381 |
Prognose des Langzeitverhaltens von Textilbeton-Tragwerken mit rekurrenten neuronalen NetzenFreitag, Steffen, Graf, Wolfgang, Kaliske, Michael 03 June 2009 (has links)
Zur Prognose des Langzeitverhaltens textilbetonverstärkter Tragwerke wird ein modellfreies Vorgehen auf Basis rekurrenter neuronaler Netze vorgestellt. Das Vorgehen ermöglicht die Prognose zeitveränderlicher Strukturantworten unter Berücksichtigung der gesamten Belastungsgeschichte. Mit unscharfen Größen aus Messungen an Versuchstragwerken werden rekurrente neuronale Netze trainiert. Anschließend ist die unscharfe Prognose des Tragverhaltens möglich.
|
382 |
Entwurf von Textilbetonverstärkungen – computerorientierte Methoden mit verallgemeinerten UnschärfemodellenSickert, Jan-Uwe, Graf, Wolfgang, Pannier, Stephan 03 June 2009 (has links)
Im Beitrag werden drei Methoden für den Entwurf und die Bemessung von Textilbetonverstärkungen vorgestellt. Für eine Vorbemessung wird die Variantenuntersuchung angewendet, z.B. für die Bestimmung der Anzahl an Textillagen. Für die Festlegung von Realisierungen mehrerer kontinuierlicher Entwurfsvariablen unter Berücksichtigung unterschiedlicher Entwurfsziele und Entwurfsnebenbedingungen werden die Fuzzy-Optimierung und die direkte Lösung der Entwurfsaufgabe skizziert. Mit der Fuzzy-Optimierung werden Kompromisslösungen für die multikriterielle Entwurfsaufgabe ermittelt. Die direkte Lösung basiert auf der explorativen Datenanalyse von Punktmengen, die als Ergebnis einer unscharfen Tragwerksanalyse vorliegen, und liefert Bereiche – sog. Entwurfsteilräume – als Grundlage für die Auswahl des Entwurfs.
|
383 |
Förstärkning av träregelstomme med KL-trä : Teoretisk utvärdering av olika ytterväggstyper / Strengthening of light frame timber walls with CLT : Evaluation of different wall typesLarsson, Joel January 2020 (has links)
På senare tid har intresset för och viljan att bygga flerbostadshus i trä ökat och medfört en trend att bygga allt högre hus med stomme av trä. En aktör är Lindbäcks Bygg som bygger flerbostadshusi trä med volymelement och lätt regelstomme. Idag begränsas dock möjligt antal våningar med regelstomme till 6 – 8 våningar. Ett relativt nytt material inom träbyggnadstekniken är korslimmat trä (KL-trä) vars användning gjort det möjligt att bygga högre byggnader i trä. Examensarbetets syfte är att studera olika lösningar för hur Lindbäcks regelstomme kan förstärkas med KL-trä, vilket kan göra det möjligt att bygga allt högre flerbostadshus i trä. Samt att jämföra denna lösning med den idag använda regelstommen utan KL-trä. Studien har avgränsats till att enbart behandla ytterväggar. För att uppskatta rimliga laster på ytterväggar i en flervåningsbyggnad togs en principbyggnad (ihopsatt av ett antal volymelement) fram. I beräkningar tillämpades ett antal olika ytterväggstyper, en med den idag användaregelstommen (referensvägg) samt fem med regelstomme i kombination med KL-skivor i olika tjocklekar. För principbyggnaden kontrollerades genom beräkningar hur högt det är möjligt att bygga vid tillämpning av vardera ytterväggstyp. De olika ytterväggstyperna med KL-trä jämfördes även med referensytterväggen utifrån U-värde samt kostnad. Idag används KL-trä ibland av Lindbäcks och då som stabiliserande väggar. I deras fabriker tillämpas en lösning där KL-träskivorna fälls in mellan syll och hammarband tillsammans med reglarna. Beräkningar har visat att det, för principbyggnaden, med denna lösning är möjligt att bygga maximalt 2 våningar högre jämfört med referensytterväggen, detta för den bästa av ytterväggstypernaförstärkta med KL-trä. Det som begränsar ett högre antal våningar är trycket vinkelrätt fiberriktningen på syllen under KL-skivorna. Beräkningar visar att det finns en potential att med regelstomme förstärkt med KL-trä kunna bygga ännu högre om en annan lösning används där KL-träskivorna placeras på utsidan av syll, hammarband och reglar istället för infälld mellan syll och hammarband. Med denna lösning undviks tryck vinkelrätt fiberriktningen på syll under KL-skivor och KL-skivans kapacitet kan utnyttjas effektivare då normalkraftskapaciteten för själva skivan blir den begränsande faktorn för hur högt det går att bygga. Enligt beräkningar är det, för principbyggnaden, med denna lösning möjligt att bygga uppemot 8 våningar högre än med referensytterväggen. När KL-trä används i stommen ökar energiförlusterna genom väggen, dvs. U-värdet ökar, då reglar med mellanliggande isolering ersätts av KL-trä med sämre värmeledningsförmåga. Enligt beräkningar uppskattas U-värdet öka jmf. med för referensyttervägg, detta med ca. 20 – 40 % beroende på ytterväggstyp. Ökningen kan dock begränsas till ca. 0,4 – 14 % genom införande av ett 45 mm installationsskikt med isolering på väggens insida. Även kostnaden för ytterväggstyper med regelstomme förstärkt med KL-trä uppskattas öka jmf. med uppskattad kostnad för referensyttervägg. Detta med uppskattningsvis 40 – 50 %, vilket till huvudsak är en följd av ökad materialkostnad för KL-skivor som delvis ersätter reglar med mellanliggande isolering. / Today there is an increased interest in building taller buildings with timber. Lindbäcks Bygg is one of companies that uses modular construction with light timber stud frames. However, a problem with light timber frames is that the building height is limited to roughly 6 - 8 stories. A relatively new product in timber engineering is cross laminated timber (CLT) and the use of this product have made it possible to build taller timber buildings. The purpose of this study is to investigate different solutions for how Lindbäcks can strengthen their stud frames by using CLT and thereby build taller buildings. The difference with respect to U-value and cost between the walls strengthened width CLT and the typical stud frame wall, that is used today, is also studied. The study has been limited to exterior walls only. A multi-storey building consisting of several modules/volume elements has been used to estimate reasonable loads on the exterior walls. Different wall types, one with the ordinary stud frame (the reference wall) and five types of stud walls strengthened with different thicknesses of CLT, have been investigated. The maximal number of storeys that can be build, the U-value and the cost were determined by calculations for each of the studied wall types and were compared with the results for the reference wall. Today, Lindbäcks Bygg sometimes uses CLT for stabilizing walls. In their factories, they use a solution in which the CLT-plate is placed between the top and bottom plate together with the studs. According to the calculations it is, with this solution, possible to build up to 2 storeys higher then with the reference wall. The limiting factor for how high it is possible to build, is compression perpendicular to the grain on the bottom plate underneath the CLT-plate. If a solution where the CLT-plate is placed on the outside of the frame (consisting of studs, top and bottom plate) is used instead of between the top and bottom plate does the calculations show that a higher number of storeys is possible. With this solution, the compression perpendicular to the grain underneath the CLT-plate is avoided and the limiting factor is instead the compression strength of the CLT-plate. This means that the CLT can be used more efficiently. Calculations show that it is possible to build up to 8 storeys higher with this solution compared to what is possible with the reference wall. With CLT increases the energy losses through the wall, i.e. increased U-value, since studs with insulation in between is partially replaced with CLT that has worse thermal conductivity. According to the calculations, the U-value is 20 – 40 % higher (depending on the wall type) compared to the reference wall. The increase in U-value can be limited to 0.4 – 14 % by adding an extra layer with 45 mm insulation on the inside of the CLT-plate. The cost for the wall types strengthened with CLT is also higher compared to the estimated cost for the reference wall. The main reason for this is increased cost of materials since the studs with insulation in between is partially replaced with the more expensive CLT, which is an engineered wood product. The increase in cost is estimated to roughly 40 – 50 % of the cost for the reference wall.
|
384 |
Zesilování železobetonových sloupů ovinutím FRP tkaninou / Strengthening reinforced concrete column confined by FRP fabricKostiha, Vojtěch January 2018 (has links)
The doctoral thesis deals with the strengthening of reinforced concrete columns by FRP fabric wrapping. Its aim is to describe the principles of confinement based on the analytical study, numerical simulations and the results of the experimental program. The description of the confinement philosophy is made with respect to the type of FRP material used. It was therefore possible to present a design process of confinement, which accurately predicts the behaviour of the confined columns. At the same time, some effects limiting the effect of confinement (e.g. the method of wrapping, the number of FRP fabric layers, the slenderness of the element, etc.) are included in the design. The dissertation also presents basic information about FRP material and its properties and gives an overview of design approaches of the FRP confined columns. The dissertation also pointing out the shortcomings of the design code ČSN EN 1992-1-1. The stated example highlights the significant variation in properties of confined concrete determined by selected approaches. This variation of properties complicates the design of this strengthening method. The experimental program was used to verify the basic principles of confinement and, through high columns, allowed a description of the behaviour in almost the whole range of interaction diagram. The conclusions of the work provide information on possible future research direction.
|
385 |
Reparation av inbyggda stålbalkar : Ekonomiska och tidseffektiva förstärkningsmetoder med låg klimatpåverkan / Repairing embedded steel beams : Economic and time efficient reinforcement methods with low climatic effectBjörling, Linnéa, Diaz Gardell, Alicia January 2019 (has links)
CE-märkta stålbalkar byggdes in i två konstruktioner innan det upptäcktes att det fanns porer i hattbalkarnas svets. Den defekta svetsen innebar att byggnadernas bärförmåga inte kunde garanteras. Kunskapen kring inbyggt stål stommaterial med defekt svets är liten. Det är dessutom svårt att reparera och undersöka stålbalkarnas svets när de är inbyggda i konstruktionen. Syftet med examensarbetet är att hitta förstärkningsmetoder och därmed främja kortare hanteringstid vid händelse av att defekta stålbalkar byggs in i en konstruktion. Metoden består av litteraturstudie och intervjuer. Först granskas litteratur för att förstå problematiken med defekt svets i stål stommaterial. Därefter utförs intervjuer med personer erfarna inom stål och byggteknik. Examensarbetets resultat är ett flertal förstärkningsmetoder för inbyggda stålbalkar med defekt svets. Några av förstärkningsmetoderna är möjliga att utföra med den kunskap som finns idag medan andra behöver undersökas och värderas innan de kan implementeras. Förstärkningsmetoderna som är möjliga att utföra med dagens kunskap är: att svetsa om balken från insidan eller att placera en balk/fackverksbalk under den befintliga balken. De metoder som behöver undersökas och värderas vidare är: skruvförband genom balken, efterspänna balken med vajrar eller GWS-stag och sedan fylla den med betong, föra in en balk inne i balken och fylla balken med betong och att kolfiberförstärka svetsen. Slutsatsen är att den här studien kan ligga till grund för framtagning av åtgärder för inbyggda stålbalkar med defekt svets med mål att uppnå den dimensionerade hållfastheten och en lösning som är tidseffektiv, kostnadseffektiv och har låg klimatpåverkan. / Before the discovery of pores in the weld, CE-certified steel beams were embedded in two constructions. Since the weld was defective, the carrying capacity of the two buildings was questioned. There is a lack of knowledge about embedded steel beams with a damaged weld. It is difficult to repair and analyze the weld when the beams are embedded in the construction. The aim of the study is to find reinforcement methods for steel beams. The expectation is to shorten time in the production in case that defective steel beams are detected in the construction. The method consists of a literature study complemented by interviews. Literature is examined to understand the problem of defective welding in the steel framework. Subsequently, interviews are conducted with professionals within steel and building technology. The result of the report is multiple reinforcement methods for embedded steel beams with a defective weld. Some of the methods are possible to implement with the knowledge available today. Other methods need to be examined and assessed before executed. The reinforcement methods that are possible to perform are: weld the beam from the inside or place a beam underneath the existing beam. The methods that need further analysis are: drill a screw joint through the beam, strain the beam with steel-wires and fill the inside with concrete, place a beam inside the existing beam and fill the inside with concrete and last to reinforce the weld with carbon fibers. The conclusion is that this study can be used when reinforcement methods are needed for embedded steel beams with a defective weld. The objective with these methods is to restore the load-bearing capacity as well as finding a solution that is time efficient, economic and has low climatic influence.
|
386 |
Технико-экономическое обоснование оптимальной конструкции усиленных балок с использованием различных методов в условиях Ирака : магистерская диссертация / Feasibility Study for Optimal Design of strengthening Beams Using Various Methods in Iraqi ConditionsАльмуслехи, О. Ф., Almuslehi, O. F. January 2023 (has links)
Исследовать материалы, используемые для усиления железобетонных балок, провести расчеты усиления балки в направлении действия изгибающего момента и поперечной силы с использованием композитных материалов с их технико-экономическим обоснованием. / Investigate the materials used to reinforce reinforced concrete beams, carry out calculations of the beam reinforcement in the direction of the bending moment and shear force using composite materials with their feasibility study.
|
387 |
Mechanical Property Evolution of Al-Mg Alloys Following Intermediate Temperature Thermal ExposureBrosi, Justin Keith 17 May 2010 (has links)
No description available.
|
388 |
Technology development of novel woven 3D cellular reinforcement for enhanced impact safety on the example of mineral-bonded compositesVõ, Duy Minh Phương 18 July 2024 (has links)
Concrete’s great vulnerability against impact demonstrates significant risks of injury for workers and occupants in all building types, especially existing concrete structures in which protection measures were not originally integrated. Beside the social and economic costs directly associated with impact accidents, the reconstruction or replacement of buildings damaged by impact negatively affects the environment and resources. In response to the increasing public concern for safety and sustainability, the DFG Research Training Group GRK 2250 is formed with the core aim to develop significant improvements in the impact resistance of existing concrete buildings by applying thin strengthening layers made of innovative mineral-bonded composites. The introduction of textile-based high-performance reinforcement is highly instrumental in realizing the required functions of thin mineral-bonded strengthening layers.
Novel impact-resistant 3D reinforcement is developed on the basis of the innovative 3D cellular weaving technology in this dissertation. Woven 3D cellular structures are characterized by outstanding and customizable mechanical characteristics, owning to the flexible incorporation of elements with different materials and geometries both in in-plane and out-of-plane directions. Based on a systematic and partly iterative development process, impact-resistant woven 3D cellular reinforcements containing impact-load-oriented elements and impact-appropriate material combination are successfully designed and optimized. On the one hand, a series of experiments are conducted to capture the working mechanism of woven 3D cellular structure in mineral-bonded composites loaded under impact, and to understand the effects of critical structure features. On the other hand, feasible weave patterns and effective technological solutions are worked out and implemented to enable a reliable and low-damage manufacturing process. Through a series of impact experiments, it can be strongly evidenced that the developed 3D cellular reinforcement pronouncedly enhances the load bearing capacity, ductility and energy dissipation of mineral-bonded composite undergoing impact, thus, remarkably enhances its impact resistance.
The development of impact-resistant woven 3D cellular reinforcements in this dissertation introduces a completely new and unique class of textile-based reinforcement for concrete, as well as mineral-bonded composites, with numerous benefits over the presently available reinforcing structures. A major advantage of the novel 3D cellular reinforcement is the capability to activate and exploit multiple energy dissipation mechanisms using both material and structure properties, through which remarkable impact resistance can be obtained. Thanks to a high degree of versatility and flexibility in material combination and structure design, in combination with a high degree of automation and flexibility of the weaving technology, impact-resistant woven 3D cellular reinforcement that is highly customized to specific impact scenarios can be produced with a significant time and cost efficiency. Furthermore, impact-resistant woven 3D cellular reinforcements possess an integral 3D architecture that ensures a high structure stability, allowing for a speedy casting process with a high placement-accuracy. On that basis, a reasonable production cost and a stable performance of designed functions can be obtained. The successful development of impact-resistant woven 3D cellular reinforcement essentially facilitates the successful creation of high-performance mineral-bonded strengthening layers, through the use of which the impact resistance of existing concrete structures, thus, their sustainable use, significantly enhances.:1 INTRODUCTION AND MOTIVATION 1
2 LITERATURE REVIEW 7
2.1 Fundamentals of concrete and reinforced concrete 7
2.1.1 Normal concrete 7
2.1.2 Structural concrete family 10
2.1.3 Steel reinforced concrete 11
2.1.4 Concrete and reinforced concrete under impact loading 14
2.1.5 Fiber-based reinforcing materials for concrete 18
2.1.6 Fiber reinforced concrete 21
2.1.7 Textile reinforced concrete 22
2.2 Two-dimensional textile concrete reinforcements 24
2.2.1 Welded metal wire mesh 24
2.2.2 Expanded metal mesh 25
2.2.3 Woven 2D reinforcing structures 25
2.2.4 Warp knitted 2D reinforcing structures 27
2.2.5 Stitched 2D reinforcing structures 28
2.2.6 Adhesively-bonded 2D reinforcing structures 29
2.2.7 Discussion of 2D reinforcing structures 30
2.3 Three-dimensional textile concrete reinforcements 33
2.3.1 Assembled 3D reinforcing structures 33
2.3.2 Woven 3D reinforcing structures 34
2.3.3 Warp knitted 3D reinforcing structures 35
2.3.4 Stitched 3D reinforcing structures 36
2.3.5 Adhesively-bonded 3D reinforcing structures 36
2.3.6 Discussion of available 3D reinforcing structures 36
2.4 Woven 3D cellular structures 37
2.5 Conclusion based on literature review 37
3 RESEARCH AIMS AND OBJECTIVES 39
4 PRELIMINARY INVESTIGATION INTO IMPACT BEHAVIOR OF MINERAL-BONDED COMPOSITE REINFORCED WITH WOVEN 3D CELLULAR STRUCTURE 41
4.1 Introduction 41
4.2 Materials under investigation 43
4.2.1 Reinforcement - Reference woven 3D cellular structure 3DWT Ref 43
4.2.2 Matrix - Fine-grained concrete Pagel TF10 44
4.2.3 Comparing reinforcement - Warp knitted 2D structure 2D BZT2 44
4.3 Specimen labeling 45
4.4 Methodology of small-scale plate impact test 46
4.4.1 Specimen preparation 46
4.4.2 Test setup 47
4.5 Preliminary small-scale plate impact test results 47
4.6 Summary and conclusion of preliminary investigation 58
4.7 Derivation of requirements and procedure for developing impact-resistant woven 3D cellular reinforcement 59
5 DEVELOPMENT OF STRUCTURE SYSTEMATICS FOR IMPACT-RESISTANT WOVEN 3D CELLULAR REINFORCEMENT 63
5.1 Fundamentals of woven 3D cellular structure 64
5.1.1 Conventional woven structure 64
5.1.2 Elements of woven 3D cellular structure 65
5.1.3 Formation principles of woven 3D cellular structure 66
5.1.4 Variation possibilities within woven 3D cellular structure 68
5.2 Design concept of mineral-bonded strengthening layers against impact 71
5.3 Requirements for impact-resistant woven 3D cellular reinforcement 73
5.4 Two-plane woven 3D cellular reinforcements 77
5.4.1 Two-plane woven 3D cellular reinforcements with biaxial grids 77
5.4.2 Two-plane woven 3D cellular reinforcements with triaxial grids 81
5.4.3 Two-plane woven 3D cellular reinforcements with quadriaxial grids 82
5.5 Three-plane 3D cellular reinforcements 83
5.6 Material variation 85
5.6.1 Double yarns 85
5.6.2 Hybrid yarns 86
5.7 Selected impact-resistant woven 3D cellular reinforcements for realization and investigation 86
6 DEVELOPMENT OF WEAVE PATTERN FOR IMPACT-RESISTANT WOVEN 3D CELLULAR REINFORCEMENT 89
6.1 Introduction 89
6.2 Two-plane reference structure 3DWT Ref 90
6.3 Two-plane double yarn structure 3DWT DbWi 92
6.4 Three-plane structure 3DWT DbLyr 93
6.5 Two-plane pyramid structure 3DWT Pyr 95
7 DEVELOPMENT OF TECHNOLOGICAL SOLUTIONS FOR THE MANUFACTURE OF IMPACT-RESISTANT WOVEN 3D CELLULAR REINFORCEMENT 101
7.1 3D cellular weaving technology 101
7.2 Manufacture of two-plane double yarn structure 3DWT-DbWi 107
7.3 Manufacture of three-plane structure 3DWT-DbLyr 108
7.4 Manufacture of two-plane pyramid structure 3DWT-Pyr 112
8 TENSILE BEHAVIOR OF SHCC CONTAINING IMPACT-RESISTANT WOVEN 3D CELLULAR REINFORCEMENT 117
8.1 Quasi-static tension tests 117
8.1.1 Specimen preparation 117
8.1.2 Test setup 118
8.1.3 Quasi-static tension test results 119
8.2 High-speed tension tests 126
8.2.1 Specimen preparation 126
8.2.2 Test setup 126
8.2.3 High-speed tension test results 127
9 ENHANCEMENT OF IMPACT-RESISTANT WOVEN 3D CELLULAR REINFORCEMENT 131
9.1 Concept of enhanced impact-resistant 3D cellular reinforcement 131
9.2 Weave pattern development of enhanced impact-resistant reinforcement 3DWT Pyr Hyb 134
9.3 Manufacture of enhanced impact-resistant reinforcement 3DWT Pyr Hyb 136
9.3.1 Material selection 136
9.3.2 Carbon rovings impregnation 142
9.3.3 Steel wires straightening and preshaping 142
9.3.4 Weaving and realized structure 143
10 PERFORMANCE OF MINERAL-BONDED STRENGTHENING LAYER WITH IMPACT-RESISTANT WOVEN 3D CELLULAR REINFORCEMENT 147
10.1 Tensile behavior of SHCC reinforced with 3DWT Pyr Hyb 147
10.1.1 Specimen preparation 147
10.1.2 Quasi-static tension test results 148
10.1.3 Dynamic tension test results 154
10.2 Impact behavior of SHCC reinforced with 3DWT Pyr Hyb 157
10.2.1 Materials under investigation 157
10.2.2 Small-scale plate impact test results 159
10.3 SHCC reinforced with 3DWT Pyr Hyb as strengthening layer on the impacted side of concrete core 169
10.4 Summary and conclusion of the performance investigation on mineral-bonded strengthening layer reinforced with 3DWT Pyr Hyb 173
11 CONCLUSIONS AND RECOMMENDATIONS 175
|
389 |
Strengthening Mechanisms in Microtruss MetalsNg, Evelyn 18 December 2012 (has links)
Microtrusses are hybrid materials composed of a three-dimensional array of struts capable of efficiently transmitting an externally applied load. The strut connectivity of microtrusses enables them to behave in a stretch-dominated fashion, allowing higher specific strength and stiffness values to be reached than conventional metal foams. While much attention has been given to the optimization of microtruss architectures, little attention has been given to the strengthening mechanisms inside the materials that make up this architecture. This thesis examines strengthening mechanisms in aluminum alloy and copper alloy microtruss systems with and without a reinforcing structural coating. C11000 microtrusses were stretch-bend fabricated for the first time; varying internal truss angles were selected in order to study the accumulating effects of plastic deformation and it was found that the mechanical performance was significantly enhanced in the presence of work hardening with the peak strength increasing by a factor of three. The C11000 microtrusses could also be significantly reinforced with sleeves of electrodeposited nanocrystalline Ni-53wt%Fe. It was found that the strength increase from work hardening and electrodeposition were additive over the range of structures considered. The AA2024 system allowed the contribution of work hardening, precipitation hardening, and hard anodizing to be considered as interacting strengthening mechanisms. Because of the lower formability of AA2024 compared to C11000, several different perforation geometries in the starting sheet were considered in order to more effectively distribute the plastic strain during stretch-bend fabrication. A T8 condition was selected over a T6 condition because it was shown that the plastic deformation induced during the final step was sufficient to enhance precipitation kinetics allowing higher strengths to be reached, while at the same time eliminating one annealing treatment. When hard anodizing treatments were conducted on O-temper and T8 temper AA2024 truss cores, the strength increase was different for different architectures, but was nearly the same for the two parent material tempers. Finally, the question of how much microtruss strengthening can be obtained for a given amount of parent metal strengthening was addressed by examining the interaction of material and geometric parameters in a model system.
|
390 |
Strengthening Mechanisms in Microtruss MetalsNg, Evelyn 18 December 2012 (has links)
Microtrusses are hybrid materials composed of a three-dimensional array of struts capable of efficiently transmitting an externally applied load. The strut connectivity of microtrusses enables them to behave in a stretch-dominated fashion, allowing higher specific strength and stiffness values to be reached than conventional metal foams. While much attention has been given to the optimization of microtruss architectures, little attention has been given to the strengthening mechanisms inside the materials that make up this architecture. This thesis examines strengthening mechanisms in aluminum alloy and copper alloy microtruss systems with and without a reinforcing structural coating. C11000 microtrusses were stretch-bend fabricated for the first time; varying internal truss angles were selected in order to study the accumulating effects of plastic deformation and it was found that the mechanical performance was significantly enhanced in the presence of work hardening with the peak strength increasing by a factor of three. The C11000 microtrusses could also be significantly reinforced with sleeves of electrodeposited nanocrystalline Ni-53wt%Fe. It was found that the strength increase from work hardening and electrodeposition were additive over the range of structures considered. The AA2024 system allowed the contribution of work hardening, precipitation hardening, and hard anodizing to be considered as interacting strengthening mechanisms. Because of the lower formability of AA2024 compared to C11000, several different perforation geometries in the starting sheet were considered in order to more effectively distribute the plastic strain during stretch-bend fabrication. A T8 condition was selected over a T6 condition because it was shown that the plastic deformation induced during the final step was sufficient to enhance precipitation kinetics allowing higher strengths to be reached, while at the same time eliminating one annealing treatment. When hard anodizing treatments were conducted on O-temper and T8 temper AA2024 truss cores, the strength increase was different for different architectures, but was nearly the same for the two parent material tempers. Finally, the question of how much microtruss strengthening can be obtained for a given amount of parent metal strengthening was addressed by examining the interaction of material and geometric parameters in a model system.
|
Page generated in 0.1049 seconds