• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modelos de emparelhamento integráveis / Integrable pairing models

Walney Reis Fernandes 28 May 2010 (has links)
O objetivo deste trabalho foi o estudo do Ansatz de Bethe Algébrico (ABA), que é uma técnica utilizada na obtenção dos auto-estados do hamiltoniano de inúmeros modelos da Mecânica Estatística e da Teoria Quântica de Campos. Aplicamos este procedimento na diagonalização de três modelos de spins: o modelo de Heisenberg, o modelo de Heisenberg-Sklyanin e o modelo de Heisenberg-Cherednik. Na diagonalização do primeiro modelo, não foi possível encontrar todos os auto-estados do hamiltoniano através do ABA e, durante o procedimento de obtenção das expressões analíticas, nos deparamos com um conjunto de identidades inédito na literatura. A matriz de borda do modelo de Heisenberg-Sklyanin acopla o último e o primeiro sítios, generalizando o modelo anterior, e permite estabelecer uma relação limite com outros modelos integráveis. Neste caso também não conseguimos obter todos os auto-estados utilizando a técnica do ABA. Diferentemente do que ocorreu para os primeiros modelos, o de Heisenberg-Cherednik, com acoplamentos que alternam a intensidade ao longo da cadeia de spin, apresentou um conjunto completo de auto-estados quando diagonalizado pelo ABA. / The goal of this work was to study the Algebraic Bethe ansatz (ABA), which is a technique used to obtain the eigenstates of Hamiltonian of many models of Statistical Mechanics and Quantum Field Theory. We apply this procedure to diagonalize three types of spin models: the Heisenberg model, the Heisenberg-Sklyanin model and the Heisenberg-Cherednik model. On diagonalization of the …rst model, we could not …nd all the eigenstates of Hamiltonian through ABA, and during the procedure for obtaining the analytical expressions, we face an unprecedented set of identities in literature. The Sklyanin´s boundary matrix couples the fi…rst and last sites, generalizing the previous model, and provides a limit for other integrable models. In this case also did not get all eigenstates using the technique of ABA. Unlike what happened with the …rst models, the Heisenberg-Cherednik model, with alternating couplings the intensity along the spin chain, presented a complete set of eigenstates when diagonalized by ABA.
12

Energy landscapes, equilibrium and out of equilibrium physics of long and short range interacting systems / Paysages énergétiques, physique d'équilibre et hors d'équilibre des systèmes avec interactions à longue et courte portée

Nardini, Cesare 22 February 2013 (has links)
La thèse est divisée en deux parties, correspondantes aux deux sujets principaux de mon travail de thèse.Dans la première partie, on introduit les systèmes avec interactions à longue portée, dont les plasmas et les systèmes auto-gravitants. On résume les caractéristiques bien connues des systèmes isolés, en se focalisant sur la relaxation à l'équilibre. Ensuite, on considère les systèmes avec interactions à longue portée forcées hors d'équilibre et on généralise la théorie cinétique des systèmes isolés à des systèmes hors d'équilibre. Notre travail présentera les généralisations pour décrire les écoulements géophysiques et la turbulence bidimensionelle.La deuxième partie de la thèse traite des propriétés d'équilibre des systèmes Hamiltoniens utilisant les techniques des paysages énergétiques. On résume plusieurs résultats récents et on les applique à des systèmes avec interactions à longue et à courte portée. L'objectif principal de ce travail est l'étude de modèles avec un paysage énergétique beaucoup plus compliqué que ceux étudiés dans la littérature. Dans le cas de modéles O(n) ferromagnétiques, notre analyse a dévoilé une ressemblance surprenante entre l'énergie critique du modèle d'Ising et celle des autres modèles O(n). Une généralisation du formalisme de Stillinger et Weber est discutée. / The thesis is divided in two parts, corresponding to the two main subjects on which I have worked during my PhD. In the first Part, we introduce many-body long-range interacting systems, such as plasma and self-gravitating systems. We first review the well known properties of isolated systems, which show peculiar behaviors both for what concern the equilibrium and the relaxation to equilibrium. We then consider long-range systems driven away from equilibrium and we show how the techniques developed for isolated systems can be extended to describe these situations. Generalizations to describe simplified models relevant for geophysical flows and two-dimensional turbulence are also discussed. Our work stands at the edge between the study of long-range interacting systems and the study of non-equilibrium systems.The second part of the thesis is devoted to the study of equilibrium properties of Hamiltonian systems with energy landscape techniques. A number of recent results is reviewed and applied to long and short-range interacting systems. One of the scope of my work was to study models whose energy landscape is much more complicated than what previously done. In the case of ferromagnetic short-range O(n) models on hypercubic lattices, our analysis unveiled a striking similarity between the critical energies of the Ising model and the O(n) models defined on the same lattice with the same interaction matrix. Generalizations of the Stillinger and Weber formalism are discussed as preliminary results and future perspectives.
13

Glaces kagomé de spins artificiels : de la dégénérescence à courte-portée vers l'ordre dipolaire / Artificial Kagome Spin Networks - From Short-Range Degeneracy towards Long-Range Dipolar Order

Chioar, Ioan-Augustin 16 October 2015 (has links)
Les réseaux artificiels de spin ont été initialement introduites pour l'étude des effets de frustration géométrique dans des réseaux bidimensionnelles de spin, un approche complémentaire à l'étude de la frustration rencontré dans les glaces pyrochlores de spin. Généralement fabriqués en utilisant des techniques de lithographie, ces réseaux de nanoaimants peuvent être élaborer avec une grande degré de liberté. Etant donné la taille et la forme de ces plots magnétiques, l'aimantation est presque uniforme dans tout leur volume, un aspect qui fait que ces aimants peuvent être considérés comme des spin Ising classique géants. Avec la possibilité d'imager chacun degrée de liberté magnétique dans l'espace direct, ces systèmes offrent un large spectre d'opportunités pour l'étude de la frustration dans un cadre magnétostatiques bidimensionnelle et la potentielle découverte de phases magnétiques exotiques. Toutefois, contrairement à leurs homologues de la matière condensée, la première génération de glaces de spin artificiels sont pratiquement insensibles aux fluctuations thermiques. Par conséquence, d'autres dynamiques sont nécessaires pour amener ces systèmes vers leurs variétés de basse énergie et un protocole de désaimantation a été généralement utilisé dans ce sens, mais ce processus arrivent à accommoder juste partiellement les interactions entre les nanoaimants. Plus récemment, des réseaux artificiels de spin thermiquement-actives ont été introduits, permettant de dépasser les limitations des réseaux désaimantes pour la recherche des textures de spin exotiques.Cette thèse présente des études expérimentales et numériques réalisés sur des réseaux kagomé de spin. La glace artificielle kagomé planaire a été un point central d'intérêt pendant les dernières années, grâce à ses variétés énergétiques hautement dégénérés et aux textures de spin non-conventionnelles. Ainsi, dans un cadre magnétostatique, il présent une phase exotique caractérisée par la coexistence d'un état cristallin, associée à la charge magnétique, et un réseau de spin désordonnés. Bien que la désaimantation n'arrive pas d'accéder cet état remarquable, les réseaux thermiquement actives ont réussi de créer des cristallites de cette phase. La première partie de ce travail présente le protocole expérimental utilisé pour réaliser cet état. En plus, un modèle cinétique est proposé qui reproduit avec succès les caractéristiques observées et explique l'efficacité de cette approche.Dans un deuxième temps, un étude sur un nouveau système de glace de spin artificielle est présenté: le réseau kagomé Ising artificielle. Ce système présentent des moments magnétiques qui pointent selon l'axe verticale, contrairement au réseau kagomé planaire. Un étude récent sur ce système a conclu que, après la démagnétisation, ces deux réseaux kagomé artificiels présentent des corrélations de spins similaires et leurs états magnétiques rémanentes peuvent être bien caractérisées par des modèles de spin basés sur des interactions à courte portée. Avec des protocoles de désaimantation, des mesures de microscopie à force magnétique et des simulations Monte Carlo, il est montré que les interactions dipolaires à longue portée entre les éléments magnétiques ne peuvent pas être négligés lors de la description des états rémanents des réseaux kagome Ising artificiels désaimantées. Ces résultats limitent la validité du comportement universel entre les deux réseaux kagomé artificiels et enrichissent la palette de phases magnétiques qui peuvent être réaliser avec de tels systèmes nanostructurés. Les simulations Monte Carlo indiquent que ce réseau kagomé Ising présente un comportement de basse énergie différente de la glace kagomé planaire, mais la variétés fondamentale dans ce cadre dipolaire reste inconnu. Toutefois, en inspectant ses caractéristiques thermodynamiques à basse température et grâce une construction géométrique, un candidat pour l'état fondamental est fourni. / Artificial spin networks were initially proposed as toy-spin models destined for the investigation of magnetic frustration effects in two-dimensional spin lattices, a complementary approach to the study of the magnetic frustration encountered in spin ice pyrochlores. Generally fabricated via lithography techniques, these arrays of nano-scale magnetic islands can be designed at-will. Given the size and shape of the elements, their magnetization is almost uniform throughout their volume, thus making these islands act like classical Ising spins. Combined with the possibility of individually imaging the magnetic degrees of freedom in real space, these systems offer an almost infinite playground for the investigation of competing interactions in magnetostatic frameworks and potential for the experimental discovery of novel and exotic magnetic phases. However, unlike their condensed matter counterparts, first-generation artificial spin networks are insensitive to thermal fluctuations, requiring other driving mechanisms for accessing their complex low-energy manifolds. A field-protocol has been employed for driving such networks towards their ground-state configurations, although they only partially manage to accommodate pair-island interactions. More recently, thermally-active artificial spin networks have been introduced, surpassing the limits of demagnetized arrays in the quest for exotic low-energy spin textures.This thesis presents experimental and numerical studies performed on artificial kagome spin arrays, one of the most frustrated two-dimensional lattices. The kagome spin ice geometry has received most of the community's attention as it presents highly degenerate manifolds and unconventional spin textures. Within a dipolar long-range framework, it displays a low-temperature regime characterized by the coexistence of a crystalline phase, associated to the magnetic charge, and a disordered spin lattice. While demagnetizing such artificial kagome arrays cannot access this exotic state, thermally-active networks can locally retrieve such a phase, creating crystallites of antiferromagnetically-ordered magnetic charges. The first part of this work presents the experimental protocol employed to this purpose. A kinetic model is also proposed that successfully captures the observed experimental features and explains the efficiency of this approach.The second part of the current thesis presents a study of a novel artificial spin ice system, the artificial kagome Ising network. This network primarily differs from the kagome spin ice array by having its magnetic moments pointing along the vertical axis. A recent study of this system has concluded that, after demagnetization, these two artificial kagome networks display similar pairwise spin correlation development and their final frozen states can be well characterized by short-range interaction models. Through the use of demagnetization protocols, magnetic force microscopy and Monte Carlo simulations, it is demonstrated that long-range dipolar interactions between the magnetic elements cannot be neglected when describing the remanent states of demagnetized artificial kagome Ising networks. These results assess the limits of the reported universal behavior of artificial kagome lattices and enrich the spectrum of magnetic phases that could be achieved with such nanostructured systems. Indeed, Monte Carlo simulations indicate that this kagome Ising network presents a different low-energy behavior than kagome spin ice, the incipient stages of which have been accessed experimentally, but its dipolar ground-state configuration remains unknown. Nevertheless, by inspecting the low-temperature thermodynamic features of this array and through the use of a geometrical construction, a ground-state candidate is provided.
14

Nonequilibrium dynamics in lattice gauge theories: disorder-free localization and string breaking

Verdel Aranda, Roberto 01 March 2022 (has links)
Lattice gauge theories are crucial for our understanding of many physical phenomena ranging from fundamental particle interactions in high-energy physics to frustration and topological order in condensed matter. Hence, many equilibrium aspects of these theories have been studied intensively over the past decades. Recent developments, however, have shown that the study of nonequilibrium dynamics in lattice gauge theories also provides a very fertile ground for interesting phenomena. This thesis is devoted to the study of two particular dynamical processes in lattice gauge theories and related quantum spin models. First, we show that an interacting two-dimensional lattice gauge theory can exhibit disorder-free localization: a mechanism for ergodicity breaking due to local constraints imposed by gauge invariance. This result is particularly remarkable as the stability in two dimensions of the more conventional (disorder-induced) many-body localization is still debated. Concretely, we show this type of nonergodic behavior in the quantum link model. Our central result is based on a bound on the localization-delocalization transition, which is established through a concomitant classical percolation problem. Further, we develop a numerical method dubbed “variational classical networks”, to study the quantum dynamics in this system. This technique provides an efficient and perturbatively controlled representation of the wave function in terms of networks of classical spins akin to artificial neural networks. This allows us to identify distinguishing transport properties in the localized and ergodic phases, respectively. In the second problem, we study the dynamics of string breaking, a key process in confining gauge theories, where a string connecting two charges decays due to the creation of new particle-antiparticle pairs. Our main result here is that string breaking can also be observed in quantum Ising chains, in which domain walls get confined either by a symmetry-breaking field or by long-range interactions. We identify, in general, two distinct stages in this process. While at the beginning the initial charges remain stable, the string can exhibit complex dynamics with strong quantum correlations. We provide an effective description of this string motion, and find that it can be highly constrained. In the second stage, the string finally breaks at a timescale that depends sensitively on the initial separation of domain walls. We observe that the second stage can be significantly delayed as a consequence of the dynamical constraints appearing in the first stage. Finally, we discuss the generalization of our results to low-dimensional confining gauge theories. As a general aspect of this work, we discuss how the phenomena studied here could be realized experimentally with current and future technologies in quantum simulation. Furthermore, the methods developed in this thesis can also be applied to other lattice gauge theories and constrained quantum many-body models, not only to address purely theoretical questions but also to provide a theoretical description of experiments in quantum simulators. / Gittereichtheorien sind ein wichtiger Bestandteil im Verständnis vieler physikalischer Phänomene und Grundlage verschiedener Theorien, welche sich von der elementaren Wechselwirkungen in der Hochenergiephysik, Frustration in Spinmodellen bis hin zu topologischer Ordnung in der Festkörperphysik erstrecken. Die Eigenschaften von Eichtheorien im Gleichgewicht waren in den letzten Jahrzehnten ein zentraler Punkt der Forschung. Obwohl sich Untersuchungen der Dynamik jenseits des Gleichgewichs als eine große Herausfordung dargestellt haben, haben kürzliche Erkenntnisse gezeigt, dass die Dynamik in Gittereichtheorien überraschende und interessante Entdeckungen bereithält. Diese Dissertation behandelt zwei zentrale dynamische Prozesse in Gittereichtheorien und verwandten Spinmodellen. Einerseits soll die Dynamik von zweidimensionalen und wechselwirkenden Gittereichtheorien untersucht werden im Falle des sogenan- nten Quanten-Link-Modells untersucht werden. Entgegen der Ergodenhypothese zeigt das System Lokalisierung ohne Unordnung aufgrund lokaler Zwangsbedingungen durch Eininvarianz. Dieses Ergebnis ist insofern bemerkenswert, als die gewöhnliche, durch Unordnung induzierte, Vielteilchenlokalisierung in zwei Dimensionen umstritten ist. Als ein Hauptergebnis finden wir einen Übergang zwischen einer lokalisierten und ergodischen Phase, dessen Existenz durch ein zugehöriges klassisches Perkolationsproblem gezeigt werden konnte. Die quantenmechanischen Transporteigenschaften, elementar verschieden in der lokalisierten und ergodischen Phase, werden charakterisiert und untersucht. Die Lösung der quantenmechanischen Zeitentwicklung wird durch eine methodische Weiterentwicklung der sogenannten „variationellen klassischen Netzwerke“ erreicht Diese Methode stellt eine perturbative, aber kontrollierte Repräsentation von zeitentwickelten quantenmechanischen Wellenfunktionen dar in Form von Netzwerken klassischer Spins, ähnlich wie bei einem künstlichen neuronalen Netz. Im zweiten Teil untersuchen wir die Dynamik eines Schlüsselprozesses in Eichtheorien mit Confinement, welcher als „String-Breaking“ bezeichnet wird In diesem Prozess zerfällt der der Strang, der zwei elementare Ladungen verbindet, durch die Bildung neuer Teilchen-Antiteilchen-Paare. Ein Hauptresultat dieser Arbeit ist die Beobachtung dieses dynamischen Phänomens in Quantum-Ising-Ketten und damit in Systemen ohne Eichinvarianz. Das Confinement entsteht dabei zwischen Domänenwänden entweder durch eine langreichweitige Wechselwirkung zwischen den beteiligten Spins oder durch symmetriebrechende Magnetfelder. Es wird gezeigt, dass während des „String-breaking“ Prozesses das Modell zwei Phasen durchläuft: Während zu Beginn die Anfangsladungen stabil bleiben, weist der Strang eine komplexe Dynamik mit starken Quantenkorrelationen auf. Für diese erste Phase wird eine effektive Beschreibung eingeführt, um die verschiedenen Aspekte zu analysieren und zu verstehen. Die Zeitskalen zur Destabilisierung des Strangs innerhalb einer zweiten Phase zeigen eine starke Abhängigkeit von der anfänglichen Trennung der Domänenwände. Es wird gezeigt, dass die zweite Phase als Konsequenz der dynamischen Beschränkungen der ersten Phase signifikant verzögert werden kann. Diese Resultate können in niedrigdimensionalen Eichtheorien verallgemeinert werden. Weiterführend sollen die Ergebnisse als Grundlage einer experimentellen Realisierung durch Quantensimulationen dienen. Die entwickelten Methoden können auf andere Eichtheorien und verwandten Vielteilchenmodellen angewendet werden und bieten eine Plattform für weitere Ansätze.
15

Solitary objects on quantum spin rings

Shchelokovskyy, Pavlo 16 December 2004 (has links)
We investigate whether quantum spin rings with nearest-neighbor Heisenberg or Ising exchange interactions can host solitary states. Using complete diagonalization techniques the system is described without classical or semiclassical approximation. In this case definitions used in connection with classical solitons are not applicable, one needs to redefine what solitary objects on a quantum spin system with translational symmetry ought to be. Thus, we start our contribution by defining which quantum states possess solitary character. In addition we discuss useful observables in order to visualize solitary quantum states. Then we demonstrate for various quantum spin rings that solitary quantum states indeed exist, and that they are moving around the spin ring without changing their shape in the course of time.
16

Anisotropie und Magnetostriktion als Korrekturen zum Heisenberg-Modell am Beispiel des Moleküls {Ni4Mo12}

Brüger, Mirko 25 September 2008 (has links)
Das Standart-Modell zur Beschreibung von Observablen magnetischer Moleküle ist das Heisenberg-Modell. In diesem wird der Magnetismus des Superaustausches der Elektronen durch einfache bilineare Spin-Spin-Kopplungen beschrieben. Zur genaueren Approximation experimenteller Ergebnisse können, der jeweiligen Struktur des Moleküls entsprechend, verschiedene Erweiterungen des Heisenberg-Modells verwendet werden. Diese werden, explizit für das 4-Spin-System {Ni4Mo12}, in ihren Auswirkungen auf die Hochtemperatur-Nullfeldsuszeptibilität, die Nullfeldsuszeptibilität und die Hochfeldmagnetisierung betrachtet. Die wesentlichen Erweiterungen sind dabei die Einzelionen-Anisotropie, die Dzyaloshinskii-Moriya-Anisotropie und die allgemeinen Kopplungen zweiter Ordnung. Letztere stellen eine Verallgemeinerung der bekannten biquadratischen Kopplungen dar und werden im Rahmen eines magneto-elastischen Modells hergeleitet. Dabei ergeben sich unterschiedliche Einschränkungen der Kopplungsmatrix zweiter Ordnung für starre und flexible Molekülstrukturen. Speziell für {Ni4Mo12} entsprechen die Ergebnisse numerischer Simulationen von Messwerten einer Strukturänderung im externen Magnetfeld.
17

Quantum simulation of spin models with assembled arrays of Rydberg atoms / Simulation quantique de modèles de spins dans des matrices d’atomes de Rydberg

De leseleuc de kerouara, Sylvain 10 December 2018 (has links)
Des atomes individuels piégés dans des matrices de pinces optiques et excités vers des états de Rydberg forment une plateforme expérimentale prometteuse pour la simulation quantique de modèles de spins. Lors de cette thèse, nous avons d’abord résolu le problème du chargement aléatoire des pièges, seulement 50 % d’entre eux étant chargés avec un atome. Nous avons développé une technique pour préparer des matrices 2D, puis 3D, d’atomes de 87Rb en les déplaçant un par un avec une pince optique mobile contrôlée par ordinateur. Nous avons ensuite réalisé le modèle d’Ising en excitant de manière cohérente les atomes depuis leur état électronique fondamental vers un niveau de Rydberg. Après avoir trouvé un régime optimal où l’interaction dipolaire entre deux atomes de Rydberg se réduit à une énergie de van der Waals, nous avons tenté de préparer adiabatiquement l’état de Néel qui minimise l’énergie d’interaction. Nous avons montré que l’efficacité de préparation étaitlimitée par la décohérence induite par les lasers d’excitation. Nous avons ensuite utilisé un autre régime d’interaction, le couplage dipolaire résonant, pour étudier des modèles de spins de type XY, dont le modèle Su-Schrieffer-Heeger, connu pour sa phase fermionique topologique protégée par une symétrie chirale. Ici, nous avons remplacé les fermions par des particules effectives de type `boson de cœur dur’, ce qui modifie les propriétés de cette phase. Nous avons d’abord retrouvé les propriétés à une particule, comme l’existence d’états de bords à énergie nulle. Nous avons ensuite préparé l’état fondamental à N corps pour un remplissage moitié, et observé sa dégénérescence causée par les états de bords, même en présence d’une perturbation qui lèverait cette dégénérescence dans le cas fermionique. Nous avons expliqué ce résultat par l’existence d’une symétrie plus générale, qui protège la phase bosonique. / Single atoms trapped in arrays of optical tweezers and excited to Rydberg states are a promising experimental platform for the quantum simulation of spin models. In this thesis, we first solved a long-standing challenge to this approach caused by the random loading of the traps, with only 50% of them filled with single atoms. We have engineered a robust and easy-to-use method to assemble perfectly filled two-dimensional arrays of 87Rb atoms by moving them one by one with a moveable optical tweezers controlled by computer, a technique further enhanced to trap, image and assemble three-dimensional arrays. We then implemented the quantum Ising model by coherently coupling ground-state atoms to a Rydberg level. After finding experimental parameters where the dipole-dipole interaction takes the ideal form of a van der Waals shift, we performed adiabatic preparation of the Néel state. We showed that the coherence time of our excitation lasers limited the efficiency of this technique. We then used a different type of interaction, a resonant dipolar coupling, to implement XY spin models and notably the Su-Schrieffer-Heeger model, known for its fermionic topological phase protected by the chiral symmetry. Here, we used effective hard-core bosons, which modify the properties of the topological phase. We first recovered known properties at the single particle level, such as the existence of localized zero-energy edge-states. Then, preparing the many-body ground state at half-filling, we observed a surprising robustness of its four-fold degeneracy upon applying a perturbation. This result was explained by the existence of a more general symmetry protecting the bosonic phase.
18

On Classical and Quantum Mechanical Energy Spectra of Finite Heisenberg Spin Systems

Exler, Matthias 16 May 2006 (has links)
Since the synthesis of Mn12, which can be regarded as the birth of the class of magnetic molecules, many different molecules of various sizes and structures have been produced. The magnetic nature of these molecules originates from a number of paramagnetic ions, whose unpaired electrons form collective angular momenta, referred to as spins. The interaction between these spins can often be described in the Heisenberg model. In this work, we use the rotational band model to predict the energy spectrum of the giant Keplerate {Mo72Fe30}. Based on the approximate energy spectrum, we simulate the cross-section for inelastic neutron scattering, and the results are compared to experimental data. The successful application of our approach substantiates the validity of the rotational band model. Furthermore, magnetic molecules can serve as an example for studying general questions of quantum mechanics. Since chemistry now allows the preparation of magnetic molecules with various spin quantum numbers, this class of materials can be utilized for studying the relations between classical and quantum regime. Due to the correspondence principle, a quantum spin system can be described exactly by classical physics for an infinitely large spin quantum number s. However, the question remains for which quantum numbers s a classical calculation yields a reasonable approximation. Our approach in this work is to develop a converging scheme that adds systematic quantum corrections to the classical density of states for Heisenberg spin systems. To this end, we establish a correspondence of the classical density of states and the quantum spectrum by means of spin-coherent states. The algorithm presented here allows the analysis of how the classical limit is approached, which gives general criteria for the similarity of the classical density of states to the quantum spectrum.
19

Phase transitions in novel superfluids and systems with correlated disorder

Meier, Hannes January 2015 (has links)
Condensed matter systems undergoing phase transitions rarely allow exact solutions. The presence of disorder renders the situation  even worse but collective Monte Carlo methods and parallel algorithms allow numerical descriptions. This thesis considers classical phase transitions in disordered spin systems in general and in effective models of superfluids with disorder and novel interactions in particular. Quantum phase transitions are considered via a quantum to classical mapping. Central questions are if the presence of defects changes universal properties and what qualitative implications follow for experiments. Common to the cases considered is that the disorder maps out correlated structures. All results are obtained using large-scale Monte Carlo simulations of effective models capturing the relevant degrees of freedom at the transition. Considering a model system for superflow aided by a defect network, we find that the onset properties are significantly altered compared to the $\lambda$-transition in $^{4}$He. This has qualitative implications on expected experimental signatures in a defect supersolid scenario. For the Bose glass to superfluid quantum phase transition in 2D we determine the quantum correlation time by an anisotropic finite size scaling approach. Without a priori assumptions on critical parameters, we find the critical exponent $z=1.8 \pm 0.05$ contradicting the long standing result $z=d$. Using a 3D effective model for multi-band type-1.5 superconductors we find that these systems possibly feature a strong first order vortex-driven phase transition. Despite its short-range nature details of the interaction are shown to play an important role. Phase transitions in disordered spin models exposed to correlated defect structures obtained via rapid quenches of critical loop and spin models are investigated. On long length scales the correlations are shown to decay algebraically. The decay exponents are expressed through known critical exponents of the disorder generating models. For cases where the disorder correlations imply the existence of a new long-range-disorder fixed point we determine the critical exponents of the disordered systems via finite size scaling methods of Monte Carlo data and find good agreement with theoretical expectations. / <p>QC 20150306</p>
20

Best practice of extracting magnetocaloric properties in magnetic simulations

Bylin, Johan January 2019 (has links)
In this thesis, a numerical study of simulating and computing the magnetocaloric properties of magnetic materials is presented. The main objective was to deduce the optimal procedure to obtain the isothermal change in entropy of magnetic systems, by evaluating two different formulas of entropy extraction, one relying on the magnetization of the material and the other on the magnet's heat capacity. The magnetic systems were simulated using two different Monte Carlo algorithms, the Metropolis and Wang-Landau procedures. The two entropy methods proved to be comparably similar to one another. Both approaches produced reliable and consistent results, though finite size effects could occur if the simulated system became too small. Erroneous fluctuations that invalidated the results did not seem stem from discrepancies between the entropy methods but mainly from the computation of the heat capacity itself. Accurate determination of the heat capacity via an internal energy derivative generated excellent results, while a heat capacity obtained from a variance formula of the internal energy rendered the extracted entropy unusable. The results acquired from the Metropolis algorithm were consistent, accurate and dependable, while all of those produced via the Wang-Landau method exhibited intrinsic fluctuations of varying severity. The Wang-Landau method also proved to be computationally ineffective compared to the Metropolis algorithm, rendering the method not suitable for magnetic simulations of this type.

Page generated in 0.0517 seconds