Spelling suggestions: "subject:"synaptogenesis"" "subject:"l'ontogenèse""
1 |
Analyse génétique de la synaptogenèse cholinergique chez Caenorhabditis elegans / Genetic analysis of cholinergic synaptogenesis in Caenorhabditis elegansPierron, Marie Juliette Ségolène 21 September 2015 (has links)
La transmission de l’information au niveau des synapses chimiques requiert la concentration de récepteurs appropriés face aux sites de libération des neurotransmetteurs. Afin d'identifier de nouveaux gènes impliqués dans la localisation synaptique des récepteurs de l’acétylcholine (RAChs), un crible génétique basé sur l'observation in vivo de ces récepteurs à la jonction neuromusculaire (JNM) de C. elegans a été conduit et a permis d’isoler 29 mutants. J’ai identifié des gènes candidats dans cinq lignées et la mutation causale dans trois autres en caractérisant 9 de ces mutants par séquençage de leur génome. Par ailleurs, l’analyse fonctionnelle de 2 autres des mutants nous a permis de mettre en évidence deux activités mobilisatrices des récepteurs très différentes. D’une part, nous avons mis en évidence le rôle déterminant d’isoformes de Ce-Punctine/MADD-4, sécrétées spécifiquement par les motoneurones cholinergiques et GABAergiques, dans le recrutement local des récepteurs appropriés à la membrane de la cellule musculaire. Chef d’orchestre de la transmission neuronale, la Punctine définit ainsi l’identité excitatrice ou inhibitrice des JNMs. D’autre part, nous avons montré que les RAChs extrasynaptiques normalement diffus à la membrane de la cellule musculaire s’agrègent en amas ectopiques dans un mutant du gène suppresseur de tumeurs rsu-1 (ras suppresseur 1). L’absence de RSU-1, protéine localisée aux sites d’adhésion focale en aval des intégrines, engendre une diminution des récepteurs synaptiques, ce qui met à jour un mécanisme actif prévenant l’agrégation illégitime des récepteurs extrasynaptiques et permettant d’assurer leur recrutement effectif à la synapse. / Chemical neurotransmission relies on the concentration of receptors in front of neurotransmitter release sites. To identify new genes involved in the synaptic localization of receptors, a genetic screen based on the in vivo visualization of acetylcholine receptors (AChRs) at the C. elegans neuromuscular junction (NMJ) was performed and twenty-nine mutants were retrieved. By whole genome sequencing of nine mutated lines, I identified candidate genes for five mutants and the causal mutation for three others. The functional analysis performed in parallel of two other mutants from the same screen revealed two novel and distinct activities that are required for the synaptic localization of AChRs. We evidenced the fundamental role of Ce Punctin/MADD-4 isoforms, which are specifically secreted by cholinergic and GABAergic motoneurons, in recruiting locally appropriate receptors at the muscle cell membrane. This showed that Punctin is a key factor specifying the excitatory or the inhibitory identity of NMJs and defined a new paradigm with isoforms from the same gene that promote specific post-synaptic domains assembly. The tumor suppressor gene rsu-1 (ras suppressor 1) is evolutionary conserved and encodes a protein localized at focal adhesion sites. In the absence of RSU-1, normally diffused extrasynaptic AChRs are found aggregated and the synaptic receptor content is diminished. This reveals that an RSU-1 dependent mechanism is required to maintain receptors dispersed in the extrasynaptic membrane, allowing for their proper recruitment at the synapse.
|
2 |
Rôle de l’interaction Neurexine-1β/Neuroligine-1 dans l’assemblage des post-synapses glutamatergiques et le recrutement des récepteurs AMPAMondin, Magali 25 November 2010 (has links)
Dans le système nerveux central, la synaptogenèse est un processus complexe multi-étapes qui se déroule aux contacts axones/dendrites. Les molécules d’adhérence neurexines/neuroligines jouent un rôle essentiel dans ce processus, en créant un lien physique entre les compartiments pré- et post-synaptiques et en participant au recrutement des complexes macromoléculaires essentiels à la fonction synaptique. Plus spécifiquement, le complexe neurexine-1β/neuroligine-1 induit la formation de post-synapses excitatrices, en recrutant des molécules d’échafaudage telles que PSD-95 et des récepteurs du glutamate.Mon travail de thèse a consisté à étudier les mécanismes moléculaires mis en jeu par les adhésions neurexines/neuroligines lors de la formation des post-synapses glutamatergiques. En utilisant des systèmes biomimétiques (neurexine purifiée fixée sur des billes, ou agrégée par des anticorps réticulés), nous avons induit des adhésions spécifiques neurexine-1β/neuroligine-1 sur des neurones d’hippocampe en culture. Nous avons ainsi étudié la distribution dynamique des composants post-synaptiques (récepteurs AMPA, PSD-95) endogènes ou étiquetés avec des protéines fluorescentes, par vidéo-microscopie. Dans un premier article, nous avons montré que la formation de ces contacts induisait un recrutement rapide de PSD-95 ainsi que des récepteurs NMDA et AMPA fonctionnels. En utilisant des récepteurs AMPA recombinants, j’ai montré que ce recrutement était dicté par la sous-unité GluA2. Dans une deuxième étude, en comparant le recrutement de PSD-95 induit par la neurexine avec des anticorps non–activants, nous avons mis en évidence un mécanisme d’activation spécifique de neuroligine-1 induit par la liaison de neurexine-1β. L’utilisation de mutants ponctuels de neuroligine-1 a permis de montrer que cette activation passe probablement par la déphosphorylation d’une tyrosine unique située dans le domaine C-terminal de la neuroligine-1.Enfin, en étudiant la diffusion latérale des rAMPA de surface par suivi de particules uniques fluorescentes (Quantum dots), ainsi qu’une batterie d’outils moléculaires pour moduler les adhésions neurexine/neuroligine (sur-expression, siRNA, souris KO), nous avons montré que les rAMPA sont recrutés aux adhésions neurexine-1β/neuroligine-1 via l’échafaudage PSD-95 et que ce recrutement nécessite la diffusion des récepteurs dans la membrane plasmique. Nous proposons ainsi que les récepteurs AMPA soient recrutés aux contacts naissants via un mécanisme original de diffusion/piégeage. / In the central nervous system, synaptogenesis is a multi step process occuring at axo-dendritic contacts. Neurexins/neuroligins adhesions are particularly involved in this process, making a bridge between the pre- and the post-synapse, and participating to the recruitment of macromolecular complexes essential for synaptic function. More precisely neurexin-1β/neuroligin-1 complex is specifically involved in the formation of excitatory synapses, inducing the recruitment of glutamatergic post-synapses components, such as PSD-95, and glutamate receptors.During my PhD, I focused on the molecular mechanisms involved in glutamatergic post-synapses formation triggered by neurexin-1β/neuroligin-1 adhesions. Using biomimetic models (beads coated with purified neurexin, or purified neurexin cross-linked with aggregated antibodies) we induced specific neurexin-1β/neuroligin-1 adhesions on cultured hippocampal neurons. We then studied the dynamic distribution of either endogenous or recombinant post-synaptic components (PSD-95, AMPARs) with live-imaging techniques. First, we showed that the formation of these contacts induced a rapid recruitment of PSD-95 and functional NMDA and AMPA receptors. Using recombinant AMPA receptors, I showed that this recruitment was mediated by GluA2 subunit.In a second study, using systematic comparison between the recruitment of PSD-95 induced either by neurexin-1β or by “non activating” antibody binding on neuroligin-1, we revealed a specific activation mechanism of neuroligin-1 induced by neurexin-1β binding. Using point mutations on neuroligin-1, we showed that this activation mechanism is mediated by a tyrosine dephosphorylation on neuroligin-1 intracellular tail.Finally, we studied AMPA receptor surface diffusion with single particle tracking experiments, using different molecular tools to perturb neurexin-1β/neuroligin-1 adhesions (overexpression, RNA interference, KO mice). We showed that AMPA receptors recruitment at new-formed neurexin-1β/neuroligin-1 adhesions occurs through PSD-95, and involves surface diffusion of AMPA receptors. We proposed an original diffusion/trap mechanism of AMPA receptors at nascent contacts.
|
3 |
Les signaux extracellulaires modèlent la transmission GABAergique dans l'hippocampe en développement : le cas de la leptine / Extracellular cues shape GABAergic transmission in the developing hippocampus : the case of leptinGuimond, Damien 02 September 2014 (has links)
La présente thèse est liée à l'étude des indices externes au réseau neuronal et comment ceux-ci impactent le développement du système nerveux central. Spécifiquement, notre objectif était d'explorer l'effet de la leptine, une hormone sécrétée par les adipocytes, sur la plasticité développementale GABAergique. Nous avons utilisé des tranches aigues d'hippocampe de rat nouveau-né pour montrer que la leptine induit une potentialisation de la fréquence de l'activité miniature GABAergique, nécessitant une augmentation postsynaptique de calcium et l'activation de voies de signalisation spécifiques. Nous avons confirmé cet effet sur des cultures de neurones hippocampiques, sur lesquelles nous avons commencé à développer une méthode pour mesurer le corrélat morphologique de la plasticité fonctionnelle des synapses GABAergiques en culture. Cette approche suggère que la plasticité GABAergique induite par la leptine pourrait survenir à densité constante de récepteurs GABAA membranaires. La leptine induit donc une potentialisation de l'activité GABAergique dans les neurones hippocampiques en développement. Enfin, nous avons trouvé que les neurones pyramidaux de CA3 reçoivent une activité miniature GABAergique réduite chez des souris ob/ob ne produisant pas de leptine, suggérant que la leptine contribue au développement de la circuiterie GABAergique in vivo. Dans l'ensemble, les études que nous présentons apportent un éclairage nouveau sur le développement d'aires cérébrales dites de « haut niveau », dont nous avons observé qu'elles intègrent des signaux dits de « bas niveau », c'est-à-dire en provenance de la périphérie afin de modeler leur développement. / The present dissertation tackles the larger question of how external cues impact the development of the central nervous system. Our specific aim was to explore the effect of leptin, an adipocyte-derived hormone, on GABAergic plasticity in the developing rodent hippocampus. We used acute hippocampal slices of newborn rats to show that leptin induces a long lasting potentiation of the frequency of miniature GABAergic activity. Using pharmacological tools we found that this event requires a postsynaptic increase in intracellular calcium as well as specific postsynaptic signaling pathways. To address the mechanistic action of leptin we confirmed the leptin-induced plasticity on hippocampal cultures and began to develop a method to measure the morphological correlate of GABAergic synapses in culture. Applying this method suggested that the leptin-induced GABAergic plasticity might occur with a constant density of postsynaptic GABAA receptor puncta. Taken together, these data show that leptin induces a potentiation of GABAergic activity in developing hippocampal neurons, perhaps by recruiting clusters of GABAA receptors expressed at the membrane to form newly functional GABAergic synapses. In addition we found that CA3 pyramidal neurons of leptin-deficient ob/ob mice exhibit lower miniature GABAergic activity compared to wild type littermates, which suggests that leptin contributes to the development of the hippocampal GABAergic circuitry in vivo. Overall, these studies shed a new light on the development of admittedly "higher-level" cerebral regions which were found here to integrate "lower-level", peripheral signals to shape their development.
|
4 |
Influence de la microglie et du BDNF sur l'induction de la neuroplasticité après un accident vasculaire cérébral ischémiqueMadinier, Alexandre 30 September 2011 (has links) (PDF)
L'émergence de la notion selon laquelle la réponse inflammatoire exercerait des effets bénéfiques dans la pathologie ischémique cérébrale, en particulier au cours de la phase de récupération fonctionnelle nous a conduit à étudier l'implication des cellules microgliales dans le déclenchement des mécanismes de neuroplasticité post-ischémique. Notre étude a été réalisée chez le Rat soumis à une ischémie focale permanente induite par photothrombose. L'activation microgliale a été modulée par un traitement au 3-aminobenzamide (3-AB), un inhibiteur spécifique de la poly(ADP-ribose)polymérase-1, jouant un rôle prépondérant dans l'activation de ces cellules. Nos données montrent que le 3-AB entraîne une diminution importante de l'activation microgliale aux temps courts associée à plus long terme à une réduction de l'expression de la synaptophysine et de GAP-43, respectivement marqueurs des processus de synaptogenèse et croissance axonale. L'ensemble de ces données indique donc que les cellules microgliales constituent effectivement des acteurs cellulaires essentiels de la neuroplasticité post-ischémique. Le Brain-derived neurotrophic factor (BDNF) se révélant un candidat potentiellement capable de promouvoir de tels changements, nous avons pu mettre en évidence que ces cellules représentaient de façon précoce une source importante de BDNF. Ces résultats ont été confirmés par la nette diminution des taux de BDNF mesurés dans les zones corticales lésionnelles et péri-lésionnelles des animaux traités par le 3-AB. Dans un deuxième temps, le métabolisme complexe de cette neurotrophine à travers l'existence de deux formes, pro- et mature, aux effets biologiques opposés, nous a conduit à réaliser une étude spatio-temporelle des expressions post-ischémiques du BDNF total (ELISA), pro- et mature (Western blotting). Aux temps courts (4-24 h), les expressions du BDNF total, pro- et mature sont augmentées dans les territoires corticaux lésés, péri-lésionnels et homotopiques tandis qu'aux temps longs (8-30 j), le BDNF total reste accru dans les régions distantes de la zone infarcie (hippocampes et cortex contralatéral). Concernant les expressions des formes pro- et mature, nos résultats indiquent une augmentation entre 8 et 30 j uniquement dans les territoires hippocampiques. D'un point de vue cellulaire, le BDNF est exprimé du côté ipsilatéral dans les neurones et les cellules non neuronales tandis que du côté contralatéral, l'expression est limitée aux neurones. Nos résultats tout en faisant apparaître des divergences importantes dans les variations d'expressions du BDNF total (ELISA) et des différentes formes (Western blotting) indiquent que la mesure du BDNF total doit être couplée à une étude permettant de discriminer les deux formes. De plus, tout en confirmant l'implication de cette neurotrophine dans les mécanismes adaptatifs induits en réponse à une ischémie cérébrale, ces données suggèrent que les territoires distants de la zone lésée jouent un rôle majeur dans ces processus.
|
5 |
Influence de la microglie et du BDNF sur l'induction de la neuroplasticité après un accident vasculaire cérébral ischémique / Microglial and BDNF impact on the induction of the post ischemic neuroplasticityMadinier, Alexandre 30 September 2011 (has links)
L’émergence de la notion selon laquelle la réponse inflammatoire exercerait des effets bénéfiques dans la pathologie ischémique cérébrale, en particulier au cours de la phase de récupération fonctionnelle nous a conduit à étudier l’implication des cellules microgliales dans le déclenchement des mécanismes de neuroplasticité post-ischémique. Notre étude a été réalisée chez le Rat soumis à une ischémie focale permanente induite par photothrombose. L’activation microgliale a été modulée par un traitement au 3-aminobenzamide (3-AB), un inhibiteur spécifique de la poly(ADP-ribose)polymérase-1, jouant un rôle prépondérant dans l’activation de ces cellules. Nos données montrent que le 3-AB entraîne une diminution importante de l’activation microgliale aux temps courts associée à plus long terme à une réduction de l’expression de la synaptophysine et de GAP-43, respectivement marqueurs des processus de synaptogenèse et croissance axonale. L’ensemble de ces données indique donc que les cellules microgliales constituent effectivement des acteurs cellulaires essentiels de la neuroplasticité post-ischémique. Le Brain-derived neurotrophic factor (BDNF) se révélant un candidat potentiellement capable de promouvoir de tels changements, nous avons pu mettre en évidence que ces cellules représentaient de façon précoce une source importante de BDNF. Ces résultats ont été confirmés par la nette diminution des taux de BDNF mesurés dans les zones corticales lésionnelles et péri-lésionnelles des animaux traités par le 3-AB. Dans un deuxième temps, le métabolisme complexe de cette neurotrophine à travers l’existence de deux formes, pro- et mature, aux effets biologiques opposés, nous a conduit à réaliser une étude spatio-temporelle des expressions post-ischémiques du BDNF total (ELISA), pro- et mature (Western blotting). Aux temps courts (4-24 h), les expressions du BDNF total, pro- et mature sont augmentées dans les territoires corticaux lésés, péri-lésionnels et homotopiques tandis qu’aux temps longs (8-30 j), le BDNF total reste accru dans les régions distantes de la zone infarcie (hippocampes et cortex contralatéral). Concernant les expressions des formes pro- et mature, nos résultats indiquent une augmentation entre 8 et 30 j uniquement dans les territoires hippocampiques. D’un point de vue cellulaire, le BDNF est exprimé du côté ipsilatéral dans les neurones et les cellules non neuronales tandis que du côté contralatéral, l’expression est limitée aux neurones. Nos résultats tout en faisant apparaître des divergences importantes dans les variations d’expressions du BDNF total (ELISA) et des différentes formes (Western blotting) indiquent que la mesure du BDNF total doit être couplée à une étude permettant de discriminer les deux formes. De plus, tout en confirmant l’implication de cette neurotrophine dans les mécanismes adaptatifs induits en réponse à une ischémie cérébrale, ces données suggèrent que les territoires distants de la zone lésée jouent un rôle majeur dans ces processus. / Evidences showing that under certain circumstances, inflammatory response could be neuroprotective and could also promote adult neurogenesis are growing. In this context, the objective of this work was to investigate the impact of microglial cells in the neuroplastic events. Rats were subjected to photothrombotic ischemia and microglial cells activation was blocked by the mean of poly(ADP-ribose)polymérase-1 (PARP-1) inhibition using 3- aminobenzamide (3-AB) since this protein has been shown to play a major role in this activation. Our results show that PARP-1 activity reduction was associated with a strong repression of the acute microglial activation. Beside, 3-AB treated animals exhibited a decrease in synaptophysin (synaptogenesis) and GAP-43 (axonal growth) expressions. Taken together, our data argue for a supportive role of microglial in adaptive brain plasticity events. According to the preponderant contribution of BDNF in these events, assessment of its cellular localization was performed, and confirmed that these cells represent a significant source. Beside, BDNF immunoreactivity (IR) in microglial cells and BDNF levels in the lesioned and surrounding lesioned areas were found decreased in 3-AB treated animals. However, since this neurotrophin can exert ambivalent biological actions through pro- versus mature forms, we investigate the proper effect of cerebral ischemia on total (Elisa), pro- and mature (Western blotting) expressions. Our results show that total, pro- and mature BDNF expressions are augmented in the early times (4-24h) of ischemia within the lesioned, the surrounding non lesioned and the contralateral cortical areas. At longer time points, total BDNF was still increased at 8d in regions distant from the lesion (hippocampi and contralateral cortex) while pro- and mature forms rise between 8d to 30d in hippocampic territories only. In term of cellular distribution, BDNF-IR was found in neurons but also in non neuronal cells ipsilaterally whereas in the opposite side BDNF staining was restricted to neurons. Our data while raising the question of the pertinence of total BDNF expression in a context of studying its supportive potential action indicate that such assessment has to be coupled with the discrimination of both forms. In addition, our data confirm the important role of BDNF in post-stroke adaptive mechanisms and argue in favour of an important contribution of the hippocampal territory and of the contralateral hemisphere in BDNF related post-stroke neuronal circuit remodelling suggesting that strategies targeting this hemisphere are likely to mediate functional compensation.
|
6 |
Contribution du récepteur GPR55 à la synaptogenèseGermain, Philippe 04 1900 (has links)
Les connections synaptiques entre les cellules nerveuses (appelées synapses) sont essentielles à
l’établissement de l’architecture du système nerveux. La modification de ces synapses est un des
mécanismes par lequel l’apprentissage et la mémoire fonctionnent. On sait depuis plusieurs
années déjà que la consommation de cannabis exerce une profonde influence sur l’apprentissage
et la mémoire, et que sa consommation chez la femme durant la grossesse ou l’allaitement peut
causer des déficits cognitifs chez l’enfant qui perdureront à l’âge adulte. Pour le moment, on ne
sait toujours pas si ces effets sont médiés par les récepteurs aux cannabinoïdes classiques (CB1
et CB2) ou par d’autres récepteurs tel le GPR55. Des études récentes du laboratoire du Pr.
Bouchard ont démontré un rôle important du système endocannabinoïde dans le développement
du système nerveux notamment par la présence du récepteur GPR55 et son implication dans la
modulation du guidage et de la croissance des axones durant les périodes foetale et périnatale.
Comme certaines molécules et mécanismes cellulaires impliqués dans ces processus peuvent
aussi jouer un rôle dans la formation de synapses (synaptogenèse), l’objectif de la présente étude
est de déterminer la contribution du GPR55 dans la formation de contacts synaptiques. À partir
de cortex d’embryons de souris, nous avons cultivé puis traité des neurones corticaux soit avec
un agoniste sélectif de GPR55 (O-1602) ou son antagoniste sélectif (ML-193), soit avec un
phytocannabinoïde (cannabidiol) pendant 24 heures au 9e jour in vitro. En immunocytochimie,
les neurones traités avec le ML-193 ont démontré une réduction significative du nombre de
contacts synaptiques et une augmentation significative avec l’O-1602 et le cannabidiol. Ces
changements anatomiques sont corrélés avec des modifications de l’expression des protéines
synaptiques GluR1 et synaptophysine au niveau du cortex. En plus de fournir d’importantes
informations sur le développement du système nerveux, les résultats de cette étude contribuent
à l’amélioration de nos connaissances sur les anomalies du développement induites par la
consommation périnatale de cannabis. / Functional connections between nerve cells (called synapses) are essential to establish the
architecture of the nervous system. The modification of synapses is thought to be one of the
mechanisms by which learning and memory occur. It has been known for decades that cannabis
consumption has a profound influence on learning and memory, and that maternal marijuana
smoking during perinatal period causes cognitive deficits that last in the adulthood of the
offspring. For the moment, we do not know if these effects are mediated by the classic CB1 and
CB2 cannabinoid receptors or by other receptors such as GPR55. Recent studies by Pr. Bouchard
have demonstrated an important role for the endocannabinoid system in the development of the
nervous system, including the presence of GPR55 and its involvement in axon growth and target
innervation during the fetal and early postnatal periods. As certain molecules and cellular
mechanisms involved in these processes may also regulate synapse formation (synaptogenesis),
the objective of the present study is to determine the contribution of GPR55 in the formation of
new synaptic contacts. Primary cortical neurons isolated from embryonic mice were cultivated
and then treated either with a selective agonist of GPR55 (O-1602) or his selective antagonist
(ML-193), or with a phytocannabinoid (cannabidiol) for 24h at the ninth day in vitro (DIV9). In
immunocytochemistry, neurons treated with ML-193 have shown a decrease in synaptic density,
while the treatment with O-1602 or cannabidiol increased it. These anatomical changes were
correlated with changes in the expression of synaptic proteins GluR1 and synaptophysin. Results
from this study provide important insight on the development of the nervous system and
contribute to improving our knowledge on developmental abnormalities induced by perinatal
cannabis use.
|
7 |
Arrêt précoce de la migration neuronale corticale : conséquences cellulaires et comportementales / Premature arrest of cortical neuronal migration : cellular and behavioral consequencesMartineau, Fanny 27 November 2017 (has links)
La migration radiaire est un des processus clefs de la corticogenèse menant à l’établissement d’un cortex en six couches chez les mammifères. La compréhension de ce mécanisme complexe est nécessaire à une meilleure appréhension du développement cortical. Dans ce travail de thèse, j’ai étudié la migration des neurones pyramidaux du cortex sous deux angles distincts. La 1ère partie se place d’un point de vue développemental en appréciant comment le positionnement laminaire résultant d’une migration normale ou anormale affecte la maturation neuronale. La 2nde partie se concentre sur une pathologie migratoire, l’hétérotopie en bande sous-corticale, et les altérations cognitives parfois associées à cette malformation. Pour ces deux projets, la migration neuronale a été altérée chez le rat par knockdown (KD) in utero de la doublecortine (Dcx), un effecteur majeur de la migration. Les neurones positionnés anormalement présentent une orientation incorrecte, un arbre dendritique moins développé, une spinogenère réduite et une altération morpho-fonctionnelle de la synaptogenèse glutamatergique. De plus, notre étude a mis en évidence l’implication de Dcx dans la dendritogenèse et la régulation fine des synapses glutamatergiques in vivo. Enfin, nous avons utilisé les rats Dcx-KD comme modèle d’hétérotopie en bande afin d’étudier comment un déficit de migration neuronale impacte le fonctionnement du cortex. La caractérisation comportementale, réalisée à l’aide d’une large gamme de tests, n’a pas mis en évidence de déficits majeurs des capacités motrices, somatosensorielles ou cognitives chez ces animaux. / Radial migration is one of the key processes leading to the formation of a six-layered cortex in mammals. Understanding this mechanism is necessary to get a better grasp of cortical development. During my PhD, I studied neuronal migration of pyramidal neurons from two different points of views. The 1st part is related to fundamental biology and assesses how laminar misplacement resulting from migration failure influences neuronal maturation. The 2nd one focuses on pathology by investigating a migration disorder, subcortical band heterotopia, and associated cognitive deficits. For both projects, neuronal migration was impaired in rat through in utero knockdown (KD) of doublecortin (Dcx), a major effector of cortical migration. Misplaced neurons display an abnormal orientation, a simplified dendritic arbor, a decreased spinogenesis and morpho-functional alterations of glutamatergic synaptogenesis. Moreover, our study shows that Dcx plays a role in dendritogenesis, in shaping spine morphology and in fine-tuning glutamatergic synaptogenesis. Finally, we used Dcx-KD rats as an animal model of subcortical band heterotopia to assess how migration failure would impact cortical functions. The behavioral characterization carried out through a wide range of tests did not bring to light any major shortcoming regarding motor, somatosensory or cognitive abilities in these animals. Therefore, although Dcx-KD rats display a SBH and develop spontaneous seizures, it does not seem to recapitulate cognitive deficits found in patients.
|
8 |
Contribution du récepteur GPR55 dans la formation des contacts synaptiquesLacomme, Lucile 08 1900 (has links)
La synaptogenèse est un processus biologique aboutissant à la mise en place d’un réseau de connexions neuronales, par la genèse de synapses. La mise en place de ce réseau de connexions est essentielle au développement du système nerveux central (SNC) et de ses fonctions. Tout comme les autres étapes du développement du SNC, la synaptogenèse est régulée par une multitude de signaux cellulaires, et le système endocannabinoïde en fait partie. Les dérivés du cannabis tel que le Δ-9-tétrahydrocannabinol (THC) et le cannabidiol (CBD) sont capables de traverser la barrière placentaire et de se retrouver dans le lait maternel. Par leur interaction avec le SNC, entre autres, ces phytocannabinoïdes sont capables d’influencer son développement. Le récepteur couplé à une protéine G 55 (GPR55) est catégorisé comme récepteur atypique du système endocannabinoïde, et il est capable d’être antagonisé par le CBD. Il a été prouvé par de précédentes études qu’il est lui aussi impliqué dans le développement du SNC, notamment dans le guidage et la croissance des axones durant les périodes fœtale et périnatale. Dans la littérature, il est souvent rapporté que les signaux impliqués dans le guidage axonal le sont aussi dans la synaptogenèse. C’est pourquoi le présent mémoire vise à examiner le rôle du récepteur GPR55 et l’effet de sa modulation par le CBD dans la formation de contacts synaptiques. Le modèle utilisé pour cette étude est la culture de neurones corticaux issus d’embryons de souris de génotypes gpr55+/+ et gpr55-/-. Pour comprendre le rôle physiologique de GPR55 dans la synaptogenèse nous avons étudié l’effet de la délétion du récepteur GPR55 à deux temps, Day In Vitro (DIV) 9-10 au début de la synaptogenèse, et à DIV14-15 un temps plus avancé. Ensuite pour comprendre comment le CBD est capable d’influencer la formation de contacts synaptiques de manière dépendante ou non de GPR55, les cultures de neurones corticaux de chaque génotype ont été exposées à DIV9 pour 24h à différentes concentrations du CBD (0,3uM ou 0,6uM ou 1uM). Les effets sur la formation de contacts synaptiques ont été étudiés en immunocytochimie, en immunobuvardage et en électrophysiologie de type patch clamp. Les résultats montrent que la délétion de GPR55 entraine à DIV14-15 une augmentation de la densité des contacts synaptiques, mais une réduction de leur aire et de l’expression de la synaptophysine, en affectant l’activité synaptique. L’exposition au CBD 0,6uM et 1uM entrainent de manière dépendante ou partiellement dépendante à GPR55, une augmentation de la densité des contacts synaptiques sans affecter leur aire, l’expression de protéines synaptiques ainsi que l’activité synaptique. La fréquence de décharge des neurones est diminuée de manière dépendante de GPR55 après l’exposition au CBD 1uM. Ces résultats suggèrent que GPR55 pourrait être un signal important pour l’arrêt de la formation de nouvelles synapses et un signal d’induction pour la maturation des synapses existantes. / Synaptogenesis is a biological process that leads to the establishment of a network of neuronal
connections through the genesis of synapses. The formation of this network of connections is
essential for the development of the central nervous system (CNS) and its functions. Like other
stages of CNS development, synaptogenesis is regulated by multiple cellular signals, and the
endocannabinoid system is part of it. Cannabis derivatives such as Δ-9-tetrahydrocannabinol
(THC) and cannabidiol (CBD) can cross the placental barrier and be present in breast milk. Through
their interaction with the endocannabinoid system, among others, these phytocannabinoids can
influence CNS development. The G protein-coupled receptor 55 (GPR55) is categorized as an
atypical receptor of the endocannabinoid system, and it can be antagonized by CBD. Previous
studies have shown that GPR55 is also involved in CNS development, particularly in the guidance
and growth of axons during fetal and perinatal periods. It is often reported in the literature that
the signals involved in axonal guidance are also involved in synaptogenesis. Therefore, this study
investigates the role of the GPR55 receptor and the effect of its modulation by CBD in the
formation of synaptic contacts. The model used for this study consists of cortical neuron cultures
from mouse embryos gpr55+/+ and gpr55-/-
. To understand the physiological role of GPR55 in
synaptogenesis, we studied the effect of gpr55 deletion at two-time points: Day In Vitro (DIV) 9-
10 at the beginning of synaptogenesis, and DIV14-15 at a later time point. Then, to understand
how CBD can influence the formation of synaptic contacts, whether dependent or independent
of GPR55, cortical neuron cultures of each genotype were exposed to different concentrations of
CBD (0.3µM or 0.6µM or 1µM) at DIV9 for 24 hours. The effects on the formation of synaptic
contacts were studied through immunocytochemistry, western blot, and patch clamp
electrophysiology. The results show that gpr55 deletion leads to an increase in synaptic contact
density at DIV14-15 but a reduction in their area and synaptophysin expression, by affecting
synaptic activity. Exposure to 0.6µM and 1µM CBD results in a GPR55-dependent or partially
dependent increase in synaptic contact density without affecting their area, expression of
synaptic proteins, and synaptic activity. The firing frequency of neurons is decreased in a GPR55-
dependent manner after exposure to 1µM CBD. These results suggest that GPR55 could be an important signal for stopping the formation of new synapses and an induction signal for the
maturation of existing synapses.
|
9 |
Étude ultrastructurale et développementale du récepteur EphA4 dans l’hippocampe du ratTremblay, Marie-Eve 03 1900 (has links)
Afin de mieux comprendre l’évolution des fonctions du récepteur EphA4 pendant le
développement du système nerveux central (SNC), nous avons étudié sa localisation
cellulaire et subcellulaire dans l’hippocampe du rat, d’abord chez l’adulte, puis pendant le
développement postnatal, ainsi que ses rôles potentiels dans la genèse, la migration ou la
maturation des cellules granulaires dans l’hippocampe adulte. Pour ce faire, nous avons
utilisé la méthode d’immunocytochimie en microscopie photonique, électronique et
confocale.
En microscopie photonique, une forte immunoréactivité (peroxydase/DAB) pour
EphA4 est observée aux jours 1 et 7 suivant la naissance (P1 et P7) dans les couches de
corps cellulaires, avec un marquage notamment associé à la surface des corps cellulaires
des cellules granulaires et pyramidales, ainsi que dans les couches de neuropile du gyrus
dentelé et des secteurs CA3 et CA1. L’intensité du marquage diminue progressivement
dans les couches de corps cellulaires, entre P7 et P14, pour devenir faible à P21 et chez
l’adulte, tandis qu’elle persiste dans les couches de neuropile, sauf celles qui reçoivent des
afférences du cortex entorhinal. En microscopie électronique, après marquage à la
peroxydase/DAB, EphA4 décore toute la surface des cellules pyramidales et granulaires, du
corps cellulaire jusqu’aux extrémités distales, entre P1 et P14, pour devenir confiné aux
extrémités synaptiques, c’est-à-dire les terminaisons axonales et les épines dendritiques, à
P21 et chez l’adulte. À la membrane plasmique des astrocytes, EphA4 est redistribué
comme dans les neurones, marquant le corps cellulaire et ses prolongements proximaux à
distaux, à P1 et P7, pour devenir restreint aux prolongements périsynaptiques distaux, à
partir de P14. D’autre part, des axones en cours de myélinisation présentent souvent une
forte immunoréactivité punctiforme à leur membrane plasmique, à P14 et P21. En outre,
dans les neurones et les astrocytes, le réticulum endoplasmique, l’appareil de Golgi et les
vésicules de transport, organelles impliquées dans la synthèse, la modification posttraductionnelle
et le transport des protéines glycosylées, sont aussi marqués, et plus intensément chez les jeunes animaux. Enfin, EphA4 est aussi localisé dans le corps cellulaire et les dendrites des cellules granulaires générées chez l’adulte, au stade de maturation où elles expriment la doublecortine (DCX). De plus, des souris adultes knockouts pour EphA4 présentent des cellules granulaires DCX-positives ectopiques, c’est-à-dire positionnées en dehors de la zone sous-granulaire, ce qui suggère un rôle d’EphA4 dans la régulation de leur migration.
Ces travaux révèlent ainsi une redistribution d’EphA4 dans les cellules neuronales
et gliales en maturation, suivant les sites cellulaires où un remodelage morphologique
s’effectue : les corps cellulaires lorsqu’ils s’organisent en couches, les prolongements
dendritiques et axonaux pendant leur croissance, guidage et maturation, puis les épines
dendritiques, les terminaisons axonales et les prolongements astrocytaires distaux associés
aux synapses excitatrices, jusque chez l’adulte, où la formation de nouvelles synapses et le
renforcement des connexions synaptiques existantes sont exercés. Ces localisations
pourraient ainsi correspondre à différents rôles d’EphA4, par lesquels il contribuerait à la
régulation des capacités plastiques du SNC, selon le stade développemental, la région, l’état
de santé, ou l’expérience comportementale de l’animal. / To gain more insight into the various functions of EphA4 receptor during the
development of the central nervous system (CNS), we have characterized its cellular and
subcellular localization in the rat hippocampus, first in the adult, and second during the
postnatal development. We have also examined its potential roles in the genesis, migration,
or maturation of the granule cells in the adult hippocampus. For that purpose, we have used
immunocytochemistry in light, electron, and confocal microscopy.
At the light microsocpic level, a strong EphA4 immunoreactivity (peroxidase/DAB)
is observed at postnatal days 1 and 7 (P1 and P7) in the cell body layers, with a labeling
notably associated with the surface of pyramidal and granule cell bodies, as well as in the
neuropil layers of CA3, CA1, and dentate gyrus regions. The intensity of the labeling
diminishes progressively in the cell body layers, between P7 and P14, to become weak at
P21 and in the adult, while it persists in the neuropil layers, except in those receiving inputs
from the entorhinal cortex. At the electron microscopic level, after peroxidase/DAB
labeling, EphA4 covers the entire surface of pyramidal and granule cells, from the cell body
to the distal extremities, between P1 and P14, but becomes restricted to the synaptic
extremities, i.e. the axon terminals and dendritic spines, at P21 and in the adult. At the
plasma membrane of astrocytes, EphA4 is redistributed as in neurons, from the cell body
and proximal to distal processes, at P1 and P7, to the distal perisynaptic processes, at P14
and older ages. In addition, axons in the process of myelination present strong punctiform
immunoreactivity at their plasma membrane, at P14 and P21. Moreover, in neurons and
astrocytes, the endoplamic reticulum, Golgi apparatus, and transport vesicles, organelles
involved in the synthesis, post-translational modifications, and transport of glycosylated
proteins, are also labeled, and also more intensely in younger animals. Lastly, EphA4 is
located in the cell body and dendrites of adult-generated granule cells, at the stage of
maturation where they express doublecortin (DCX). In addition, EphA4 adult knockout
mice display DCX-positive granule cells in an ectopic position, outside of the subgranular
zone, suggesting a role for EphA4 in the regulation of their migration.
This work thus reveals a redistribution of EphA4 in neuronal and glial cells, in the
cellular sites where cellular motility occurs during their maturation: the cell bodies when
they position and organize themselves into layers, the dendritic and axonal processes during
their growth, guidance, and maturation, and the dendritic spines, axon terminals, and distal
astrocytic processes when synapses are formed or strengthened. These locations could thus
reflect different roles for EphA4, similarly associated with the regulation of plasticity in the
CNS, according to the stage of development, the region, the CNS integrity, or the
behavioural experience of an animal.
|
10 |
Rôle du récepteur aux cannabinoïdes CB2 sur la synaptogenèseFleury, Pascal 08 1900 (has links)
Lors de cette étude, nous avons d’abord localisé les récepteurs CB1 et CB2 sur les structures neuronales. Nous avons montré que les récepteurs CB1 et CB2 sont présents sur les dendrites et les axones et les filopodes. Dans le même ordre d’idée, nous avons localisé le récepteur DCC sur les structures neuronales. Celui-ci est aussi présent sur les dendrites, les axones et les filopodes. Ces résultats suggèrent que le récepteur DCC serait impliqué non seulement dans le processus de synaptogenèse médié par le récepteur CB1, comme cela a été montré dans le laboratoire du professeur Bouchard, mais aussi dans celui, éventuellement, médié par le récepteur CB2.
Nous avons ensuite évalué l’effet des ligands du récepteur CB2. Nous n’avons détecté aucun effet clair des agonistes inverses (AM630 et JTE907) et des agonistes (JWH015 et JWH133) quant à la médiation du processus de synaptogenèse en terme de variation de la densité des filopodes et des points de contacts synaptiques. Nous avons obtenu des résultats variables. Ceux-ci furent non reproductibles. Nous avons obtenu des résultats différents des résultats originaux lorsque nous avons requantifié visuellement les mêmes photos à deux reprises
Nous avons développé une méthode informatisée de quantification qui nous a permis d’obtenir des résultats reproductibles. Cependant, nous n’avons toujours pas détecté d’effets sur la synaptogenèse médiés par le récepteur CB2.
Ces résultats préliminaires ne nous permettent ni d’infirmer, ni de confirmer d’éventuels effets sur la synaptogenèse médiés par le récepteur CB2. Une étude exhaustive serait nécessaire pour le déterminer. / During this study we first localised the receptors CB1 and CB2 on neuronal structures. We have shown that those receptors expressed on dendrites and filopodia. Likewise and based on Bouchard’s previous laboratory results showing an implication of the netrin-1 receptor, Deleted in Colorectal Cancer (DCC), on the synaptogenesis process mediated by the receptor CB1 we localized the receptor DCC on neuronal structures. We have shown that the receptor DCC is expressed on dendrites, axons and filopodia. These results suggest an implication of the receptor DDC in a synaptogenesis process that would be mediated by the receptor CB2.
We then evaluated the effects triggered by the receptor CB2’s ligands on the synaptogenesis process. We found no evidences of any effects on synaptogenesis mediated by the receptor CB2 inverse agonists (AM630 and JTE907) and agonists (JWH015 and JWH133) in term of filopodia density and synaptic contacts density variations. We witnessed highly variable results that were irreproducible. Visual quantifications of filopodia and synaptic contacts density were variable as we quantified two times the same set of photos.
We have therefore developed a computer based quantification method by which we were able to obtained reproducible results. Nevertheless we found no evidence of any implication of the receptor CB2 on the synaptogenesis process.
These preliminary results do not allow us neither to rule out nor to confirm eventual CB2 receptor effects on synaptogenesis. An exhaustive study is required to access possible CB2 receptors effect on synaptogenesis.
|
Page generated in 0.0569 seconds