Spelling suggestions: "subject:"strukturbildung""
11 |
Structural studies of proteins in apoptosis and lipid signalingHerman Moreno, Maria Dolores January 2008 (has links)
Signaling pathways control the fate of the cell. For example, they promote cell survival or commit the cell to death (apoptosis) in response to cell injury or developmental stimuli, decisions, which are vital for the proper development and functioning of metazoan. Tight control of such pathways is essential; dysregulation of apoptosis can disrupt the delicate balance between cell proliferation and cell death ending up in pathological processes, including cancer, autoimmunity diseases, inflammatory diseases, or degenerative disorders. We have used a structural genomic approach to study the structure and function of key proteins involved in apoptosis and lipid signaling: the antiapoptotic Bcl-2 family member Bfl-1 in complex with a Bim peptide, the BIR domains of the Inhibitor of Apoptosis (IAP) family members, cIAP2 and NAIP and the a lipid kinase YegS. The structural analysis of the apoptosis regulatory proteins has revealed important information on the structural determinants for recognition of interacting proteins, which can now assist in the development of therapeutic drugs for human diseases. The structural and complementing biochemical studies of the lipid kinase YegS have reveled the first detailed information on a lipid kinase and explained important aspects of its structure-function relationship. Finally, one subject of this work aim to solve what is arguably the most challenging problem in structural projects – to obtain a high production level of proteins suitable for structural studies. We have developed a highthroughput protein solubility screening, the colony filtration (CoFi) blot, which allows soluble clones to be identified from large libraries of protein variants and now constitute a powerful tool for solving difficult protein production problems.
|
12 |
Structural studies of the surface adhesin SspB from Streptococcus gordoniiForsgren, Nina January 2010 (has links)
Surface proteins on microorganisms that build up the oral biofilm are key players in the formation of the biofilm. Antigen I/II proteins are surface adhesins found on virtually all oral streptococci and share a conserved multi-domain architecture. These adhesins bind surface components on other bacteria and on host cells. Thus, they are crucial for the development of the biofilm. The objective of this thesis work is the structural characterization of the large multi-domain Antigen I/II protein SspB from the primary colonizing commensal bacterium Streptococcus gordonii. The crystal structure of the variable domain of SspB was determined to 2.3 Å resolution. The domain comprises a β-supersandwich and a putative binding cleft stabilized by a calcium ion. Despite high similarity in the overall structure, the cleft within SspB is significantly smaller than the cleft within the homologous protein from Streptococcus mutans, indicating that different substrates may bind in the clefts. A screen for carbohydrate binding resulted in no hits for interaction with the SspB variable domain suggesting that the cleft may not be suitable for binding sugars. This thesis also presents the high resolution 1.5 Å structure of a truncated C-terminal domain of SspB, the first of an Antigen I/II C-domain. The structure contains two structurally related domains, each containing one calcium ion and one intramolecular isopeptide bond. The SspB protein shares the feature of intramoleular isopeptide bonds with other surface proteins from Gram positive bacteria, such as pili from Streptococcus pyogenes and Corynebacterium diphtheriae. Intramolecular isopeptide bonds are suggested to be a common feature for retaining stability in a harsh environment. The SspB adherence region, shown to be the recognition motif for Porphyromonas gingivalis attachment to S. gordonii, protrudes from the core protein as a handle available for recognition. In conclusion, this thesis work has provided new knowledge about the SspB protein and increased the understanding of the common structure of AgI/II proteins.
|
13 |
Structural Studies of Flexible Biomolecules and a DNA-binding ProteinMassad, Tariq January 2010 (has links)
The knowledge of the three-dimensional structures of proteins and polypeptides is essential to understand their functions. The work shown in this thesis has two objectives. The first one is to develop a new analytical method based on maximum entropy (ME) theory to analyze NMR experimental data such as NOEs and J-couplings in order to reconstitute φ,ψ Ramachandran plots of flexible biomolecules. Two model systems have been used, the flexible polypeptide motilin and the disaccharide α-D-Mannosep-(1-2)-α-D-Mannosep-O-Me (M2M). The experimental data was defined as constraints that were combined with prior information (priors) which were the φ,ψ distributions obtained from either a coil library, the Protein DataBank or Molecular Dynamics Simulations. ME theory was utilized to formulate φ,ψ distributions (posteriors) that are least committed to the priors and in full agreement with the experimental data. Reparamerization of the Karplus relation was necessary to obtain realistic distributions for the M2M. Clear structural propensities were found in motilin with a nascent α-helix in the central part (residues Y7-E17), a left handed 31 helix in the C-terminus (R18-G21) and an extended conformation in the N-terminus. The contribution of each residue to the thermodynamic entropy (segmental entropy) was calculated from the posteriors and compared favorably to the segmental entropies estimated from 15N-relaxation data. For M2M the dominating conformation of the glycosidic linkage was found to be at φH=-40° ψH=33°, which is governed by the exo-anomeric effect. Another minor conformation with a negative ψH angle was discovered in M2M. The ratio between both populations is about 3:1. The second part of the thesis is a structural study of a DNA-binding protein, the C repressor of the P2 bacteriophage (P2 C). P2 C represses the lytic genes of the P2 bacteriophage, thereby directing the P2 lifecycle toward the lysogenic lifemode. The crystal and solution structures of P2 C have been solved by X-ray crystallography and NMR, respectively. Both structures revealed a homodimeric protein with five rigid α-helices made up by residues 5-66 and a β-strand conformation in residues 69-76 in each monomer. 15N-relaxation data showed that the C-terminus (residues 85-99) is highly flexible and fully unstructured. A model representing the P2 C-DNA complex was built based on the structure and available biochemical data. In the model, P2 C binds DNA cooperatively and two homodimeric P2 C molecules are close enough to interact and bind one direct DNA repeat each. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: In press. Paper 5: Manuscript.
|
14 |
Transthyretin and the transthyretin-related protein: A structural studyLundberg, Erik January 2006 (has links)
Transthyretin (TTR) is one of several proteins involved in amyloid disease in humans. Unknown conformational changes of the native state of TTR result in aggregation of TTR molecules into amyloid fibrils, which accumulate in extracellular tissues. This may result in different clinical symptoms, e.g. polyneuropathy or cardiomyopathy, depending on their site of accumulation. Our long-term goal is to identify structural changes associated with amyloid formation. For this work, structural characterization of TTR from other species than human may provide valuable information. The three-dimensional X-ray crystallographic structure of TTR from sea bream (Sparus aurata) was determined at 1.75 Å resolution. Human and sea bream TTR were found to be structurally very similar. However, interesting differences were present in the area at and around -strand D, which in fish forms an extended loop region. Interestingly, this area is believed to dissociate from the structure prior to amyloid formation, to allow -strands A and B to participate in polymerization. During evolution, TTR from different species have developed differences in preference to their natural ligands, the thyroid hormones 3,5,3’-triiodo-L-thyronine (T3) and 3,5,3’,5’-tetraiodo-L-thyronine (T4). While human TTR has higher affinity for T4, the opposite is true in lower vertebrates, e.g. fish and reptiles. We have determined two separate structures of sea bream TTR in complex with T3 and T4, both at 1.9 Å resolution. A significantly wider entrance and narrower thyroid hormone binding channel provide a structural explanation to the differences in thyroid hormone preference between human and piscine TTR. In a separate work, we identified a novel protein family with structural similarity to TTR, which we named the transthyretin-related protein (TRP) family. To attain information about this protein family, we cloned, expressed, purified and characterized TRP from Escherichia coli (EcTRP). Furthermore, we solved the structure of EcTRP to 1.65 Å resolution. As predicted, EcTRP and human TTR are structurally very similar. Interesting structural differences are found in the area corresponding to the thyroid hormone binding site in TTR, which due to its amino acid conservation within the TRP family we identified as a putative ligand-binding site in TRPs. The function of the TRP is not known, however, recent studies suggest that it might be involved in purine catabolism. It has been shown that partial acid denaturation of human TTR results in amyloid-fibril formation. Interestingly, we have shown that sea bream TTR also forms amyloid-like fibrils in vitro, even though it shares only 52% sequence identity to human TTR. Corresponding studies on EcTRP did not generate amyloid-like fibrils. EcTRP has 30% sequence identity to human TTR. The fact that two of the proteins form amyloid fibrils and one does not means that they can serve as a model system for the study of amyloid formation. Further studies on these three proteins are currently performed to attain more information about the mechanism of amyloid formation.
|
15 |
Molecular Mechanisms of Endophilin B1-Bax Macromolecular Complexes in Membrane Permeabilization and Cell DeathKollberg Hedström, Tobias January 2022 (has links)
A crucial step during apoptosis is the accumulation of the pro-apoptotic protein Bax on the mitochondria where it triggers permeabilization of the outer membrane. This causes the release of cytochrome c into the cytosol and is considered a point of no return in programmed cell death. Endophilin B1, also known as Bax-interacting factor 1 (Bif-1) stimulates mitochondrial recruitment of Bax during apoptosis and loss of endophilin B1 is noted in many cancer types. Despite the importance of their interaction its role and function during cell death remains unclear. To examine the molecular mechanism behind their interaction this project aimed at solving the structure of endophilin B1-Bax complexes when bound to membrane mimicking platforms known as nanodiscs (NDs). NDs are composed of a lipid bilayer held together by a membrane scaffolding protein (MSP) that encircles the bilayer creating a disc-shaped structure. By designing NDs that resembles the mitochondrial outer membrane (MOM), this study intended to stimulate complex formation and stable binding to nanodiscs with the ambition of visualising their interaction using Cryo-EM. Due to difficulties of expressing and purifying Bax as well as time consuming optimization of ND assembly the final goal could not be reached. By establishing an optimized protocol for NDs using the MSP variant MSP2N2 and 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) lipids as well as identifying challenges of expressing and purifying Bax this study lays ground for future structural studies that aims at elucidating the molecular mechanism behind the interaction.
|
16 |
Tunnels and Grooves : Structure-Function Studies in Two Disparate EnzymesEricsson, Daniel January 2009 (has links)
This thesis describes structural and binding studies in enzymes from two different organisms: ribonucleotide reductase from Mycobacterium tuberculosis (RNR) and lipase A from Candida antarctica (CalA). RNR is viable as a target for new drugs against the causative agent of tuberculosis. The biologically active form of RNR is a heterotetramer with an α2β2 substructure. Here we show that an N-acetylated heptapeptide based on the C-terminal sequence of the smaller RNR subunit can disrupt the formation of the holoenzyme sufficiently to inhibit its function. An N-terminal truncation, an alanine scan and a novel statistical molecular design approach based on the heptapeptide Ac-Glu-Asp-Asp-Asp-Trp-Asp-Phe-OH were applied. A full-length acetylated heptapeptide was necessary for inhibition, and Trp5 and Phe7 were also essential. Exchanging the acetyl for the N-terminal Fmoc protective-group increased the binding potency ten-fold. Based on this, several truncated and N-protected peptides were evaluated in a competitive fluorescence polarization assay. The single-amino acid Fmoc-Trp inhibits the RNR holoenzyme formation with a dissociation constant of 12µM, making it an attractive candidate for further development of non-peptidic inhibitors Lipases are enzymes with major biotechnological applications. We report the x-ray structure of CalA, the first member of a novel family of lipases. The fold includes a well-defined lid as well as a classical α/β hydrolase domain. The structure is that of the closed/inactive state of the enzyme, but loop movements near Phe431 will provide virtually unlimited access to solvent for the alcohol moiety of an ester substrate. The structure thus provides a basis for understanding the enzyme's preference for acyl moieties with long, straight tails, and for its highly promiscuous acceptance of widely different alcohol and amine moieties. An unconventional oxyanion hole is observed in the present structure, although the situation may change during interfacial activation.
|
17 |
Fighting Tuberculosis – : Structural Studies of Three Mycobacterial ProteinsCastell, Alina January 2008 (has links)
This thesis presents the cloning, purification, crystallization, and structural studies of two unknown proteins from Mycobacterium tuberculosis, and of an aminotransferase from Mycobacterium smegmatis. Structural knowledge of these proteins is of highest interest for structure-based drug design, which is one of the approaches that can be used in order to fight tuberculosis (TB). The structure of the conserved hypothetical protein Rv0216 was refined to a resolution of 1.9 Å. The structure exhibits a so-called double hotdog-fold, similar to known hydratases. However, only parts of the hydratase active site are conserved in Rv0216, and no function could be assigned to the protein. Several Rv0216-like protein sequences were found in a variety of actino- and proteobacteria, suggesting that these proteins form a new protein family. Furthermore, other hotdog-folded proteins in M. tuberculosis were identified, of which a few are likely to be hydratases or dehydratases involved in the fatty acid metabolism. The structure of Rv0130 exhibits a single hotdog-fold and contains a highly conserved R-hydratase motif. Rv0130 was shown to hydrate fatty acid coenzyme A derivatives with a length of six to eight carbons. The Rv0130 active site is situated in a long tunnel, formed by a kink in the central hotdog-helix, which indicate that it can utilize long fatty acid chains as well. A number of previously predicted hotdog-folded proteins also feature a similar tunnel. The structure of branched chain aminotransferase (BCAT) of M. smegmatis was determined in the apo-form and in complex with an aminooxy inhibitor. Mycobacterial BCAT is very similar to the human BCAT, apart for one important difference in the active site. Gly243 is a threonine in the human BCAT, a difference that offers specificity in inhibition and substrate recognition of these proteins. The aminooxy compound and MES were found to inhibit the mycobacterial BCAT activities. The aminooxy compound inhibits by blocking the substrate-pocket. A second inhibitor-binding site was identified through the binding of a MES molecule. Therefore, both the MES-binding site and the substrate-pocket of M. smegmatis BCAT are suggested to be potential sites for the development of new inhibitors against tuberculosis.
|
18 |
Establishing the molecular mechanism of sodium/proton exchangersUzdavinys, Povilas January 2017 (has links)
Sodium/proton exchangers are ubiquitous secondary active transporters that can be found in all kingdoms of life. These proteins facilitate the transport of protons in exchange for sodium ions to help regulate internal pH, sodium levels, and cell volume. Na+/H+ exchangers belong to the SLC9 family and are involved in many physiological processes including cell proliferation, cell migration and vesicle trafficking. Dysfunction of these proteins has been linked to physiological disorders, such as hypertension, heart failure, epilepsy and diabetes. The goal of my thesis is to establish the molecular basis of ion exchange in Na+/H+ exchangers. By establishing how they bind and catalyse the movement of ions across the membrane, we hope we can better understand their role in human physiology. In my thesis, I will first present an overview of Na+/H+ exchangers and their molecular mechanism of ion translocation as was currently understood by structural and functional studies when I started my PhD studies. I will outline our important contributions to this field, which were to (i) obtain the first atomic structures of the same Na+/H+ exchanger (NapA) in two major alternating conformations, (ii) show how a transmembrane embedded lysine residue is essential for carrying out electrogenic transport, and (iii) isolate and recorde the first kinetic data of a mammalian Na+/H+ exchanger (NHA2) in an isolated liposome reconstitution system.
|
19 |
Investigating Minor States of the Oncoprotein N-MYC, with Focus on Proline Cis/Trans Isomerisation using NMR SpectroscopyHaugskott, Frida January 2021 (has links)
MYC is a family of three regulator genes that codes for transcription factors. Expression of Myc proteins from MYC genes is found to be deregulated in 70 % of all cancer forms. The three human homologs C-Myc, N-Myc and L-Myc are mainly associated with cancer in the lymphatic system, nerve tissues and lung cancer, respectively. Even though N-Myc is associated with Neuroblastoma, the cancer variant that is most common among children, the field is focused towards C-Myc. The activation of C-Myc begins with phosphorylation of Serine 62, followed by trans-to-cis isomerisation of Proline 63. Then Threonine 58 becomes phosphorylated leading to that Serine 62 is dephosphorylated and subsequent cis-to-trans isomerisation of Proline 63, and C-Myc is marked for degradation. Cis-trans isomerisation is necessary for regulation of gene expression, and is therefore important to understand. Since N-Myc and C-Myc have identical sequences between residues 47 to residue 69, the hypothesis is that N-Myc is activated in the same manner, but this has not been confirmed. In this project the first 69 amino acids of N-Myc were analysed with NMR spectroscopy. This resulted in a near complete assignment of the major conformation, and of the alternative minor conformations as well. The traditional assignment experiments HNCACB, HN(CO)CACB, HNCO, HN(CA)CO in combination with CCH-TOCSY and HN(CCO)C revealed that the majority of the minor configurations can be explained by cis/trans isomerisation of prolines. In addition, the protein was analysed with direct carbon detected NMR spectroscopy to be able to detect the prolines.
|
20 |
Characterization of Mitilysin Pores by Cryo-electron MicroscopyNovakovic, Vladimir January 2023 (has links)
Pore forming toxins (PFTs) are a large group of proteins found mainly in bacteria with some exceptions found in animals. They bind and form pores in their target membranes and form pores, which leads to cell death. Among these are cholesterol-dependent cytolysins (CDC), which require the presence of cholesterol to bind target membranes. Mitilysin (Mly), a protein of interest in this project, belongs to the CDC group of pore forming toxins. It is produced by the bacterium Streptococcus mitis, a pathogen closely related to Streptococcus pneumoniae, found in human oral cavity, which causes several diseases such as Viridans Group Streptococcal (VGS) toxic shock syndrome and endocarditis. Mly is a homologue of the toxin Pneumolysin, which is produced by S. pneumoniae. However, the mechanism of pore formation is not well known. The purpose of this project is to understand the mechanism of CDC pore formation, focusing on the key amino acid residues that are responsible for transitioning from Mly pre-pore to pore state. The findings will aid in the design of inhibitors of pore formation as potential anti-bacterial drug candidates. The major goal of the project was to determine the 3-dimensional (3D) structure of assembled Mly pore. Mly is expressed in E.coli and purified by Ni-NTA affinity chromatography. Pore formation is confirmed by a hemolysis assay and negative stain-transmission electron microscopy. Mly pores are vitrified, analyzed and imaged in a cryo-electron microscope. 2D images were processed to generate a 3D density map. However, our Mly pore 3D map was incomplete due to lack of 2D projection angles resulting from preferred orientation of pore particles during sample preparation. To overcome this problem, we aim to use DNA origami, which requires His-tagged Mly. We were able to determine that His-tagged Mly retains its pore formation ability.
|
Page generated in 0.0655 seconds