solders for sustainable replacements of lead-based solders and high-temperature lead-free solders. Compared to solid-state sintering and lead-free solders, TLPS uses lower temperatures and is, thus, suitable for assembling temperature-sensitive components. TLPS is a non- equilibrium process and determining the kinetics is critical to the estimation of processing times needed for good joining. The tin-indium (Sn-In) system with a eutectic temperature of 119°C is being considered as the basis for a TLPS system when combined with tin. Most models of TLPS include interdiffusion, dissolution, isothermal solidification, and homogenization and are based on simple binary alloys without intermediate phases. The Sn-In system has two intermediate phases and thus the reaction kinetics require additional terms in the modeling. Differential Scanning Calorimetry (DSC) has been used to measure the response of Sn-In alloys during the transient liquid phase reaction. Preparation of tin indium alloys for microstructural analysis is challenging due to their very low hardness. This study uses freeze-fracturing of the tin indium alloys to obtain sections for microstructural analysis. The combination of DSC and microstructure analysis provides information on the reaction kinetics. It was observed that the solid/liquid reaction does not proceed as quickly as desired, that is, substantial liquid remains after annealing even though the overall composition is in the single-phase region in the phase diagram. </p> </div> </div> </div>
82

Investigation and Prediction of Solder Joint Reliability for Ceramic Area Array Packages under Thermal Cycling, Power Cycling, and Vibration Environments

Perkins, Andrew Eugene 05 April 2007 (has links)
Microelectronic systems are subjected to thermal cycling, power cycling, and vibration environments in various applications. These environments, whether applied sequentially or simultaneously, affect the solder joint reliability. Literature is scarce on predicting solder joint fatigue failure under such multiple loading environments. This thesis aims to develop a unified modeling methodology to study the reliability of electronic packages subjected to thermal cycling, power cycling, and vibration loading conditions. Such a modeling methodology is comprised of an enriched material model to accommodate time-, temperature-, and direction-dependent behavior of various materials in the assembly, and at the same time, will have a geometry model that can accommodate thermal- and power-cycling induced low-cycle fatigue damage mechanism as well as vibration-induced high-cycle fatigue damage mechanism. The developed modeling methodology is applied to study the reliability characteristics of ceramic area array electronic packages with lead-based solder interconnections. In particular, this thesis aims to study the reliability of such solder interconnections under thermal, power, and vibration conditions individually, and validate the model against these conditions using appropriate experimental data either from in-house experiments or existing literature. Once validated, this thesis also aims to perform a design of simulations study to understand the effect of various materials, geometry, and thermal parameters on solder joint reliability of ceramic ball grid array and ceramic column grid array packages, and use such a study to develop universal polynomial predictive equations for solder joint reliability. The thesis also aims to employ the unified modeling methodology to develop new understanding of the acceleration factor relationship between power cycling and thermal cycling. Finally, this thesis plans to use the unified modeling methodology to study solder joint reliability under the sequential application of thermal cycling and vibration loading conditions, and to validate the modeling results with first-of-its-kind experimental data. A nonlinear cumulative damage law is developed to account for the nonlinearity and effect of sequence loading under thermal cycling, power cycling, and vibration loading.
83

Modelling of solder interconnection's performance in photovoltaic modules for reliability prediction

Zarmai, Musa Tanko January 2016 (has links)
Standard crystalline silicon photovoltaic (PV) modules are designed to continuously convert solar energy into electricity for 25 years. However, the continual generation of electricity by the PV modules throughout their designed service life has been a concern. The key challenge has been the untimely fatigue failure of solder interconnections of solar cells in the modules due to accelerated thermo-mechanical degradation. The goal of this research is to provide adequate information for proper design of solar cell solder joint against fatigue failure through the study of cyclic thermo-mechanical stresses and strains in the joint. This is carried-out through finite element analysis (FEA) using ANSYS software to develop the solar cell assembly geometric models followed by simulations. Appropriate material constitutive model for solder alloy is employed to predict number of cycles to failure of solder joint, hence predicting its fatigue life. The results obtained from this study indicate that intermetallic compound thickness (TIMC); solder joint thickness (TSJ) and width (WSJ) have significant impacts on fatigue life of solder joint. The impacts of TIMC and TSJ are such that as the thicknesses increases solder joint fatigue life decreases. Conversely, as solder joint width (WSJ) increases, fatigue life increases. Furthermore, optimization of the joint is carried-out towards thermo-mechanical reliability improvement. Analysis of results shows the design with optimal parameter setting to be: TIMC -2.5μm, TSJ -20μm and WSJ -1000μm. In addition, the optimized model has 16,264 cycles to failure which is 18.82% more than the expected 13,688 cycles to failure of a PV module designed to last for 25 years.
84

Možnosti pájení SMD součástek pomocí zařízení Fritsch / The possibilities of SMD components soldering by equipment Fritsch

Juračka, Martin January 2014 (has links)
This thesis focuses on soldering technology in microelectronics. It describes in detail the basic ways of soldering and repairs in electronics. This piece of work shows the principles of technological equipment for bulk soldering and used repairing devices. In the theoretical part of this work there are also briefly described the packages for integrated circuits that were used in the practical part of the thesis. The practical part of the thesis deals with setting of the heat profiles for hot air repair station Fritsch Mikroplacer for LQFP64, SOIC16, TSSOP14, QFN16 and DSBGA5 packages. The heat profiles for assembly and disassembly of the particular types of the packages on designed and manufactured test printed circuit board were set and tested. The resulting heat profiles are compared with the recommended heat profile of an ordinary solder paste SnAg3Cu0,5 which was used for the test. This thesis can serve as an aid for the further settings of heat profiles in other types of packages not only on Fritsch Mikroplacer devices, but also on other repairing devices of this type.
85

Trendy v oblasti pájecích past a vliv nanočástic / Trends in Solder Paste Area and Nanoparticles Influence

Dosedla, Milan January 2016 (has links)
This thesis deals with novel trends in solder paste technology. It focuses on nanoparticle applications used as a tool for improving a state of the art lead free solder alloys. The recently published results about the impact of different types of nanoparticles on properties of newly-emerged nanocomposite solders are discussed and summarized in the thesis. Preparation, practical application and testing of new solder paste based on low temperature SnBi alloy with an admixture of titanium dioxide are also discussed. Finally, properties of solder joints using these solder pastes are investigated and the results are evaluated.
86

Solder paste inspection based on phase shift profilometry

Hui, Tak-wai., 許德唯. January 2007 (has links)
published_or_final_version / abstract / Electrical and Electronic Engineering / Master / Master of Philosophy
87

ELECTRICAL AND MECHANICAL CHARACTERIZATION OF MWNT FILLED CONDUCTIVE ADHESIVE FOR ELECTRONICS PACKAGING

Li, Jing 01 January 2008 (has links)
Lead-tin solder has been widely used as interconnection material in electronics packaging for a long time. In response to environmental legislation, the lead-tin alloys are being replaced with lead-free alloys and electrically conductive adhesives in consumer electronics. Lead-free solder usually require higher reflow temperatures than the traditional lead-tin alloys, which can cause die crack and board warpage in assembly process, thereby impacting the assembly yields. The high tin content in lead-free solder forms tin whiskers, which has the potential to cause short circuits failure. Conductive adhesives are an alternative to solder reflow processing, however, conductive adhesives require up to 80 wt% metal filler to ensure electrical and thermal conductivity. The high loading content degrades the mechanical properties of the polymer matrix and reduces the reliability and assembly yields when compared to soldered assemblies. Carbon nanotubes (CNTs) have ultra high aspect ratio as well as many novel properties. The high aspect ratio of CNTs makes them easy to form percolation at low loading and together with other novel properties make it possible to provide electrical and thermal conductivity for the polymer matrix while maintaining or even reinforcing the mechanical properties. Replacing the metal particles with CNTs in conductive adhesive compositions has the potential benefits of being lead free, low process temperature, corrosion resistant, electrically/thermally conductive, high mechanical strength and lightweight. In this paper, multiwall nanotubes (MWNTs) with different dimensions are mixed with epoxy. The relationships among MWNTs dimension, volume resistivity and thermal conductivity of the composite are characterized. Different loadings of CNTs, additives and mixing methods were used to achieve satisfying electrical and mechanical properties and pot life. Different assembly technologies such as pressure dispensing, screen and stencil printing are used to simplify the processing method and raise the assembly yields. Contact resistance, volume resistivity, high frequency performance, thermal conductivity and mechanical properties were measured and compared with metal filled conductive adhesive and traditional solder paste.
88

Processing of NITI reinforced adaptive solder for electronic packaging / Processing of nickel titanium reinforced adaptive solder for electronic packaging

Wright, William L. 03 1900 (has links)
Approved for public release; distribution is unlimited / Solder joints provide both electrical and mechanical interconnections between a silicon chip and the packaging substrate in an electronic application. The thermomechanical cycling (TMC) in the solder due to the mismatch of the coefficient of thermal expansion (CTE) between the silicon chip and the substrate causes numerous reliability challenges. This situation is aggravated by the ongoing transition to lead-free solders worldwide, and the trend towards larger, hotter-running chips. Therefore, improved solder joints, with higher resistance to creep and low-cycle fatigue, are necessary for future generations of microelectronics. This study reports in the development a process to fabricate solder joints with a fine distribution of shape memory alloys (SMA) NiTi particulates. The microstructure and interface zone of the as-reflowed solder-SMA composite has been characterized. / Lieutenant, United States Navy
89

Surface properties and solderability behaviors of nickel-phosphorous and nickel-boron deposited by electroless plating. / 化學鍍鎳層的表面性質與焊接能力之關係 / Surface properties and solderability behaviors of nickel-phosphorous and nickel-boron deposited by electroless plating. / Hua xue du nie ceng de biao mian xing zhi yu han jie neng li zhi guan xi

January 2000 (has links)
by Chow Yeung Ming = 化學鍍鎳層的表面性質與焊接能力之關係 / 周洋明. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 62-65). / Text in English; abstracts in English and Chinese. / by Chow Yeung Ming = Hua xue du nie ceng de biao mian xing zhi yu han jie neng li zhi guan xi / Zhou Yangming. / Abstract --- p.i / 論文摘要 --- p.ii / Acknowledgements --- p.iii / Table of Contents --- p.v / List of Figures --- p.viii / List of Tables --- p.ix / Abbreviations --- p.x / Chapter Chapter 1 --- INTRODUCTION / Chapter 1.1 --- Electroless Plating (Autocatalytic Deposition) --- p.1 / Chapter 1.2 --- Electroless Nickel (EN) Plating --- p.2 / Chapter 1.3 --- Types of Electroless Nickel Deposits --- p.2 / Chapter 1.4 --- Properties of Electroless Nickel --- p.5 / Chapter 1.5 --- Applications of Electroless Nickel in Electronic Packaging Industry --- p.7 / Chapter 1.6 --- Importance of Solderability --- p.8 / Chapter 1.7 --- Literature Review of Solderability Studies of Electroless Nickel --- p.9 / Chapter 1.8 --- Motivations & Aims of Studies --- p.10 / Chapter Chapter 2 --- EXPERIMENTAL & INSTRUMENTATION / Chapter 2.1 --- Electroless Nickel Plating --- p.11 / Chapter 2.2 --- Solderability Measurements / Chapter 2.2.1 --- Soldering --- p.13 / Chapter 2.2.2 --- Various test methods for solderability --- p.13 / Chapter 2.2.3 --- Wetting balance method --- p.15 / Chapter 2.2.4 --- Solderability measurements of electroless nickel deposits --- p.17 / Chapter 2.2.5 --- Assessment of wetting curves --- p.19 / Chapter 2.3 --- Surface Oxidation Studies / Chapter 2.3.1 --- Use of X-ray photoelectron spectroscopy (XPS) in surface characterization --- p.19 / Chapter 2.3.2 --- XPS system --- p.22 / Chapter 2.3.3 --- Surface composition of electroless nickel deposits --- p.22 / Chapter 2.3.4 --- Oxide thickness characterization by angle-resolved XPS --- p.25 / Chapter 2.3.5 --- Oxide thickness characterization by XPS depth profiling with low-energy-ion sputtering --- p.28 / Chapter 2.4 --- Surface Morphology Studies / Chapter 2.4.1 --- Surface morphology studies by scanning Auger electron microscopy (SAM) & atomic force microscopy (AFM) --- p.28 / Chapter 2.4.2 --- SAM studies of electroless nickel surfaces --- p.29 / Chapter 2.4.3 --- AFM studies of electroless nickel surfaces --- p.29 / Chapter 2.5 --- Oxide Quality Studies --- p.31 / Chapter Chapter 3 --- RESULTS & DISCUSSIONS / Chapter 3.1 --- Solderability Measurements by the Wetting Balance Method --- p.33 / Chapter 3.2 --- Surface Oxidation Studies / Chapter 3.2.1 --- Surface composition of electroless nickel deposits --- p.36 / Chapter 3.2.2 --- Oxide thickness characterization by angle-resolved XPS --- p.38 / Chapter 3.2.3 --- Oxide thickness characterization by XPS depth profiling with low-energy-ion sputtering --- p.44 / Chapter 3.2.4 --- Conclusion --- p.47 / Chapter 3.3 --- Surface Morphology Studies / Chapter 3.3.1 --- SAM studies of electroless nickel surfaces --- p.49 / Chapter 3.3.2 --- AFM studies of electroless nickel surface --- p.49 / Chapter 3.3.3 --- Conclusion --- p.53 / Chapter 3.4 --- Interpretation of Wetting Kinetics of Electroless Nickel --- p.54 / Chapter Chapter 4 --- CONCLUSIONS & FURTHER STUDIES / Chapter 4.1 --- Conclusions --- p.59 / Chapter 4.2 --- Further Studies --- p.60 / Appendix --- p.61 / References --- p.62
90

Thermo-Mechanical Reliability of Micro-Interconnects in Three-Dimensional Integrated Circuits: Modeling and Simulation

Rodriguez, Omar 01 May 2010 (has links)
Three-dimensional integrated circuits (3D ICs) have been designed with the purpose of achieving higher communication speed by reducing the interconnect length between integrated circuits, and integrating heterogeneous functions into one single package, among other advantages. As a growing, new technology, researchers are still studying the different parameters that impact the overall lifetime of such packages in order to ensure the customer receives reliable end products. This study focused on the effect of four design parameters on the lifetime of the interconnects and, in particular, solder balls and through-silicon vias (TSVs). These parameters included TSV pitch, TSV diameter, underfill stiffness and underfill thickness. A three-dimensional finite element model of a 3D IC package was built in ANSYS to analyze the effect of these parameters under thermo-mechanical cyclic loading. The stresses and damage in the interconnects of the IC were evaluated using Coffin-Manson and the energy partitioning fatigue damage models. A three-level Taguchi design of experiment method was utilized to evaluate the effect of each parameter. Minitab software was used to assess the main effects of the selected design parameters. Locations of maximum stresses and possible damage initiation were discussed, and recommendations were made to the manufacturer for package optimization. Due to the very small scale of the interconnects, conducting mechanical tests and measuring strains in small microscopic scale material is very complicated and challenging; therefore, it is very difficult to validate finite element and analytical analysis of stress and strain in microelectronic devices. At the next step of this work, a new device and method were proposed to facilitate testing and strain measurements of material at microscopic scale. This new micro-electromechanical system (MEMS) consisted of two piezoelectric members that were constrained by a rigid frame and that sandwiched the test material. These two piezoelectric members act as load cell and strain measurement sensors. As the voltage is applied to the first member, it induces a force to the specimen and deforms it, which in turn deforms the second piezoelectric member. The second piezoelectric member induces an output voltage that is proportional to its deformation. Therefore, the strain and stresses in the test material can be determined by knowing the mechanical characteristics of the piezoelectric members. Advantages of the proposed system include ease of use, particularly at microscopic scale, adaptability to measure the strain of different materials, and flexibility to measure the modulus of elasticity for an unknown material. An analytical analysis of the device and method was presented, and the finite element simulation of the device was accomplished. The results were compared and discussed. An inelastic specimen was also analyzed and sensitivity of the device to detecting nonlinear behavior was evaluated. A characteristic curve was developed for the specific geometry and piezoelectric material.

Page generated in 0.0409 seconds