• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 241
  • 64
  • 53
  • 31
  • 26
  • 16
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • Tagged with
  • 528
  • 163
  • 159
  • 142
  • 109
  • 87
  • 70
  • 58
  • 52
  • 52
  • 52
  • 50
  • 49
  • 48
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Effect of oxygenated additives in conventional fuels for reciprocating internal combustion engines on performance, combustion and emission characteristics.

Siwale, Lennox Zumbe. January 2012 (has links)
D. Tech. Mechanical Engineering. / Discusses how to reduce the negative impacts of petroleum oil based fuels in reciprocating engines on the environment through the use of oxygenated (alcohol) blends, while not deteriorating engine performance. The specific objectives are as follows: To evaluate the performance characteristics of n-butanol-diesel blends: B5, B10 and B20, in a direct-injection turbo-charged diesel engine and to compare findings with a study that was carried out by others (Sayin, 2010). To compare the performance, combustion and emission characteristics of dual alcohol-gasoline with single alcohol-gasoline blends fired in a naturally-aspirated (NA) spark ignition (SI) engine. To compare the combustion and emission characteristics of dual alcohol (methanol-n-butanol-gasoline) blends with single alcohol (methanol-gasoline) blends in a single-cylinder SI engine. To evaluate the combustion and regulated emission characteristics of DF and n-butanol/diesel blends (B5, B10, and B20 where B5 represents 5 % shared volume of n-butanol to 95 % diesel fuel) fired in a high load turbo-charged diesel engine and to compare the findings with a study that was conducted by Raslavicius & Bazaras, (2010).
412

Investigation of a pulsed-plasma jet for separation shock/boundary layer interaction control

Narayanaswamy, Venkateswa 31 January 2011 (has links)
A pulsed-plasma jet (called a "spark-jet" by other researchers), is a high-speed synthetic jet that is generated by striking an electrical discharge in a small cavity. The gas in the cavity pressurizes owing to the heating and is allowed to escape through a small orifice. A series of experiments were conducted to determine the characteristics of the pulsed-plasma jet issuing into stagnant air at a pressure of 45 Torr. These results show that typical jet exit velocities of about 250 m/s can be induced with discharge energies of about 30 mJ per jet. Furthermore, the maximum pulsing frequency was found to be about 5 kHz, because above this frequency the jet begins to misfire. The misfiring appears to be due to the finite time it takes for the cavity to be recharged with ambient air between discharge pulses. The velocity at the exit of the jet is found to be primarily dependent on the discharge current and independent of other discharge parameters such as cavity volume and orifice diameter. Temperature measurements are made using optical emission spectroscopy and reveal the presence of considerable non-equilibrium between rotational and vibrational modes. The gas heating efficiency was found to be 10% and this parameter is shown to have a direct effect on the plasma jet velocity. These results indicate that the pulsed-plasma jet creates a sufficiently strong flow perturbation that is holds great promise as a supersonic flow actuator. An experimental study is conducted to characterize the performance of a pulsed-plasma jet for potential use in supersonic flow control applications. To obtain an estimate of the relative strength of the pulsed-plasma jet, the jet is injected normally into a Mach 3 cross-flow and the penetration distance is measured by using schlieren imaging. These measurements show that the jet penetrates 1.5 [delta], where [delta] is the boundary layer thickness, into the cross-flow and the jet-to-crossflow momentum flux ratio is estimated to be 0.6. An array of pulsed-plasma jets was issued from different locations upstream of a 30-degree compression ramp in a Mach 3 flow. Furthermore, two different jet configurations were used: normal injection and pitched and skewed injection. The pitched and skewed configuration was used to see if the jets could act as high-bandwidth pulsed vortex generators. The interaction between the jets and the separation shock was studied using phase-locked schlieren imaging. Results show that the plasma jets cause a significant disturbance to the separation shock and clearly influence its unsteadiness. While all plasma jet configurations tested caused an upstream motion of the separation shock, pitched and skewed plasma jets caused an initial downstream shock motion before the upstream motion, demonstrating the potential use of these plasma jets as vortex generator jets. The effect of the plasma jet array on the separation shock unsteadiness is studied in a time-resolved manner by using 10 kHz schlieren imaging and fast-response wall pressure measurements. An array of three pulsed-plasma jets, in a pitched and skewed configuration, is used to force the unsteady motion of the interaction formed by a 24° compression ramp in a Mach 3 flow. The Reynolds number of the incoming boundary layer is Re[theta]=3300. Results show that when the pulsed jet array is placed upstream of the interaction, the jets cause the separation shock to move in a quasi-periodic manner, i.e., nearly in sync with the pulsing cycle. As the jet fluid convects across the separation shock, the shock responds by moving upstream, which is primarily due to the presence of hot gas and hence the lower effective Mach number of the incoming flow. Once the hot gases pass through the interaction, the separation shock recovers by moving downstream, and this recovery velocity is approximately 1% to 3% of the free stream velocity. With forcing, the low-frequency energy content of the pressure fluctuations at a given location under the intermittent region decreases significantly. This is believed to be a result of an increase in the mean scale of the interaction under forced conditions. Pulsed-jet injection are also employed within the separation bubble, but negligible changes to the separation shock motion were observed. These results indicate that influencing the dynamics of this compression ramp interaction is much more effective by placing the actuator in the upstream boundary layer. / text
413

Computational study of arc discharges : spark plug and railplug ignitors [sic]

Ekici, Özgür, 1973- 24 June 2011 (has links)
Not available / text
414

A comparison of SPS  and HP sintered, electroless copper plated carbon nanofibre composites for heat sink applications

Ullbrand, Jennifer January 2009 (has links)
The aim of this study is to synthesize a material with high thermal conductivity and a low coefficient of thermal expansion (CTE), useful as a heat sink. Carbon nanofibres (CNF) are first coated with copper by an electroless plating technique and then sintered to a solid sample by either spark plasma sintering (SPS) or hot pressing (HP). The final product is a carbon nanofibre reinforced copper composite. Two different fibre structures are considered: platlet (PL) and herringbone (HB). The influence of the amount of CNF reinforcement (6-24 %wt), on the thermal conductivity and CTE is studied. CNF has an excellent thermal conductivity in the direction along the fibre while it is poor in the transverse direction. The CTE is close to zero in the temperature range of interest. The adhesion of Cu to the CNF surface is in general poor and thus improving the the wetting of the copper by surface modifications of the fibres are of interest such that thermal gaps in the microstructure can be avoided. The poor wetting results in CNF agglomerates, resulting in an inhomogeneous microstructure. In this report a combination of three different types of surface modifications has been tested: (1) electroless deposition of copper was used to improve Cu impregnation of CNF; (2) heat treatment of CNF to improve wetting; and (3) introduction of a Cr buffer layer to further enhance wetting. The obtained composite microstructures are characterized in terms of chemical composition, grain size and degree of agglomeration. In addition their densities are also reported. The thermal properties were evaluated in terms of thermal diffusivity, thermal conductivity and CTE. Cr/Cu coated platelet fibres (6wt% of CNF reinforcement) sintered by SPS is the sample with the highest thermal conductivity, ~200 W/Km. The thermal conductivity is found to decrease with increasing content of CNFs.
415

Elaboration et étude des conditions de mise en forme de poudres composites métalliques pour des pièces industrielles à vocation électromagnétiques / Elaboration and shaping of composite particles for electromagnetic industrial pieces

Guicheteau, Rudy 18 March 2015 (has links)
Le développement des moteurs électromagnétiques nécessite des matériaux magnétiques possédant une forte induction à saturation, une perméabilité magnétique importante, ainsi que de faibles pertes magnétiques lorsque le matériau est utilisé à des fréquences allant jusqu’à 20 kHz.Pour réduire ces pertes, le matériau doit alors posséder une résistivité électrique la plus élevée possible. Les composites magnétiques doux ont été développés dans ce contexte, en associant du fer (ou un alliage) à un matériau isolant. Historiquement, ceux-ci étaient présents sous forme de couches laminées, mais des matériaux coeur-écorce se sont développés ces dernières années.Au cours de ces travaux, nous avons développé l’enrobage de particules de fer par un matériau isolant et magnétique : le ferrite NiZn. L’enrobage de ferrite a été réalisé par voie liquide. De cette manière, il a été possible de réaliser un enrobage homogène d’épaisseur contrôlée sur des particules de fer sphériques.L’étude de la mise en forme de ces particules coeur-écorce, par métallurgie des poudres, a montré qu’en frittant le matériau composite à une température supérieure à 580°C, une réaction d’oxydoréduction a lieu entre les deux composés. Cette réaction mène à la formation d’une phase type FexNi1-x et d’une solution solide FeO-FeZnO. Ces deux phases font alors chuter les propriétés magnétiques du matériau final.Pour éviter cette réaction d’oxydoréduction, nous avons montré qu’il est possible d’ajouter une barrière de diffusion : la silice, ou bien de fritter le matériau à l’aide de techniques type FAST. De cette manière, nous avons obtenu un matériau possédant des pertes magnétiques comparables à celles de poudres industrielles mais avec une perméabilité magnétique supérieure. / Magnetic materials with high saturation induction, high magnetic permeability and low magnetic losses, are necessary for the development of electromagnetic motors used at frequencies up to 20 kHz.The electric resistivity of these materials must be as high as possible to reduce iron losses. To increase the resistivity of ferromagnetic materials, soft magnetic composites (SMC) were developed combining a ferromagnetic material with an insulating one. Firstly, laminated steel sheets were developed but during the last years core-shell materials were investigated.In this work, we have studied the coating of iron particles by an insulating and a magnetic material: NiZn ferrite. These coatings were deposited by an aqueous solution to obtain a homogenous coating with a controlled thickness on spherical iron particles.A study of composite shaping by powder metallurgy shows a redox reaction between ferrite and iron at a sintering temperature above 580°C. This reaction leads to the formation of a FexNi1-x and a FeO-FeZnO solid solution. These two phases deteriorate the magnetic properties of the final material.To avoid this redox reaction, we have shown that a silica layer can be used as a diffusion barrier. Another solution is to sinter the composite with a Field Assisted Sintering Technique (FAST) as Spark Plasma Sintering. A material with properties similar to industrial material and with a superior magnetic permeability was obtained with Spark Plasma Sintering
416

Thermo-mechanical analysis of cryo-cooled electrode system in COMSOL

Olofsson, Joel January 2018 (has links)
In the planned linear accelerator called Compact Linear Collider, CLIC, electrons and positrons will be accelerated to velocities near the speed of light. A limiting factor in accelerating structures are vacuum breakdowns, which are electrical discharges from a surface as a result of a large electric field being applied. In the preparatory studies for the CLIC, Uppsala University in collaboration with The European Organization for Nuclear Research, CERN, is building a DC Spark system to analyze vacuum breakdowns. This system containing large planar electrodes will be cooled down all the way down to around 4 K in order to limit the rate of wich vacuum breakdowns happen. When cooling a system like this, which consists of different components made of different materials there is the question of how the system will be affected. The objective of this project is to investigate how the cooling will affect the stability in terms of stresses and to analyze the cool down time of the system. Another goal is to make a material recommendation for a few parts based on the results. This will be done by simulating the cooling in COMSOL Multiphysics, which is a program that uses finite element analysis to solve complex problems where different branches of physics interact. The conclusion is that the system will most likely be stable as it is and there is no need to redesign it. The choice of recommended material is alumina with the reason being it should cause the least stress and the smallest gap between the electrodes when the cooling is done. There was no big difference in the cool down time between the materials. Further studies and simulations on the system is also recommended since there are many factors not taken into consideration in this study.
417

Influence de la nature du carburant sur la combustion en moteur à allumage commandé : impact de l’étirement de flamme / Fuel influence on combustion in spark-ignition engine : flame stretch impact

Brequigny, Pierre 12 December 2014 (has links)
Dans un contexte de diminution des émissions polluantes émises par les moteurs à combustion interne, le secteur des transports assiste à une amélioration des motorisations mais également à une diversification des carburants pour l’automobile. L’utilisation de ces différents carburants entraîne souvent un impact sur les performances de la combustion. Dans le cas du moteur à allumage commandé, la performance dépend du dégagement d’énergie, image de la vitesse de la combustion, soit du front de flamme consommant le mélange air-carburant. Or toute flamme en expansion est théoriquement soumise à des effets de courbure et de cisaillement, toutes deux contributions de l’étirement. La réponse à l’étirement étant propre à chaque type de mélange air-carburant (lié au carburant proprement dit, à la richesse du mélange, à la dilution …), ce travail de thèse est centré sur la compréhension de l’impact de l’étirement sur les performances des carburants dans les moteurs à allumage commandé. Pour cela, différents mélanges air-carburant similaires du point de vue des propriétés thermodynamiques et des vitesses fondamentales de combustion laminaire mais avec des sensibilités à l’étirement différentes ont été sélectionnés. Ces mélanges ont ensuite été étudiés dans différentes configurations expérimentales et à l’aide de différentes techniques de mesure: moteur monocylindre opaque et à accès optiques, chambre sphérique de combustion turbulente. Les résultats montrent que les propriétés de sensibilités à l’étirement déterminées en régime laminaire comme la longueur de Markstein et le nombre de Lewis sont indicatrices du comportement des mélanges en combustion turbulente, comme dans la chambre de combustion caractéristique des moteurs à allumage commandé, et sont des paramètres à prendre en considération afin de prédire les performances plus globales de ces carburants que ce soit expérimentalement qu’en simulation. / In a context of decreasing pollutant emissions, the transport sector is facing an improvement of engine concept as well as a fuel diversification. The use of these different fuels often involves an impact on the combustion performance itself. In the case of Spark ignition engine, the efficiency is a function of the released heat, image of the combustion speed, i.e. the flame front speed consuming the air-fuel mixture. It is well known that every expanding flame is submitted to flame curvature and strain rate which are both contributors to flame stretch. As the answer of each air-fuel mixture (i.e. the fuel itself, the equivalence ratio, the dilution …) is different to flame stretch, the objective of this work is to understand flame stretch impact on fuel performance in Spark-Ignition engines. To achieve this goal, different fuel-air mixtures with similar unstretched laminar burning speed and thermodynamic properties but different responses to stretch were selected. Those mixtures were then studied with different experimental devices with different measurement techniques: single-cylinder metallic and optical engines, turbulent combustion spherical vessel. Results show that flame stretch sensitivity properties such as Markstein length and Lewis number, determined in laminar combustion regime, are relevant parameters to describe the flame propagation in turbulent combustion as in the combustion chamber of the Spark-Ignition engine and need to be taken into consideration to evaluate global performance of these fuels, experimentally and also in modeling simulation.
418

Modélisation 0D/1D de la combustion pour l’optimisation des systèmes de combustion des moteurs à allumage commandé / 0D/1D combustion modeling for the combustion systems optimization of spark ignition engines

Demesoukas, Sokratis 17 July 2015 (has links)
De nos jours, la conception de moteurs à combustion interne à allumage commandé exige une consommation de carburant réduite et des émissions polluantes faibles, tout en conservant une performance adéquate. Le coût élevé des essais expérimentaux vient en faveur de l'utilisation de la simulation numérique pour l'évaluation de nouvelles définitions techniques. La modélisation phénoménologique zéro-dimensionnelle de combustion permet d'évaluer les différentes définitions techniques en tenant compte de différents aspects de de la combustion à allumage commandé comme la géométrie, la flamme laminaire et l'impact de la turbulence. Ces modèles calculent également la concentration des espèces de gaz d'échappement. Afin de créer un modèle de combustion, qui pourra décrire la physique de la combustion, les aspects principaux de la combustion pré-mélangée laminaire et turbulent sont identifiés. Trois versions de modèles de combustion typiques sont comparées en termes de description physique du processus de combustion. Le résultat de cette comparaison a indiqué le modèle le plus pertinent (le modèle de densité de surface de flamme). Ce modèle est retenu et il est complété avec la modélisation physique des plusieurs phénomènes qui affectent le taux de dégagement de chaleur. Ces phénomènes sont l’interaction flamme-paroi, les réactions post flamme et l’étirement de flamme. Enfin, le modèle proposé est validé pour plusieurs configurations techniques. Chaque configuration a un impact sur un paramètre spécifique de moteur. Cette analyse montre quels sont les intervalles de confiance et les limitations du modèle proposé. / Nowadays, the design of Spark Ignition internal combustion engines is focused on the reduction of fuel consumption and low pollutant emissions, while conserving an adequate output power. The high cost of experimental testing comes in favor of the use of numerical simulations for the assessment of engine technologies. Phenomenological Zero-Dimensional combustion models allow evaluating various technical concepts since they take into account various aspects of spark ignition combustion such as chamber geometry, laminar flame characteristics (thickness and speed) and the impact of turbulence. Such models also calculate species concentration of the exhaust gases. In order to create a zero-dimensional combustion model, which can be able to describe correctly the physics of combustion, the key aspects of laminar and turbulent premixed combustion are identified. Three versions of typical combustion models are compared in terms of physical description of the combustion process. The result of this comparison indicated the most physically pertinent mod-el (the Flame Surface Density model). This model is retained and is enhanced with physical modeling of the several phenomena, which affect the heat release rate. Those phenomena are the wall-flame interaction, post-flame reactions and flame stretch. Finally, the proposed model is validated for several engine configurations. Each configuration has an impact on a specific engine parameter. This analysis shows which are the confidence intervals and the limitations of the proposed model.
419

Simulation aux Grandes Échelles des combustions anormales dans les moteurs downsizés à allumage commandé / Large-Eddy Simulation of abnormal combustions in spark ignition engines

Robert, Anthony 27 June 2014 (has links)
Le moteur à allumage commandé fortement downsizé est une des solutions les plus prometteuses utilisée par les constructeurs automobiles pour augmenter le rendement et réduire les émissions de CO2. Cependant, les conditions thermodynamiques plus sévères rencontrées dans ces moteurs favorisent l’apparition de combustions anormales (cliquetis et rumble) qui sont difficiles à analyser expérimentalement vu les risques encourus par le moteur. La méthode Reynolds Averaged Navier-Stokes (RANS) s’est imposée depuis plusieurs années pour l’étude des moteurs à piston dans l’industrie, mais elle n’est pas la plus appropriée pour étudier des phénomènes locaux et sporadiques comme les combustions anormales qui n’affectent pas le cycle moyen simulé en RANS. Grâce à l’utilisation d’un code compressible LES et au développement d’une version améliorée des modèles ECFM-LES (Extended Coherent Flame Model) et TKI (Tabulated Kinetics of Ignition) qui permet un découplage total entre les taux de réaction liés à la propagation de la flamme et à l’auto-inflammation, ces travaux mettent en évidence pour la première fois la capacité de la LES à décrire le phénomène de cliquetis dans une configuration réaliste d’un moteur à allumage commandé. Contrairement aux études précédentes [S. Fontanesi and S. Paltrinieri and A. D’Adamo and G. Cantore and C. Rutland, SAE Int. J. Fuels Lubr., 2013-01-1082, pp. 98-118][G. Lecocq, S. Richard, J.-B. Michel, L. Vervisch, Proc. Combust. Inst. 33 (2011) 3105-3114], une étude quantitative du cliquetis est réalisée grâce à des post-traitements spécifiques et similaires pour les résultats expérimentaux et numériques. La LES est capable de prédire la variabilité de la pression cylindre, la fréquence mais également l’angle moyen d’apparition de l’auto-inflammation sur un balayage d’avance à l’allumage. Une analyse 3D démontre également que le cliquetis se déclenche à différents endroits, mais principalement dans la moitié de la chambre sous les soupapes d’échappement. De plus, l’intensité du cliquetis est proportionnelle à la masse de gaz frais brûlée en auto-inflammation pour les faibles intensités, alors qu’une croissance beaucoup plus forte est observée pour les intensités les plus élevées. Ceci suggère que des facteurs supplémentaires interviennent comme la localisation du cliquetis ou les interactions entre l’acoustique interne et l’auto-inflammation. L’utilisation d’un code LES compressible permet une visualisation directe de ces interactions mettant en évidence que les faibles intensités sont liées à des auto-inflammations locales sans couplage alors qu’une transition de la déflagration vers la détonation est possible en moteur automobile et correspond aux intensités les plus fortes. / Highly boosted spark ignition engines are more and more attractive for car manufacturers in terms of efficiency and CO2 emissions reduction. However, thermodynamic conditions encountered in these engines promote the occurrence of abnormal combustions like knock or super-knock, which are experimentally difficult to analyze due to the risks of engine damages. The Reynolds Averaged Navier-Stokes (RANS) method mainly used in industry for piston engines is not the most appropriate as knock does not always affect the mean cycle captured by RANS. Using an accurate LES compressible code and improved versions of ECFM-LES (Extended Coherent Flame Model) and TKI (Tabulated Kinetics of Ignition) models allowing a full uncoupling of flame propagation and auto-ignition reaction rates, this work demonstrates for the first time that LES is able to describe quantitatively knocking combustion in a realistic downsized SI engine configuration. Contrary to previous studies [S. Fontanesi and S. Paltrinieri and A. D’Adamo and G. Cantore and C. Rutland, SAE Int. J. Fuels Lubr., 2013-01-1082, pp. 98-118][G. Lecocq, S. Richard, J.-B. Michel, L. Vervisch, Proc. Combust. Inst. 33 (2011) 3105-3114], a quantified knock analysis is conducted based on a specific post-processing of both numerical and experimental data. LES is able to predict the in-cylinder pressure variability, the knock occurrence frequency and the mean knock onset crank angle for several spark timings. A 3D analysis also demonstrates that knock occurs at random locations, mainly at the exhaust valves side. Knock intensity is found proportional to the fresh gases mass burned by auto-ignition at low knock intensities, while an exponential increase at the highest intensities suggests the influence of additional factors like the knock location in the cylinder or complex behavior of knocking combustion. A direct LES study of acoustic and autoignition interactions is then achieved. The LES visualizations allows showing that low knock intensities are only linked to local autoignition, but a deflagration to detonation transition occurs in such engine operating conditions and is responsible for the highest knock intensities.
420

Étude expérimentale et numérique de l’allumage des turboréacteurs en conditions de haute altitude / Experimental and numerical study of aircraft engine ignition in high altitude conditions

Linassier, Guillaume 03 May 2012 (has links)
Le développement et la certification de systèmes propulsifs aéronautiques nécessitent une phase d'essais sur banc moteur. Ces essais permettent entre autres de caractériser les limites d'allumage des foyers de combustion de turbomachines, mais sont extrêmement coûteux et générateurs de délais pour l'industriel. Afin de limiter leur recours, il est nécessaire de développer des méthodes permettant de prévoir de la façon la plus fiable possible les performances d'allumage d'un prototype de chambre de combustion, et ce aussi bien pour des conditions de décollage au niveau de la mer que pour le cas critique de la haute altitude.L'objectif de cette thèse est de contribuer au développement et à la validation d’outils numériques pour la prévision de l'allumage des foyers de combustion à partir de données expérimentales obtenues sur le banc MERCATO de l’ONERA. Ces travaux ont été conduits en étroite coopération avec TURBOMECA. Des améliorations ont été apportées à un modèle permettant de simuler l'allumage d'un brouillard de carburant suite à un dépôt d'énergie par bougie à arc électrique. Ce modèle a été couplé à un code de calcul multiphysique (code CEDRE) afin d'établir des cartographies d'allumage à partir d'un champ aérodiphasique moyenné, mais également de simuler la phase de propagation de la flamme à l’ensemble du foyer par approche RANS pseudo-stationnaire. Afin de valider ces deux approches, une caractérisation expérimentale d'une maquette de chambre mono-secteur a été réalisée sur le banc d'essai MERCATO. Ces essais ont permis de constituer une banque de données très fournie pour différents cas tests. La comparaison de la cartographie d’allumage expérimentale à celle fournie par la simulation numérique donne des résultats très satisfaisants et encourageants en vue d’une application à un foyer réel de turbomachine. En parallèle, des résultats très prometteurs ont été obtenus sur une nouvelle maquette de chambre de combustion trisecteur,dérivée d'un foyer industriel, permettant de comparer ses limites d’allumage à celles obtenues sur la chambre réelle. Cette configuration fera l’objet par la suite d’une étude détaillée de la propagation de la flamme intersecteurs, impossible à réaliser sur la géométrie d'un foyer annulaire complet. / Design of aircraft engines requires tests on engine benches. These tests allow characterizing combustor ignition limits, but are extremely expensive and time consuming. In order to limit their number, it is necessary to develop alternative methods enabling to predict the ignition performances of a combustor prototype, for both ground conditions and high altitude conditions, the latter being particularly critical.The purpose of this thesis is to contribute to the development and validation of numerical tools enabling to predict ignition performances of combustor. Validation will be possible using an experimental data base obtained on the MERCATO test bench, at ONERA. This work results from a close cooperation with TURBOMECA. A numerical model, previously developed to predict the ignition of fuel spray following a spark discharge, has been improved. This model has been combined to a multiphysics CFD code (CEDRE) in orderto build ignition map from a mean two-phase flow field, and also to compute the flame propagation stage using RANS approach. In order to validate both methods, experimental characterization of a one-sectorcombustor has been performed on the MERCATO test rig. A complete data base for validation of CFD code isnow available. Comparison of experimental and numerical ignition mapping showed good agreements for the different tests cases, and seems encouraging for an application on an industrial combustor. In the same time,promising results have been obtained with a new experimental three-sector combustor. Its geometry is basedon an industrial combustor, allowing a comparison of ignition performances between the simplified and the industrial combustors

Page generated in 0.2746 seconds