• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 111
  • 16
  • 9
  • 8
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 177
  • 177
  • 59
  • 41
  • 39
  • 30
  • 26
  • 26
  • 25
  • 24
  • 23
  • 21
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Trend Fundamentals and Exchange Rate Dynamics

Huber, Florian, Kaufmann, Daniel 01 1900 (has links) (PDF)
We estimate a multivariate unobserved components stochastic volatility model to explain the dynamics of a panel of six exchange rates against the US Dollar. The empirical model is based on the assumption that both countries' monetary policy strategies may be well described by Taylor rules with a time-varying inflation target, a time-varying natural rate of unemployment, and interest rate smoothing. The estimates closely track major movements along with important time series properties of real and nominal exchange rates across all currencies considered. The model generally outperforms a benchmark model that does not account for changes in trend inflation and trend unemployment. (authors' abstract) / Series: Department of Economics Working Paper Series
112

Calibration of the chaotic interest rate model

Tsujimoto, Tsunehiro January 2010 (has links)
In this thesis we establish a relationship between the Potential Approach to interest rates and the Market Models. This relationship allows us to derive the dynamics of forward LIBOR rates and forward swap rates by modelling the state price density. It means that we are able to secure the arbitrage-free condition and positive interest rate feature when we model the volatility drifts of those dynamics. On the other hand, we develop the Potential Approach, particularly the Hughston-Rafailidis Chaotic Interest Rate Model. The early argument enables us to infer that the Chaos Models belong to the Stochastic Volatility Market Models. In particular, we propose One-variable Chaos Models with the application of exponential polynomials. This maintains the generality of the Chaos Models and performs well for yield curves comparing with the Nelson-Siegel Form and the Svensson Form. Moreover, we calibrate the One-variable Chaos Model to European Caplets and European Swaptions. We show that the One-variable Chaos Models can reproduce the humped shape of the term structure of caplet volatility and also the volatility smile/skew curve. The calibration errors are small compared with the Lognormal Forward LIBOR Model, the SABR Model, traditional Short Rate Models, and other models under the Potential Approach. After the calibration, we introduce some new interest rate models under the Potential Approach. In particular, we suggest a new framework where the volatility drifts can be indirectly modelled from the short rate via the state price density.
113

On probability distributions of diffusions and financial models with non-globally smooth coefficients / Sur les lois de diffusions et de modèles financiers avec coefficients non globalement réguliers

De Marco, Stefano 23 November 2010 (has links)
Des travaux récents dans le domaine des mathématiques financières ont fait émerger l'importance de l'étude de la régularité et du comportement fin des queues de distribution pour certaines classes de diffusions à coefficients non globalement réguliers. Dans cette thèse, nous traitons des problèmes issus de ce contexte. Nous étudions d'abord l'existence, la régularité et l'asymptotique en espace de densités pour les solutions d'équations différentielles stochastiques en n'imposant que des conditions locales sur les coefficients de l'équation. Notre analyse se base sur les outils du calcul de Malliavin et sur des estimations pour les processus d'Ito confinés dans un tube autour d'une courbe déterministe. Nous obtenons des estimations significatives de la fonction de répartition et de la densité dans des classes de modèles comprenant des généralisations du CIR et du CEV et des modèles à volatilité locale-stochastique : dans ce deuxième cas, les estimations entraînent l'explosion des moments du sous-jacent et ont ainsi un impact sur le comportement asymptotique en strike de la volatilité implicite. La modélisation paramétrique de la surface de volatilité, à son tour, fait l'objet de la deuxième partie. Nous considérons le modèle SVI de J. Gatheral, en proposant une nouvelle stratégie de calibration quasi-explicite, dont nous illustrons les performances sur des données de marché. Ensuite, nous analysons la capacité du SVI à générer des approximations pour les smiles symétriques, en le généralisant à un modèle dépendant du temps. Nous en testons l'application à un modèle de Heston (sans et avec déplacement), en générant des approximations semi-fermées pour le smile de volatilité / Some recent works in the field of mathematical finance have brought new light on the importance of studying the regularity and the tail asymptotics of distributions for certain classes of diffusions with non-globally smooth coefficients. In this Ph.D. dissertation we deal with some issues in this framework. In a first part, we study the existence, smoothness and space asymptotics of densities for the solutions of stochastic differential equations assuming only local conditions on the coefficients of the equation. Our analysis is based on Malliavin calculus tools and on « tube estimates » for Ito processes, namely estimates for the probability that the trajectory of an Ito process remains close to a deterministic curve. We obtain significant estimates of densities and distribution functions in general classes of option pricing models, including generalisations of CIR and CEV processes and Local-Stochastic Volatility models. In the latter case, the estimates we derive have an impact on the moment explosion of the underlying price and, consequently, on the large-strike behaviour of the implied volatility. Parametric implied volatility modeling, in its turn, makes the object of the second part. In particular, we focus on J. Gatheral's SVI model, first proposing an effective quasi-explicit calibration procedure and displaying its performances on market data. Then, we analyse the capability of SVI to generate efficient approximations of symmetric smiles, building an explicit time-dependent parameterization. We provide and test the numerical application to the Heston model (without and with displacement), for which we generate semi-closed expressions of the smile
114

Forecasting Global Equity Indices Using Large Bayesian VARs

Huber, Florian, Krisztin, Tamás, Piribauer, Philipp 10 1900 (has links) (PDF)
This paper proposes a large Bayesian Vector Autoregressive (BVAR) model with common stochastic volatility to forecast global equity indices. Using a dataset consisting of monthly data on global stock indices the BVAR model inherently incorporates co-movements in the stock markets. The time-varying specification of the covariance structure moreover accounts for sudden shifts in the level of volatility. In an out-of-sample forecasting application we show that the BVAR model with stochastic volatility significantly outperforms the random walk both in terms of root mean squared errors as well as Bayesian log predictive scores. The BVAR model without stochastic volatility, on the other hand, underperforms relative to the random walk. In a portfolio allocation exercise we moreover show that it is possible to use the forecasts obtained from our BVAR model with common stochastic volatility to set up simple investment strategies. Our results indicate that these simple investment schemes outperform a naive buy-and-hold strategy. (authors' abstract) / Series: Department of Economics Working Paper Series
115

Essays on Fine Structure of Asset Returns, Jumps, and Stochastic Volatility

Yu, Jung-Suk 22 May 2006 (has links)
There has been an on-going debate about choices of the most suitable model amongst a variety of model specifications and parameterizations. The first dissertation essay investigates whether asymmetric leptokurtic return distributions such as Hansen's (1994) skewed tdistribution combined with GARCH specifications can outperform mixed GARCH-jump models such as Maheu and McCurdy's (2004) GARJI model incorporating the autoregressive conditional jump intensity parameterization in the discrete-time framework. I find that the more parsimonious GJR-HT model is superior to mixed GARCH-jump models. Likelihood-ratio (LR) tests, information criteria such as AIC, SC, and HQ and Value-at-Risk (VaR) analysis confirm that GJR-HT is one of the most suitable model specifications which gives us both better fit to the data and parsimony of parameterization. The benefits of estimating GARCH models using asymmetric leptokurtic distributions are more substantial for highly volatile series such as emerging stock markets, which have a higher degree of non-normality. Furthermore, Hansen's skewed t-distribution also provides us with an excellent risk management tool evidenced by VaR analysis. The second dissertation essay provides a variety of empirical evidences to support redundancy of stochastic volatility for SP500 index returns when stochastic volatility is taken into account with infinite activity pure Lévy jumps models and the importance of stochastic volatility to reduce pricing errors for SP500 index options without regard to jumps specifications. This finding is important because recent studies have shown that stochastic volatility in a continuous-time framework provides an excellent fit for financial asset returns when combined with finite-activity Merton's type compound Poisson jump-diffusion models. The second essay also shows that stochastic volatility with jumps (SVJ) and extended variance-gamma with stochastic volatility (EVGSV) models perform almost equally well for option pricing, which strongly imply that the type of Lévy jumps specifications is not important factors to enhance model performances once stochastic volatility is incorporated. In the second essay, I compute option prices via improved Fast Fourier Transform (FFT) algorithm using characteristic functions to match arbitrary log-strike grids with equal intervals with each moneyness and maturity of actual market option prices.
116

Inferência Bayesiana em Modelos de Volatilidade Estocástica usando Métodos de Monte Carlo Hamiltoniano / Bayesian Inference in Stochastic Volatility Models using Hamiltonian Monte Carlo Methods

Dias, David de Souza 10 August 2018 (has links)
Este trabalho apresenta um estudo através da abordagem Bayesiana em modelos de volatilidade estocástica, para modelagem de séries temporais financeiras, com o uso do método de Monte Carlo Hamiltoniano (HMC). Propomos o uso de outras distribuições para os erros da equação de observações do modelos de volatilidade estocástica, além da distribuição Gaussiana, para tratar problemas como caudas pesadas e assimetria nos retornos. Além disso, utilizamos critérios de informações, recentemente desenvolvidos, WAIC e LOO que aproximam a metodologia de validação cruzada, para realizar a seleção de modelos. No decorrer do trabalho, estudamos a qualidade do método HMC através de exemplos, estudo de simulação e aplicação a conjunto de dados. Adicionalmente, avaliamos a performance dos modelos e métodos propostos através do cálculo de estimativas para o Valor em Risco (VaR) para múltiplos horizontes de tempo. / This paper presents a study using Bayesian approach in stochastic volatility models for modeling financial time series, using Hamiltonian Monte Carlo methods (HMC). We propose the use of other distributions for the errors of the equation at stochastic volatiliy model, besides the Gaussian distribution, to treat the problem as heavy tails and asymmetry in the returns. Moreover, we use recently developed information criteria WAIC and LOO that approximate the crossvalidation methodology, to perform the selection of models. Throughout this work, we study the quality of the HMC methods through examples, simulation study and application to dataset. In addition, we evaluated the performance of the proposed models and methods by calculating estimates for Value at Risk (VaR) for multiple time horizons.
117

[en] STOCHASTIC VOLATILITY VIA MONTE CARLO LIKELIHOOD: A COMPARATIVE STUDY / [pt] VOLATILIDADE ESTOCÁSTICA VIA VEROSSIMILHANÇA DE MONTE CARLO: UM ESTUDO COMPARATIVO

RAPHAEL PIMENTEL DE OLIVEIRA CRUZ 26 May 2004 (has links)
[pt] Esta dissertação discute o modelo de Volatilidade Estocástica (SV) estimado via metodologia Durbin & Koopman, chamada Verossimilhança de Monte Carlo( MCL). Comparou-se a cobertura condicional do valor em risco (VaR), deste modelo, com as do modelo GARCH(1,1) e SV estimado via Quasi Máxima Verossimilhança (QML). Os modelos foram estendindos a distúrbios Gaussiano e t-Student na equação da média. O desempenho dos modelos foi avaliado fora da amostra para retornos diários dos índices Ibovespa, S&P500, Nasdaq e Dow Jones. Para o critério de avaliação foi utilizado o teste de Christoffersen. Foram econtradas evidências empíricas de que o modelo SV estimado via MCL é tão eficiente quanto o modelo GARCH(1,1), em termos da cobertura condicional do VaR. / [en] This dissertation discusses the estimation of the Stochastic Volatility (SV)model using a Durbin and Koopman methodology called Monte Carlo Like-lihood (MCL). The conditional coverage of value at risk (VaR) of SV via MCL model was compared to the GARCH (1,1) model and to the SV model via Quasi Maximum Likelihood (QML) estimation. The models were extended to Gaussian and Student-t isturbances in the mean equation. The performances of the models were evaluated out-of-sample for daily returns on the Ibovespa, S&P500, Nasdaq and Dow Jones indexes. Christoffersen test were applied for the evaluation criteria. In terms of the VaR conditional coverage, empirical evidences indicate that the SV model via MCL estimation is as efficient as the GARCH (1,1) model.
118

Optimisation des modèles d'évaluation et de couverture des options financières sous contraintes de liquidité / Optimization of pricing and hedging models for financial options under liquidity constraints

Bodin, Pierre-Anthony 05 December 2014 (has links)
Optimisation des modèles d'évaluation et de couverture d'options financières sous contraintes de liquidité / Optimization of pricing and hedging models for financial options under liquidity constraints
119

Integração financeira no mercado de ações

Piveta, Leonardo Berteli 28 February 2014 (has links)
Submitted by Maicon Juliano Schmidt (maicons) on 2015-04-18T15:50:59Z No. of bitstreams: 1 Leonardo Berteli Piveta.pdf: 645229 bytes, checksum: 4c3ca61960531dc468ad5d71e7966d32 (MD5) / Made available in DSpace on 2015-04-18T15:50:59Z (GMT). No. of bitstreams: 1 Leonardo Berteli Piveta.pdf: 645229 bytes, checksum: 4c3ca61960531dc468ad5d71e7966d32 (MD5) Previous issue date: 2014-01-31 / Nenhuma / Esta dissertação investiga a existência de integração no mercado de ações e mensura as modificações que a crise do subprime pode ter causado entre as relações de mercados emergentes da América Latina e Centro e Leste Europeu. Para isso, são selecionados onze índices de bolsas de valores destes mercados e utilizados os modelos GARCH e de volatilidade estocástica. Os resultados indicaram a presença de integração financeira entre os países e sugerem ainda que a crise intensificou essas relações. / This dissertation investigates the existence of integration in the stock Exchange market as well as it measures the changes that the subprime crisis may have caused in the relations between the emerging markets of Latin America and Central and Eastern Europe. In order to carry out this study, eleven stock exchange indexes of these markets were selected and the GARCH models and stochastic volatility were used. The results indicated the existence of financial integration between countries; furthermore, they suggested that the crisis has intensified these relationships.
120

Essays on nonparametric estimation of asset pricing models

Dalderop, Jeroen Wilhelmus Paulus January 2018 (has links)
This thesis studies the use of nonparametric econometric methods to reconcile the empirical behaviour of financial asset prices with theoretical valuation models. The confrontation of economic theory with asset price data requires various functional form assumptions about the preferences and beliefs of investors. Nonparametric methods provide a flexible class of models that can prevent misspecification of agents’ utility functions or the distribution of asset returns. Evidence for potential nonlinearity is seen in the presence of non-Gaussian distributions and excessive volatility of stock returns, or non-monotonic stochastic discount factors in option prices. More robust model specifications are therefore likely to contribute to risk management and return predictability, and lend credibility to economists’ assertions. Each of the chapters in this thesis relaxes certain functional form assumptions that seem most important for understanding certain asset price data. Chapter 1 focuses on the state-price density in option prices, which confounds the nonlinearity in both the preferences and the beliefs of investors. To understand both sources of nonlinearity in equity prices, Chapter 2 introduces a semiparametric generalization of the standard representative agent consumption-based asset pricing model. Chapter 3 returns to option prices to understand the relative importance of changes in the distribution of returns and in the shape of the pricing kernel. More specifically, Chapter 1 studies the use of noisy high-frequency data to estimate the time-varying state-price density implicit in European option prices. A dynamic kernel estimator of the conditional pricing function and its derivatives is proposed that can be used for model-free risk measurement. Infill asymptotic theory is derived that applies when the pricing function is either smoothly varying or driven by diffusive state variables. Trading times and moneyness levels are modelled by marked point processes to capture intraday trading patterns. A simulation study investigates the performance of the estimator using an iterated plug-in bandwidth in various scenarios. Empirical results using S&P 500 E-mini European option quotes finds significant time-variation at intraday frequencies. An application towards delta- and minimum variance-hedging further illustrates the use of the estimator. Chapter 2 proposes a semiparametric asset pricing model to measure how consumption and dividend policies depend on unobserved state variables, such as economic uncertainty and risk aversion. Under a flexible specification of the stochastic discount factor, the state variables are recovered from cross-sections of asset prices and volatility proxies, and the shape of the policy functions is identified from the pricing functions. The model leads to closed-form price-dividend ratios under polynomial approximations of the unknown functions and affine state variable dynamics. In the empirical application uncertainty and risk aversion are separately identified from size-sorted stock portfolios exploiting the heterogeneous impact of uncertainty on dividend policy across small and large firms. I find an asymmetric and convex response in consumption (-) and dividend growth (+) towards uncertainty shocks, which together with moderate uncertainty aversion, can generate large leverage effects and divergence between macroeconomic and stock market volatility. Chapter 3 studies the nonparametric identification and estimation of projected pricing kernels implicit in the pricing of options, the underlying asset, and a riskfree bond. The sieve minimum-distance estimator based on conditional moment restrictions avoids the need to compute ratios of estimated risk-neutral and physical densities, and leads to stable estimates even in regions with low probability mass. The conditional empirical likelihood (CEL) variant of the estimator is used to extract implied densities that satisfy the pricing restrictions while incorporating the forwardlooking information from option prices. Moreover, I introduce density combinations in the CEL framework to measure the relative importance of changes in the physical return distribution and in the pricing kernel. The nonlinear dynamic pricing kernels can be used to understand return predictability, and provide model-free quantities that can be compared against those implied by structural asset pricing models.

Page generated in 0.1318 seconds