181 |
I. Etude des EDDSRs surlinéaires II. Contrôle des EDSPRs couplées / I. Study of a BDSDE with a superlinear growth generator. II. Coupled controlled FSDEs.Mtiraoui, Ahmed 25 November 2016 (has links)
Cette thèse aborde deux sujets de recherches, le premier est sur l’existence et l’unicité des solutions des Équations Différentielles Doublement Stochastiques Rétrogrades (EDDSRs) et les Équations aux Dérivées partielles Stochastiques (EDPSs) multidimensionnelles à croissance surlinéaire. Le deuxième établit l’existence d’un contrôle optimal strict pour un système controlé dirigé par des équations différentielles stochastiques progressives rétrogrades (EDSPRs) couplées dans deux cas de diffusions dégénérée et non dégénérée.• Existence et unicité des solutions des EDDSRs multidimensionnels :Nous considérons EDDSR avec un générateur de croissance surlinéaire et une donnée terminale de carré intégrable. Nous introduisons une nouvelle condition locale sur le générateur et nous montrons qu’elle assure l’existence, l’unicité et la stabilité des solutions. Même si notre intérêt porte sur le cas multidimensionnel, notre résultat est également nouveau en dimension un. Comme application, nous établissons l’existence et l’unicité des solutions des EDPS semi-linéaires.• Contrôle des EDSPR couplées :Nous étudions un problème de contrôle avec une fonctionnelle coût non linéaire dont le système contrôlé est dirigé par une EDSPR couplée. L’objective de ce travail est d’établir l’existence d’un contrôle optimal dans la classe des contrôle stricts, donc on montre que ce contrôle vérifie notre équation et qu’il minimise la fonctionnelle coût. La méthode consiste à approcher notre système par une suite de systèmes réguliers et on montre la convergence. En passant à la limite, sous des hypothèses de convexité, on obtient l’existence d’un contrôle optimal strict. on suit cette méthode théorique pour deux cas différents de diffusions dégénérée et non dégénérée. / In this Phd thesis, we considers two parts. The first one establish the existence and the uniquness of the solutions of multidimensional backward doubly stochastic differential equations (BDSDEs in short) and the stochastic partial differential equations (SPDEs in short) in the superlinear growth generators. In the second part, we study the stochastic controls problems driven by a coupled Forward-Backward stochastic differentialequations (FBSDEs in short).• BDSDEs and SPDEs with a superlinear growth generators :We deal with multidimensional BDSDE with a superlinear growth generator and a square integrable terminal datum. We introduce new local conditions on the generator then we show that they ensure the existence and uniqueness as well as the stability of solutions. Our work go beyond the previous results on the subject. Although we are focused on multidimensional case, the uniqueness result we establish is new in one dimensional too. As application, we establish the existence and uniqueness of probabilistic solutions tosome semilinear SPDEs with superlinear growth generator. By probabilistic solution, we mean a solution which is representable throughout a BDSDEs.• Controlled coupled FBSDEs :We establish the existence of an optimal control for a system driven by a coupled FBDSE. The cost functional is defined as the initial value of the backward component of the solution. We construct a sequence of approximating controlled systems, for which we show the existence of a sequence of feedback optimal controls. By passing to the limit, we get the existence of a feedback optimal control. The convexity condition is used to ensure that the optimal control is strict. In this part, we study two cases of diffusions : degenerate and non-degenerate.
|
182 |
Modelling genetic regulatory networks: a new model for circadian rhythms in Drosophila and investigation of genetic noise in a viral infection processXie, Zhi January 2007 (has links)
In spite of remarkable progress in molecular biology, our understanding of the dynamics and functions of intra- and inter-cellular biological networks has been hampered by their complexity. Kinetics modelling, an important type of mathematical modelling, provides a rigorous and reliable way to reveal the complexity of biological networks. In this thesis, two genetic regulatory networks have been investigated via kinetic models.
In the first part of the study, a model is developed to represent the transcriptional regulatory network essential for the circadian rhythms in Drosophila. The model incorporates the transcriptional feedback loops revealed so far in the network of the circadian clock (PER/TIM and VRI/PDP1 loops). Conventional Hill functions are not used to describe the regulation of genes, instead the explicit reactions of binding and unbinding processes of transcription factors to promoters are modelled. The model is described by a set of ordinary differential equations and the parameters are estimated from the in vitro experimental data of the clocks components. The simulation results show that the model reproduces sustained circadian oscillations in mRNA and protein concentrations that are in agreement with experimental observations. It also simulates the entrainment by light-dark cycles, the disappearance of the rhythmicity in constant light and the shape of phase response curves resembling that of experimental results. The model is robust over a wide range of parameter variations. In addition, the simulated E-box mutation, perS and perL mutants are similar to that observed in the experiments. The deficiency between the simulated mRNA levels and experimental observations in per01, tim01 and clkJrk mutants suggests some differences in the model from reality. Finally, a possible function of VRI/PDP1 loops is proposed to increase the robustness of the clock.
In the second part of the study, the sources of intrinsic noise and the influence of extrinsic noise are investigated on an intracellular viral infection system. The contribution of the intrinsic noise from each reaction is measured by means of a special form of stochastic differential equation, the chemical Langevin equation. The intrinsic noise of the system is the linear sum of the noise in each of the reactions. The intrinsic noise arises mainly from the degradation of mRNA and the transcription processes. Then, the effects of extrinsic noise are studied by means of a general form of stochastic differential equation. It is found that the noise of the viral components grows logarithmically with increasing noise intensities. The system is most susceptible to noise in the virus assembly process. A high level of noise in this process can even inhibit the replication of the viruses.
In summary, the success of this thesis demonstrates the usefulness of models for interpreting experimental data, developing hypotheses, as well as for understanding the design principles of genetic regulatory networks.
|
183 |
金融互換工具定價模型之研究 / The Pricing Model of Financial Swaps陳明彬, Ming-Bin Chern Unknown Date (has links)
本論文主要目標為發展金融互換的定價模型。既是欲建立量化模型,首要
工作在於對量化對象 --- 金融互換工具的實際特性, 實務上的運作,有
瞭解與掌握,再輔以必要的數量基礎,方不致於`` 失真 '' 。本文共分
五章首章為緒論,第二章為對金融互換工具的全盤認識,試圖由金融互換
的契約切入,進而歸納分類要件,演化及最終種類,最後提出定價時的幾
個思維面向(Dimensions )。第三章為文獻回顧,指出金融互換定價模型
的基礎,為建立在具浮動利率金融工具的定價模型上。 第四章為發展理
論模型基礎及數值分析結果。第五章為結論。
|
184 |
Essays in Mathematical Finance and in the Epistemology of Finance / Essais en Finance Mathématique et en Epistémologie de la FinanceDe Scheemaekere, Xavier 19 May 2011 (has links)
The goal of this thesis in finance is to combine the use of advanced mathematical methods with a return to foundational economic issues. In that perspective, I study generalized rational expectations and asset pricing in Chapter 2, and a converse comparison principle for backward stochastic differential equations with jumps in Chapter 3. Since the use of stochastic methods in finance is an interesting and complex issue in itself - if only to clarify the difference between the use of mathematical models in finance and in physics or biology - I also present a philosophical reflection on the interpretation of mathematical models in finance (Chapter 4). In Chapter 5, I conclude the thesis with an essay on the history and interpretation of mathematical probability - to be read while keeping in mind the fundamental role of mathematical probability in financial models.
|
185 |
Numerical Complexity Analysis of Weak Approximation of Stochastic Differential EquationsTempone Olariaga, Raul January 2002 (has links)
The thesis consists of four papers on numerical complexityanalysis of weak approximation of ordinary and partialstochastic differential equations, including illustrativenumerical examples. Here by numerical complexity we mean thecomputational work needed by a numerical method to solve aproblem with a given accuracy. This notion offers a way tounderstand the efficiency of different numerical methods. The first paper develops new expansions of the weakcomputational error for Ito stochastic differentialequations using Malliavin calculus. These expansions have acomputable leading order term in a posteriori form, and arebased on stochastic flows and discrete dual backward problems.Beside this, these expansions lead to efficient and accuratecomputation of error estimates and give the basis for adaptivealgorithms with either deterministic or stochastic time steps.The second paper proves convergence rates of adaptivealgorithms for Ito stochastic differential equations. Twoalgorithms based either on stochastic or deterministic timesteps are studied. The analysis of their numerical complexitycombines the error expansions from the first paper and anextension of the convergence results for adaptive algorithmsapproximating deterministic ordinary differential equations.Both adaptive algorithms are proven to stop with an optimalnumber of time steps up to a problem independent factor definedin the algorithm. The third paper extends the techniques to theframework of Ito stochastic differential equations ininfinite dimensional spaces, arising in the Heath Jarrow Mortonterm structure model for financial applications in bondmarkets. Error expansions are derived to identify differenterror contributions arising from time and maturitydiscretization, as well as the classical statistical error dueto finite sampling. The last paper studies the approximation of linear ellipticstochastic partial differential equations, describing andanalyzing two numerical methods. The first method generates iidMonte Carlo approximations of the solution by sampling thecoefficients of the equation and using a standard Galerkinfinite elements variational formulation. The second method isbased on a finite dimensional Karhunen- Lo`eve approximation ofthe stochastic coefficients, turning the original stochasticproblem into a high dimensional deterministic parametricelliptic problem. Then, adeterministic Galerkin finite elementmethod, of either h or p version, approximates the stochasticpartial differential equation. The paper concludes by comparingthe numerical complexity of the Monte Carlo method with theparametric finite element method, suggesting intuitiveconditions for an optimal selection of these methods. 2000Mathematics Subject Classification. Primary 65C05, 60H10,60H35, 65C30, 65C20; Secondary 91B28, 91B70. / QC 20100825
|
186 |
The Skorohod problem and weak approximation of stochastic differential equations in time-dependent domainsÖnskog, Thomas January 2009 (has links)
This thesis consists of a summary and four scientific articles. All four articles consider various aspects of stochastic differential equations and the purpose of the summary is to provide an introduction to this subject and to supply the notions required in order to fully understand the articles. In the first article we conduct a thorough study of the multi-dimensional Skorohod problem in time-dependent domains. In particular we prove the existence of cádlág solutions to the Skorohod problem with oblique reflection in time-independent domains with corners. We use this existence result to construct weak solutions to stochastic differential equations with oblique reflection in time-dependent domains. In the process of obtaining these results we also establish convergence results for sequences of solutions to the Skorohod problem and a number of estimates for solutions, with bounded jumps, to the Skorohod problem. The second article considers the problem of determining the sensitivities of a solution to a second order parabolic partial differential equation with respect to perturbations in the parameters of the equation. We derive an approximate representation of the sensitivities and an estimate of the discretization error arising in the sensitivity approximation. We apply these theoretical results to the problem of determining the sensitivities of the price of European swaptions in a LIBOR market model with respect to perturbations in the volatility structure (the so-called ‘Greeks’). The third article treats stopped diffusions in time-dependent graph domains with low regularity. We compare, numerically, the performance of one adaptive and three non-adaptive numerical methods with respect to order of convergence, efficiency and stability. In particular we investigate if the performance of the algorithms can be improved by a transformation which increases the regularity of the domain but, at the same time, reduces the regularity of the parameters of the diffusion. In the fourth article we use the existence results obtained in Article I to construct a projected Euler scheme for weak approximation of stochastic differential equations with oblique reflection in time-dependent domains. We prove theoretically that the order of convergence of the proposed algorithm is 1/2 and conduct numerical simulations which support this claim.
|
187 |
Qualitative Properties of Stochastic Hybrid Systems and ApplicationsAlwan, Mohamad January 2011 (has links)
Hybrid systems with or without stochastic noise and with or without time delay are addressed and the qualitative properties of these systems are investigated. The main contribution of this thesis is distributed in three parts.
In Part I, nonlinear stochastic impulsive systems with time delay (SISD) with variable impulses are formulated and some of the fundamental properties of the systems, such as existence of local and global solution, uniqueness, and forward continuation of the solution are established. After that, stability and input-to-state stability (ISS) properties of SISD with fixed impulses are developed, where Razumikhin methodology is used. These results are then carried over to discussed the same qualitative properties of large scale SISD. Applications to automated control systems and control systems with faulty actuators are used to justify the proposed approaches.
Part II is devoted to address ISS of stochastic ordinary and delay switched systems. To achieve a variety stability-like results, multiple Lyapunov technique as a tool is applied. Moreover, to organize the switching among the system modes, a newly developed initial-state-dependent dwell-time switching law and Markovian switching are separately employed.
Part III deals with systems of differential equations with piecewise constant arguments with and without random noise. These systems are viewed as a special type of hybrid systems. Existence and uniqueness results are first obtained. Then, comparison principles are established which are later applied to develop some stability results of the systems.
|
188 |
Qualitative Properties of Stochastic Hybrid Systems and ApplicationsAlwan, Mohamad January 2011 (has links)
Hybrid systems with or without stochastic noise and with or without time delay are addressed and the qualitative properties of these systems are investigated. The main contribution of this thesis is distributed in three parts.
In Part I, nonlinear stochastic impulsive systems with time delay (SISD) with variable impulses are formulated and some of the fundamental properties of the systems, such as existence of local and global solution, uniqueness, and forward continuation of the solution are established. After that, stability and input-to-state stability (ISS) properties of SISD with fixed impulses are developed, where Razumikhin methodology is used. These results are then carried over to discussed the same qualitative properties of large scale SISD. Applications to automated control systems and control systems with faulty actuators are used to justify the proposed approaches.
Part II is devoted to address ISS of stochastic ordinary and delay switched systems. To achieve a variety stability-like results, multiple Lyapunov technique as a tool is applied. Moreover, to organize the switching among the system modes, a newly developed initial-state-dependent dwell-time switching law and Markovian switching are separately employed.
Part III deals with systems of differential equations with piecewise constant arguments with and without random noise. These systems are viewed as a special type of hybrid systems. Existence and uniqueness results are first obtained. Then, comparison principles are established which are later applied to develop some stability results of the systems.
|
189 |
Etude d'un système d'équations différentielles stochastiques : Le cliquet de MullerAudiffren, Julien 16 December 2011 (has links)
Le cliquet de Muller est un modèle mathématiques illustrant l'accumulation de mutations délétères dans une population asexuée. L'idée principale est que l'absence de recombinaison oblige les enfants à avoir au moins autant de mutations nocives que leurs parents, et au bout d'un certain temps, le nombre minimum de mutations délétères de la population, qui est donc un processus croissant, augmente : on dit alors que le cliquet clique. Le modèle du cliquet de Muller qui est étudié dans cette thèse est un système infini d'équations différentielles stochastiques de Fleming-Viot couplées. On montre dans une première partie d'abord que le cliquet s'actionne en temps fini p.s., puis que l'espérance du temps mis pour cliquer est également finie. On utilise pour cela des comparaisons d'équations stochastiques et des changements de temps. Dans une deuxième partie, on démontre que ce modèle est équivalent à un modèle du look-down modifié auquel on a ajouté des mutations et des morts. Puis dans la troisième partie on généralise le résultat de la deuxième à un cadre plus large de systèmes d'équations différentielles stochastiques. / Muller's Ratchet is a model from evolutionary theory describing the accumulation of deleterious mutations in asexually reproducing population. The lack of recombination implies that children have all the deleterious mutations of his parent. The minimal number of deleterious mutations carried in the population is an non-decreasing process, and if it increases we say that the Muller's ratchet clicks. The model studied in this thesis is an infinite system of stochastic differential equations. In the first chapter, we first prove that the ratchet clicks in finite time a.s., then that the clicking time has finite expectation. For this we use comparison arguments and time changes. In the second chapter, we prove that this model is equivalent to a modified look-down model with mutation and selection. In the third chapter we generalize the results of chapter 2 to a more general model.
|
190 |
Um método de linearização local com passo adaptativo para solução numérica de equações diferenciais estocásticas com ruído aditivoMaio, Pablo Aguiar de 31 July 2015 (has links)
Submitted by Pablo Aguiar De Maio (pabloamaio@outlook.com) on 2015-09-10T19:50:43Z
No. of bitstreams: 1
Pablo Aguiar De Maio - Dissertação - Um método de linearização local com passo adaptativo para solução numérica de equações diferenciais estocásticas com ruído aditivo.pdf: 2233029 bytes, checksum: d3ed48936d09fde216e44fb4d688b47d (MD5) / Approved for entry into archive by Janete de Oliveira Feitosa (janete.feitosa@fgv.br) on 2015-09-25T12:16:10Z (GMT) No. of bitstreams: 1
Pablo Aguiar De Maio - Dissertação - Um método de linearização local com passo adaptativo para solução numérica de equações diferenciais estocásticas com ruído aditivo.pdf: 2233029 bytes, checksum: d3ed48936d09fde216e44fb4d688b47d (MD5) / Approved for entry into archive by Marcia Bacha (marcia.bacha@fgv.br) on 2015-09-28T16:51:14Z (GMT) No. of bitstreams: 1
Pablo Aguiar De Maio - Dissertação - Um método de linearização local com passo adaptativo para solução numérica de equações diferenciais estocásticas com ruído aditivo.pdf: 2233029 bytes, checksum: d3ed48936d09fde216e44fb4d688b47d (MD5) / Made available in DSpace on 2015-09-28T16:51:50Z (GMT). No. of bitstreams: 1
Pablo Aguiar De Maio - Dissertação - Um método de linearização local com passo adaptativo para solução numérica de equações diferenciais estocásticas com ruído aditivo.pdf: 2233029 bytes, checksum: d3ed48936d09fde216e44fb4d688b47d (MD5)
Previous issue date: 2015-07-31 / In this work we present a new numerical method with adaptive stepsize based on the local linearization approach, to integrate stochastic differential equations with additive noise. We also propose a computational scheme that allows efficient implementation of this method, properly adapting the algorithm of Padé with scaling-squaring strategy to compute the exponential of matrices involved. To introduce the construction of this method, we briefly explain what stochastic differential equations are, the mathematics that is behind them, their relevance to the modeling of various phenomena, and the importance of using numerical methods to evaluate this kind of equations. A succinct study of numerical stability is also presented on the following pages. With this dissertation, we intend to introduce the necessary basis for the construction of the new method/scheme. At the end, several numerical experiments are performed to demonstrate, in a practical way, the effectiveness of the proposed method, comparing it with other methods commonly used. / Neste trabalho apresentamos um novo método numérico com passo adaptativo baseado na abordagem de linearização local, para a integração de equações diferenciais estocásticas com ruído aditivo. Propomos, também, um esquema computacional que permite a implementação eficiente deste método, adaptando adequadamente o algorítimo de Padé com a estratégia “scaling-squaring” para o cálculo das exponenciais de matrizes envolvidas. Antes de introduzirmos a construção deste método, apresentaremos de forma breve o que são equações diferenciais estocásticas, a matemática que as fundamenta, a sua relevância para a modelagem dos mais diversos fenômenos, e a importância da utilização de métodos numéricos para avaliar tais equações. Também é feito um breve estudo sobre estabilidade numérica. Com isto, pretendemos introduzir as bases necessárias para a construção do novo método/esquema. Ao final, vários experimentos numéricos são realizados para mostrar, de forma prática, a eficácia do método proposto, e compará-lo com outros métodos usualmente utilizados.
|
Page generated in 0.1846 seconds