• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 15
  • 11
  • 3
  • 2
  • 1
  • Tagged with
  • 58
  • 37
  • 20
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Auswirkungen anthropogener Landnutzung auf die Siedlungsstruktur, Raum- und Habitatnutzung des Europäischen Dachses (Meles meles L., 1758) auf der Insel Rügen

Walliser, Gerlinde 21 April 2004 (has links)
Auf der Ostseeinsel Rügen wurde eine 3-jährige Untersuchung zur Siedlungsstruktur, Raum- und Habitatnutzung des Dachses (Meles meles L., 1758) unter besonderer Berücksichtigung der Landschaftszerschneidung und des Landnutzungsmusters durchgeführt. Über 70 % der Inselfläche ist landwirtschaftlich, überwiegend ackerbaulich, genutzt und nur knapp ein Fünftel wird von Wald bedeckt. Während die Zersiedelung und Zerschneidung der Landschaft durch Siedlungs- und Verkehrsfläche im bundesdeutschen Vergleich als sehr gering einzustufen war, ist nach der ?Wende? eine stete Verdichtung des Straßennetzes zu beobachten, die von einem enormen Anstieg der Verkehrsdichte begleitet wird. Die Auswirkungen dieser Rahmenbedingungen wurden anhand von Nahrungsanalysen, eines inselweiten Baukatasters, Fang und Telemetrie einiger Dachse sowie einer Erfassung verkehrstoter Dachse untersucht. Die erfassten Totfunde dienten einer Abschätzung des Gefährdungspotentials unterschiedlicher Straßentypen (Bundesstraße, Landesstraße usw.). Zusätzlich wurde auf Grundlage des Baukatasters, des Totfundkatasters und von Verkehrszählungen der Zusammenhang zwischen Verkehrslast, Siedlungsdichte (des Dachses) und Verkehrsmortalität des Dachses mit Hilfe eines einfachen Modells ermittelt. / On the baltic island of Rügen investigations had been carried for 3 years with regard to distribution, space use and habitat utilization of the European badger (Meles meles L., 1758). Special attention was focused on landscape fragmentation and patterns of land use. More than 70 % of the island is agricultural, almost arable land and just under a fifth is woodland. Before 1990, fragmentation and dessection of the landscape due to housing and roads was low compared with the german average, but after the political "turn" the road system has increased constantly combined with an enormous increase in traffic density. The effect of these conditions on badgers was investigated studying diet composition, surveying and registrating badger setts all over the island, badger-watching and trapping, radio-tracking some badgers and collecting all reported badgers fallen victim to traffic accidents. Relating the road-killed badgers to the length and traffic density of the different road categories, potential danger to be killed by car was estimated. Relating the density of traffic, the density of the badger's local population and its road-mortality was done by simply using data of the sett survey, the road-killed badgers and traffic census.
52

Leveraging big satellite image and animal tracking data for characterizing large mammal habitats

Oeser, Julian 07 September 2022 (has links)
Die zunehmende Verfügbarkeit von Satellitenfernerkundungs- und Wildtier-Telemetriedaten eröffnet neue Möglichkeiten für eine verbesserte Überwachung von Wildtierhabitaten durch Habitatmodelle, doch fehlt es häufig an geeigneten Ansätzen, um dieses Potenzial voll auszuschöpfen. Das übergeordnete Ziel dieser Arbeit bestand in der Konzipierung und Weiterentwicklung von Ansätzen zur Nutzung des Potenzials großer Satellitenbild- und Telemetriedatensätze in Habitatmodellen. Am Beispiel von drei großen Säugetierarten in Europa (Eurasischer Luchs, Rothirsch und Reh) wurden Ansätze entwickelt, um (1) Habitatmodelle mit dem umfangreichsten global und frei verfügbaren Satellitenbildarchiv der Landsat-Satelliten zu verknüpfen und (2) Wildtier-Telemetriedaten über Wildtierpopulationen hinweg in großflächigen Analysen der Habitateignung und -nutzung zu integrieren. Die Ergebnisse dieser Arbeit belegen das enorme Potenzial von Landsat-basierten Variablen als Prädiktoren in Habitatmodellen, die es ermöglichen von statischen Habitatbeschreibungen zu einem kontinuierlichen Monitoring von Habitatdynamiken über Raum und Zeit überzugehen. Die Ergebnisse meiner Forschung zeigen darüber hinaus, wie wichtig es ist, die Kontextabhängigkeit der Lebensraumnutzung von Wildtieren in Habitatmodellen zu berücksichtigen, insbesondere auch bei der Integration von Telemetriedatensätzen über Wildtierpopulationen hinweg. Die Ergebnisse dieser Dissertation liefern neue ökologische Erkenntnisse, welche zum Management und Schutz großer Säugetiere beitragen können. Darüber hinaus zeigt meine Forschung, dass eine bessere Integration von Satellitenbild- und Telemetriedaten eine neue Generation von Habitatmodellen möglich macht, welche genauere Analysen und ein besseres Verständnis von Lebensraumdynamiken erlaubt und so Bemühungen zum Schutz von Wildtieren unterstützen kann. / The growing availability of satellite remote sensing and animal tracking data opens new opportunities for an improved monitoring of wildlife habitats based on habitat models, yet suitable approaches for making full use of this potential are commonly lacking. The overarching goal of this thesis was to develop and advance approaches for harnessing the potential of big satellite image and animal tracking data in habitat models. Specifically, using three large mammal species in Europe as an example (Eurasian lynx, red deer, and roe deer), I developed approaches for (1) linking habitat models to the largest global and freely available satellite image record, the Landsat image archive, and (2) for integrating animal tracking datasets across wildlife populations in large-area assessments of habitat suitability and use. The results of this thesis demonstrate the enormous potential of Landsat-based variables as predictors in habitat models, allowing to move from static habitat descriptions to a continuous monitoring of habitat dynamics across space and time. In addition, my research underscores the importance of considering context-dependence in species’ habitat use in habitat models, particularly also when integrating tracking datasets across wildlife populations. The findings of this thesis provide novel ecological insights that help to inform the management and conservation of large mammals and more broadly, demonstrate that a better integration of satellite image and animal tracking data will allow for a new generation of habitat models improving our ability to monitor and understand habitat dynamics, thus supporting efforts to restore and protect wildlife across the globe.
53

Space use pattern, dispersal and social organisation of the raccoon dog (Nyctereutes procyonoides), an invasive, alien canid in Central Europe / Raumnutzung, Ausbreitung und Sozialsystem des Marderhundes (Nyctereutes procyonoides), eines invasiven, allochthonen Kaniden in Zentraleuropa

Drygala, Frank 14 December 2009 (has links) (PDF)
Abstract Between October 1999 and October 2003, 30 adult and 48 young (< 1 year) raccoon dogs (Nyctereutes procyonoides) were monitored using radio-telemetry in an area of Germany which has been occupied by this invasive alien species since the early 1990s. Additionally, three pairs of raccoon dogs were observed by continuous radio-tracking during the first six weeks after parturition in 2003. Furthermore 136 raccoon dog pubs were ear-tagged between June 1999 and August 2006. No adult animals dispersed from the area during the study period and home ranges tended to be used for several years, probably for life. The average annual home range size, calculated using 95% fixed kernel, was 382.2 ha ± 297.4 SD for females (n = 30 seasonal home ranges) and 352.4 ha ± 313.3 SD for males (n = 32 seasonal home ranges). Paired raccoon dogs had home ranges of similar size, with pair sharing the same area all year round. Raccoon dogs occupied large core areas (85% kernel) covering 81.2% of their home ranges. The home ranges were at their smallest during the mating season. The slightly larger size of home ranges in winter suggests that, due to the temperate climate, raccoon dogs do not hibernate in Germany. Males and females formed a long-term (probably lifelong) pair bond. Same-sex neighbours ignored each other and even adjacent males/females showed neither preference nor avoidance. Thus, it can be assumed that the raccoon dog in Central Europe is monogamous without exclusive territories, based on the results of home range overlap analysis and interaction estimations. Habitat composition within home ranges and within the whole study area was almost equal. Although, percentage shares of farmland and meadow was 16.35% smaller and 12.06% higher within the home ranges, respectively. All nine habitat types (farmland, forest, settlement, water, meadows, maize fields, small woods, reeds and hedges) were used opportunistically by raccoon dogs. No significant, recognisable difference for habitat preferences between seasons was detected. Male and female raccoon dog showed equal habitat preference pattern. A comparison of active and inactive locations in different habitats found no remarkable differences. Habitat composition of individual home ranges was used to classify animals. If the percentage of forest within a home range exceeded 50% the individual was classified as a ‘forest type’ raccoon dog. If the percentage of forest habitats within a home range was less than 5%, the share of pastureland was mean 81.82% ± 16.92 SD. Consequently the individual was classified as a ‘agrarian type’ raccoon dog. Neither habitat preference nor habitat selection process differed between the two ‘types’. Habitat use and preference is discussed with relation to the ability of the raccoon dog to expand its range towards Western Europe. Males spent noticeably more time (40.5% of the time ±11.7 SD) alone with the pups than females (16.4% of the time ±8.5 SD). Females had noticeably larger 95% kernel home ranges (98.24 ha ±51.71 SD) than males (14.73 ha ±8.16 SD) and moved much longer daily distances (7,368 m ±2,015 SD) than males (4,094 m ±2,886 SD) in six weeks postpartum. The raccoon dogs being studied left the breeding den in the 6th week after the birth of the pups. In situ video observation showed that the male carried prey to the den to provide the female and the litter with food. A clear division of labour took place among parents during the period in which the pups were nursed: males guarded the litter in the den or in close vicinity of it, while the females foraged to satisfy their increased energy requirements. There were relocations of 59 (43.4%) ear-tagged young racoon dogs and mean distance from marking point was 13.5 km ±20.1 SD. Dispersal mortality rate was 69.5% among young raccoon dogs. Most animals (55.9%) were recovered nearer than 5 km from the marking point, whereas only 8.5% relocations were recorded further than 50 km from the marking point. There was no difference in the distances of relocations between sexes. Most (53.7%) relocations of ear-tagged young raccoon dogs were in August and September and, only 34.1% were recorded from October to April. Hunting (55 %) and traffic (27 %) were the major mortality factors. Radio-collared young raccoon dogs generally dispersed between July and September. The mean natal home range size (MCP 100%) with and without excursions was 502.6 ha ±66.4 SD (n = 9) and 92.1 ha ±66.4 SD (n = 17), respectively. There were no differences between sexes in the month of dispersal. The direction of travel for dispersing animals appeared to be random, with distances from 0.5 km to 91.2 km. A highly flexible dispersing behaviour is certainly one of the reasons which contribute to the high expansion success of the species.
54

Telemetrisch kontrollierte Blutdrucktherapie bei Patienten mit unzureichend eingestelltem Hypertonus / Telemetric monitoring of blood pressure treatment in patients with inadequately treated hypertension

Neumann, Claas Lennart 15 September 2010 (has links)
No description available.
55

Space use pattern, dispersal and social organisation of the raccoon dog (Nyctereutes procyonoides GRAY, 1834) an invasive, alien canid in Central Europe

Drygala, Frank 16 August 2010 (has links) (PDF)
Between October 1999 and October 2003, 30 adult and 48 young (< 1 year) raccoon dogs (Nyctereutes procyonoides) were monitored using radio-telemetry in an area of North-East Germany which has been occupied by this invasive alien species since the early 1990s. Additionally, three pairs of raccoon dogs were observed by continuous radio-tracking during the first six weeks after parturition in 2003. Furthermore 136 raccoon dog pubs were ear-tagged between June 1999 and August 2006. No adult animals dispersed from the area during the study period and home ranges tended to be used for several years, probably for life. The average annual home range size, calculated using 95% fixed kernel, was 382.2 ha ± 297.4 SD for females (n = 30 seasonal home ranges) and 352.4 ha ± 313.3 SD for males (n = 32 seasonal home ranges). Paired raccoon dogs had home ranges of similar size, with pair mates sharing the same area all year round. Raccoon dogs occupied large core areas (85% kernel) covering 81.2% of their home ranges. The home ranges were at their smallest during the mating season. The slightly larger size of home ranges in winter suggests that, due to the temperate climate, raccoon dogs do not hibernate in Germany. Males and females formed a long-term (probably lifelong) pair bond. Same-sex neighbours ignored each other and even adjacent males/females showed neither preference nor avoidance. Thus, it can be assumed that the raccoon dog in Central Europe is monogamous without exclusive territories, based on the results of home range overlap analysis and interaction estimations. Habitat composition within home ranges and within the whole study area was almost equal. Although, percentage shares of farmland and meadow was 16.35% smaller and 12.06% higher within the home ranges, respectively. All nine habitat types (farmland, forest, settlement, water, meadows, maize fields, small woods, reeds and hedges) were used opportunistically by raccoon dogs. No significant, recognisable difference for habitat preferences between seasons was detected. Male and female raccoon dog showed equal habitat preference pattern. A comparison of active and inactive locations in different habitats found no remarkable differences. Habitat composition of individual home ranges was used to classify animals. If the percentage of forest within a home range exceeded 50% the individual was classified as a ‘forest type’ raccoon dog. If the percentage of forest habitats within a home range was less than 5%, the share of pastureland was mean 81.82% ± 16.92 SD. Consequently the individual was classified as a ‘agrarian type’ raccoon dog. Neither habitat preference nor habitat selection process differed between the two ‘types’. Habitat use and preference is discussed with relation to the ability of the raccoon dog to expand its range towards Western Europe. Males spent noticeably more time (40.5% of the time ±11.7 SD) alone with the pups than females (16.4% of the time ±8.5 SD). Females had noticeably larger 95% kernel home ranges (98.24 ha ±51.71 SD) than males (14.73 ha ±8.16 SD) and moved much longer daily distances (7,368 m ±2,015 SD) than males (4,094 m ±2,886 SD) in six weeks postpartum. The raccoon dogs being studied left the breeding den in the 6th week after the birth of the pups. In situ video observation showed that the male carried prey to the den to provide the female and the litter with food. A clear division of labour took place among parents during the period in which the pups were nursed: males guarded the litter in the den or in close vicinity of it, while the females foraged to satisfy their increased energy requirements. There were relocations of 59 (43.4%) ear-tagged young raccoon dogs and mean distance from marking point was 13.5 km ±20.1 SD. Dispersal mortality rate was 69.5% among young raccoon dogs. Most animals (55.9%) were recovered nearer than 5 km from the marking point, whereas only 8.5% relocations were recorded further than 50 km from the marking point. There was no difference in the distances of relocations between sexes. Most (53.7%) relocations of ear-tagged young raccoon dogs were in August and September and, only 34.1% were recorded from October to April. Hunting (55 %) and traffic (27 %) were the major mortality factors. Radiocollared young raccoon dogs generally dispersed between July and September. The mean natal home range size (MCP 100%) with and without excursions was 502.6 ha ±66.4 SD (n = 9) and 92.1 ha ±66.4 SD (n = 17), respectively. There were no differences between sexes in the month of dispersal. The direction of travel for dispersing animals appeared to be random, with distances from 0.5 km to 91.2 km. A highly flexible dispersing behaviour is certainly one of the reasons which contribute to the high expansion success of the species.
56

Development and testing of alternative methods for speeding up the hydraulic data transmission in deep boreholes

Berro, Mouhammed Jandal 15 February 2019 (has links)
For developing the available hydrocarbon reserves and for exploring new reservoirs, deeper and more complex wells are drilled. Drilling such deeper and complex wells requires a constant monitoring and controlling of the well paths. Therefore, the bottom hole assembly, the lower section of the drill string above the drill bit, is equipped with numerous measuring sensors for collecting geological and directional data while drilling. The collected data have to be transmitted to the surface in real time. Prior to transmit the data measured downhole to the surface, they are processed and translated into a binary code. Accordingly, the data will be represented as a series of zeroes and ones. The most common method for data transmission in boreholes is the so called mud pulse telemetry which sends the information through the drilling mud inside the drill string by means of coded pressure pulses. There are two types of devices available for downhole pressure pulses generation. The first type is the (positive or negative) pressure pulser which transmits the data by quasi-static variations of the pressure level inside the drill string. The second type is the (rotating or oscillating) mud siren which transmits the data by generating continuous pressure waves at specific frequencies. The main disadvantage of the mud pulse telemetry is its low data transmission rate which is about 10 bps. This data rate is very low compared to the measured amount of raw data. Therefore, the efficiency of the mud pulse telemetry must be improved, so that the data could be transmitted at higher rates. The present research work presents different developed and tested concepts for increasing the efficiency and the data transmission rate of the mud pulse telemetry. Both, the transmitter and the receiver end, were taken into consideration by developing the new concepts. Different hardware and software tools were used for performing the present research work. The available flow loop test facility and the experimental prototypes of the mud siren and positive pulser were used. The test facility was extended in order to enable the investigation of the new concepts. The available 3D numerical model (ANSYS CFX) was modified and extended in order to study the new concepts. At the transmitter end, a novel concept for a hybrid mud pulse telemetry system was developed and successfully tested. Here, two different types of mud pulse telemetry could be used in a combination, such as a mud siren and a pressure pulser. The developed concept was registered at the German Patent and Trade Mark Office for a patent in 2018. Two concepts for a multi-frequency mud siren were developed for simultaneous generation of two frequencies. In the first approach, two sets of stator/rotor were installed in a row connection, while they were installed in a parallel connection in the second approach. The two concepts were registered at the German Patent and Trade Mark Office for patents in 2015. An experimental multi-frequency generator was built and used for testing of several new ideas, such as transmitting the data using several carrier frequencies at the same time, transmitting the data with different wave forms (sine, sawtooth, triangle and rectangle), or transmitting the data using the chirp modulation. The innovative design of the experimental multi-frequency generator was registered at the German Patent and Trade Mark Office for patents in 2016. At the receiver end, two different methods for processing and analyzing the received multi-frequency signals using the Wavelet and Fourier analysis were drafted and tested. A novel concept for the use of a multi-sensor receiver was developed and successfully tested. The use of a multi-sensor receiver could strongly improve the detection of the received signals.:Table of Contents Declaration ii Abstract iii Acknowledgements v Table of Contents vi List of Abbreviations x List of Symbols xii CHAPTER 1 Introduction 1 CHAPTER 2 Modern Drilling Technology and Low Data Transmission Rate as a Limitation 5 2.1 Introduction to the modern drilling technology 5 2.1.1 Directional drilling technology 5 2.1.2 Steering technology 6 2.1.3 Measuring technology 8 2.1.4 Technology of data transmission in boreholes 9 2.2 Low data transmission rate as a problem with respect to the whole drilling process 13 CHAPTER 3 Fundamentals of Communication Technology 16 3.1 Modulation techniques for data transmission in baseband 16 3.2 Modulation techniques for data transmission in passband 17 3.3 Multiple frequency and chirp spread spectrum modulation techniques 19 3.4 Digital signal processing 21 3.4.1 Fourier transformation 21 3.4.2 Continuous wavelet transformation 23 3.4.3 Filtering 24 CHAPTER 4 State of the Art for Mud Pulse Telemetry Systems 26 4.1 Historical development of mud pulse telemetry including latest improvements applied for increasing its data transmission rate 26 4.2 Available types of mud pulse telemetry devices 30 4.2.1 Negative pulser 31 4.2.2 Positive pulser 32 4.2.3 Mud siren 32 4.2.4 Oscillating shear valve 33 4.3 Limitations of data transmission via mud pulse telemetry 34 4.3.1 Effect of noise sources in the mud channel on the transmission signal 34 4.3.2 Effect of attenuation in the mud channel on the transmission signal 36 4.3.3 Effect of reflections and their interference with the main transmission signal 37 4.3.4 Pass and stop bands 38 4.4.5 Minimum transmission time slot 38 CHAPTER 5 Novel Concepts and Tools for Increased Data Transmission Rates of Mud Pulse Telemetry 40 5.1 Transmitter end 41 5.1.1 Hybrid mud pulse telemetry (HMPT) 41 5.1.2 Multi-frequency generator 43 5.2 Receiver end 45 5.2.1 Investigation of the Wavelet analysis suitability for multi-frequency signal detection 45 5.2.2 Flexible placement of multi-sensor receiver 46 CHAPTER 6 Laboratory Test Facility and Used Hard and Soft Tools 49 6.1 Laboratory test facility for hydraulic data transmission in boreholes 49 6.2 Experimental prototypes of the pressure pulsers and mud siren 53 6.3 3D numerical simulation model for the test facility and mud siren 55 6.4 MATLAB software 58 CHAPTER 7 Hybrid Mud Pulse Telemetry (HMPT) System 59 7.1 Combination of mud siren and negative pressure pulser 60 7.2 Combination of mud siren and positive pressure pulser 63 7.3 Evaluating the laboratory investigations of the hybrid mud pulse telemetry (HMPT) system 66 CHAPTER 8 Mathematical and Numerical Investigation of the Concept of the Multi-Frequency Mud Siren 68 8.1 Preliminary considerations for the concept of the multi-frequency mud siren 69 8.2 Mathematical model investigation of different approaches for the multi-frequency mud siren concept 71 8.2.1 Multi-frequency mud siren with stators and rotors in a row 72 8.2.2 Multi-frequency mud siren with parallel connection of stators and rotors 74 8.3 Numerical model investigation of multi-frequency mud siren with two sets of stator/rotor in a row 77 8.3.1 Numerical simulations for data transmission with a multi-frequency mud siren using two carrier frequencies 79 8.3.2 Evaluation of the simulation results 81 8.3.3 Increasing the transmission reach of the mud siren for deep drilling operations 83 CHAPTER 9 Laboratory Investigations of Multi-Carrier Hydraulic Data Transmission Using an Experimental Multi-Frequency Generator 85 9.1 Laboratory multi-carrier frequency transmission tests 87 9.2 Investigation of the Wavelet analysis suitability for the detection of multi-frequency signal transmitted in boreholes 95 9.3 Initial investigations of hydraulic data transmission using chirp modulation and different pressure wave forms 100 9.3.1 Data transmission using chirp modulation (Chirp Spread Spectrum, CSS) 100 9.3.2 Data transmission using different wave forms 101 CHAPTER 10 Investigation of the Use of a Multi-Sensor Receiver for Improving the Hydraulic Data Transmission in Boreholes 104 10.1 Numerical model investigation of the use of a multi-sensor receiver 104 10.1.1 Data transmission using single-input and multiple-output (SIMO) 104 10.1.2 Data transmission using multiple-input and multiple-output (MIMO) 107 10.2 Laboratory investigations of the use of a multi-sensor receiver 108 10.3 Evaluating the use of a multi-sensor receiver for improving the hydraulic data transmission in boreholes 112 CHAPTER 11 Conclusion and Outlook 116 11.1 Conclusion 116 11.2 Outlook 120 References 122 List of Figures 129 List of Tables 136 List of Publications 137 List of Patents 138 Appendix- Chapter 7 139 Appendix- Chapter 8 141 Appendix- Chapter 9 142 Appendix- Chapter 10 146
57

Space use pattern, dispersal and social organisation of the raccoon dog (Nyctereutes procyonoides), an invasive, alien canid in Central Europe: Space use pattern, dispersal and social organisation of the raccoon dog (Nyctereutes procyonoides), an invasive, alien canid in Central Europe

Drygala, Frank 03 December 2009 (has links)
Abstract Between October 1999 and October 2003, 30 adult and 48 young (&amp;lt; 1 year) raccoon dogs (Nyctereutes procyonoides) were monitored using radio-telemetry in an area of Germany which has been occupied by this invasive alien species since the early 1990s. Additionally, three pairs of raccoon dogs were observed by continuous radio-tracking during the first six weeks after parturition in 2003. Furthermore 136 raccoon dog pubs were ear-tagged between June 1999 and August 2006. No adult animals dispersed from the area during the study period and home ranges tended to be used for several years, probably for life. The average annual home range size, calculated using 95% fixed kernel, was 382.2 ha ± 297.4 SD for females (n = 30 seasonal home ranges) and 352.4 ha ± 313.3 SD for males (n = 32 seasonal home ranges). Paired raccoon dogs had home ranges of similar size, with pair sharing the same area all year round. Raccoon dogs occupied large core areas (85% kernel) covering 81.2% of their home ranges. The home ranges were at their smallest during the mating season. The slightly larger size of home ranges in winter suggests that, due to the temperate climate, raccoon dogs do not hibernate in Germany. Males and females formed a long-term (probably lifelong) pair bond. Same-sex neighbours ignored each other and even adjacent males/females showed neither preference nor avoidance. Thus, it can be assumed that the raccoon dog in Central Europe is monogamous without exclusive territories, based on the results of home range overlap analysis and interaction estimations. Habitat composition within home ranges and within the whole study area was almost equal. Although, percentage shares of farmland and meadow was 16.35% smaller and 12.06% higher within the home ranges, respectively. All nine habitat types (farmland, forest, settlement, water, meadows, maize fields, small woods, reeds and hedges) were used opportunistically by raccoon dogs. No significant, recognisable difference for habitat preferences between seasons was detected. Male and female raccoon dog showed equal habitat preference pattern. A comparison of active and inactive locations in different habitats found no remarkable differences. Habitat composition of individual home ranges was used to classify animals. If the percentage of forest within a home range exceeded 50% the individual was classified as a ‘forest type’ raccoon dog. If the percentage of forest habitats within a home range was less than 5%, the share of pastureland was mean 81.82% ± 16.92 SD. Consequently the individual was classified as a ‘agrarian type’ raccoon dog. Neither habitat preference nor habitat selection process differed between the two ‘types’. Habitat use and preference is discussed with relation to the ability of the raccoon dog to expand its range towards Western Europe. Males spent noticeably more time (40.5% of the time ±11.7 SD) alone with the pups than females (16.4% of the time ±8.5 SD). Females had noticeably larger 95% kernel home ranges (98.24 ha ±51.71 SD) than males (14.73 ha ±8.16 SD) and moved much longer daily distances (7,368 m ±2,015 SD) than males (4,094 m ±2,886 SD) in six weeks postpartum. The raccoon dogs being studied left the breeding den in the 6th week after the birth of the pups. In situ video observation showed that the male carried prey to the den to provide the female and the litter with food. A clear division of labour took place among parents during the period in which the pups were nursed: males guarded the litter in the den or in close vicinity of it, while the females foraged to satisfy their increased energy requirements. There were relocations of 59 (43.4%) ear-tagged young racoon dogs and mean distance from marking point was 13.5 km ±20.1 SD. Dispersal mortality rate was 69.5% among young raccoon dogs. Most animals (55.9%) were recovered nearer than 5 km from the marking point, whereas only 8.5% relocations were recorded further than 50 km from the marking point. There was no difference in the distances of relocations between sexes. Most (53.7%) relocations of ear-tagged young raccoon dogs were in August and September and, only 34.1% were recorded from October to April. Hunting (55 %) and traffic (27 %) were the major mortality factors. Radio-collared young raccoon dogs generally dispersed between July and September. The mean natal home range size (MCP 100%) with and without excursions was 502.6 ha ±66.4 SD (n = 9) and 92.1 ha ±66.4 SD (n = 17), respectively. There were no differences between sexes in the month of dispersal. The direction of travel for dispersing animals appeared to be random, with distances from 0.5 km to 91.2 km. A highly flexible dispersing behaviour is certainly one of the reasons which contribute to the high expansion success of the species.
58

Space use pattern, dispersal and social organisation of the raccoon dog (Nyctereutes procyonoides GRAY, 1834) an invasive, alien canid in Central Europe

Drygala, Frank 03 December 2009 (has links)
Between October 1999 and October 2003, 30 adult and 48 young (< 1 year) raccoon dogs (Nyctereutes procyonoides) were monitored using radio-telemetry in an area of North-East Germany which has been occupied by this invasive alien species since the early 1990s. Additionally, three pairs of raccoon dogs were observed by continuous radio-tracking during the first six weeks after parturition in 2003. Furthermore 136 raccoon dog pubs were ear-tagged between June 1999 and August 2006. No adult animals dispersed from the area during the study period and home ranges tended to be used for several years, probably for life. The average annual home range size, calculated using 95% fixed kernel, was 382.2 ha ± 297.4 SD for females (n = 30 seasonal home ranges) and 352.4 ha ± 313.3 SD for males (n = 32 seasonal home ranges). Paired raccoon dogs had home ranges of similar size, with pair mates sharing the same area all year round. Raccoon dogs occupied large core areas (85% kernel) covering 81.2% of their home ranges. The home ranges were at their smallest during the mating season. The slightly larger size of home ranges in winter suggests that, due to the temperate climate, raccoon dogs do not hibernate in Germany. Males and females formed a long-term (probably lifelong) pair bond. Same-sex neighbours ignored each other and even adjacent males/females showed neither preference nor avoidance. Thus, it can be assumed that the raccoon dog in Central Europe is monogamous without exclusive territories, based on the results of home range overlap analysis and interaction estimations. Habitat composition within home ranges and within the whole study area was almost equal. Although, percentage shares of farmland and meadow was 16.35% smaller and 12.06% higher within the home ranges, respectively. All nine habitat types (farmland, forest, settlement, water, meadows, maize fields, small woods, reeds and hedges) were used opportunistically by raccoon dogs. No significant, recognisable difference for habitat preferences between seasons was detected. Male and female raccoon dog showed equal habitat preference pattern. A comparison of active and inactive locations in different habitats found no remarkable differences. Habitat composition of individual home ranges was used to classify animals. If the percentage of forest within a home range exceeded 50% the individual was classified as a ‘forest type’ raccoon dog. If the percentage of forest habitats within a home range was less than 5%, the share of pastureland was mean 81.82% ± 16.92 SD. Consequently the individual was classified as a ‘agrarian type’ raccoon dog. Neither habitat preference nor habitat selection process differed between the two ‘types’. Habitat use and preference is discussed with relation to the ability of the raccoon dog to expand its range towards Western Europe. Males spent noticeably more time (40.5% of the time ±11.7 SD) alone with the pups than females (16.4% of the time ±8.5 SD). Females had noticeably larger 95% kernel home ranges (98.24 ha ±51.71 SD) than males (14.73 ha ±8.16 SD) and moved much longer daily distances (7,368 m ±2,015 SD) than males (4,094 m ±2,886 SD) in six weeks postpartum. The raccoon dogs being studied left the breeding den in the 6th week after the birth of the pups. In situ video observation showed that the male carried prey to the den to provide the female and the litter with food. A clear division of labour took place among parents during the period in which the pups were nursed: males guarded the litter in the den or in close vicinity of it, while the females foraged to satisfy their increased energy requirements. There were relocations of 59 (43.4%) ear-tagged young raccoon dogs and mean distance from marking point was 13.5 km ±20.1 SD. Dispersal mortality rate was 69.5% among young raccoon dogs. Most animals (55.9%) were recovered nearer than 5 km from the marking point, whereas only 8.5% relocations were recorded further than 50 km from the marking point. There was no difference in the distances of relocations between sexes. Most (53.7%) relocations of ear-tagged young raccoon dogs were in August and September and, only 34.1% were recorded from October to April. Hunting (55 %) and traffic (27 %) were the major mortality factors. Radiocollared young raccoon dogs generally dispersed between July and September. The mean natal home range size (MCP 100%) with and without excursions was 502.6 ha ±66.4 SD (n = 9) and 92.1 ha ±66.4 SD (n = 17), respectively. There were no differences between sexes in the month of dispersal. The direction of travel for dispersing animals appeared to be random, with distances from 0.5 km to 91.2 km. A highly flexible dispersing behaviour is certainly one of the reasons which contribute to the high expansion success of the species.

Page generated in 0.0894 seconds