• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 11
  • 10
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 81
  • 33
  • 13
  • 10
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Genome editing with the CRISPR Cas9 system

Roidos, Paris January 2014 (has links)
No description available.
52

Investigation of Thymidine Kinase 1 in Cancer Progression

Bitter, Eliza Esther King 26 November 2019 (has links)
Understanding cancer biomarkers for diagnosis and prognosis leads to improved patient treatments and care. This thesis addresses the relevance of thymidine kinase 1 (TK1) as a cancer biomarker and the role of TK1 in cancer progression. Worldwide, cancer leads to more than 12 million deaths annually. In the United States alone, each year over 1.5 million cases will be diagnosed and over half a million persons will die. The most prevalent cancer types include skin, lung, breast, prostate, and colon. TK1 is known to be present in the serum of patients with multiple cancer types, including lung, breast, colon and prostate. In fact, it is shown to be detectable in cancer patients even before they manifest clinical symptoms. Additionally, the levels of TK1 increase progressively with increasing tumor grade; meaning that levels of TK1 can indicate tumor grade. Cellular proliferation markers such as p53 and Ki-67 have been compared to TK1 in cancer diagnosis and prognosis. TK1 has potential as both a prognostic and diagnostic biomarker in various cancer types including breast. Breast cancer is one of the most aggressive cancer types with 20-30% of diagnosed tumors becoming metastatic. Recent findings have identified additional involvement of TK1 downstream of cellular proliferation in cancer progression, including cellular invasion which is a part of cancer metastasis. These findings while efficacious, fail to identify the individual contribution of TK1 in downstream processes that aid in cancer progression. As mentioned previously, TK1 is upregulated in several different cancer types. We propose that there is an advantage to upregulated levels of TK1 in cancer progression and seek to explore its role specifically in cell invasion and survival. Based on our current understanding of TK1, we first wanted to review the history of TK1 and show the importance of understanding this crucial enzyme. Finally, we report our results from experiments exploring the influence of TK1 in vitro on breast cancer cell invasion and survival.
53

The Use of Nucleotide Salvage Pathway Enzymes as Suitable Tumor Targets for Antibody-Based and Adoptive Cell Therapies

Velazquez, Edwin J. 29 March 2022 (has links)
Despite the progress made in cancer research, cancer remains one of the leading causes of death worldwide. Although the development of new cancer treatments has improved cancer patients' survival rate, a significant number of patients experience refractory and recurrence events with serious side effects. It is known that the immune system actively participates in eliminating cancer. However, cancer cells can develop mechanisms to evade the immune system resulting in immunotolerance. Immunotherapy aids the patient's immune system's ability to recognize and eliminate cancer cells. During the last three decades, immunotherapy has gradually emerged as an effective and more specific approach to treat cancer. Particularly monoclonal antibodies and adoptive cell therapies such as chimeric antigen receptor (CAR) T-cells have proven highly effective. Nevertheless, the success of these novel therapies depends on discovering suitable tumor targets. Recently, we reported localization of Thymidine Kinase 1 (TK1) to the plasma membrane of certain cancer cells but have not found such localization on normal cells. Similarly, another nucleotide salvage pathway enzyme Hypoxanthine Guanine Phosphoribosyltransferase (HPRT), has also been reported to be localized to the plasma membrane of certain cancer cells. Thus, TK1 and HPRT membrane-associated forms can be potential tumor targets for cancer immunotherapy. This dissertation describes the immunotargeting of TK1 for the selective elimination of tumor cells and the surface localization of HPRT on the plasma membrane of cancer cells. Using hybridoma and phage display technologies, we developed monoclonal antibodies (mAb) and isolated human single domain antibodies (sdAb) specific to human TK1. We confirmed that antibodies and sdAbs could target TK1 on the plasma membrane of lung, breast and colon cancer cells, but not on healthy cells. In addition, we demonstrated that cancer cells expressing membrane-associated TK1 (mTK1) co-cultured with human mononuclear cells (MNC) were selectively eliminated through antibody-dependent cell-mediated cytotoxicity (ADCC) when anti-TK1 mAbs were added. Furthermore, we designed novel TK1 specific tumor targeting receptors and expressed them in human T cells and human macrophages. Finally, we proposed using both TK1 and HPRT as biomarkers for the early detection and monitoring of follicular lymphoma (FL), a disease that is usually detected at advanced stages. The knowledge generated from the data presented in this dissertation indicates that TK1 and HPRT may be suitable immunotherapeutic targets for antibody-based and adoptive cell-based therapies against both liquid and solid malignancies. It also proposes the incorporation of TK1 and HPRT as molecular biomarkers for the early detection and monitoring of FL.
54

Membrane Potassium Channels and Human Bladder Tumor Cells: II. Growth Properties

Wondergem, R., Cregan, M., Strickler, L., Miller, R., Suttles, J. 01 February 1998 (has links)
These experiments were done to determine the effect of glibenclamide and diazoxide on the growth of human bladder carcinoma (HTB-9) cells in vitro. Cell growth was assayed by cell counts, protein accumulation, and 3H-thymidine uptake. Glibenclamide added at 75 and 150 μM for 48 hr reduced cell proliferation. Dose-inhibition curves showed that glibenclamide added for 48 hr reduced cell growth at concentrations as low as 1 μM (IC50 = 73 μM) when growth was assayed in the absence of added serum. This μM-effect on cell growth was in agreement with the dose range in which glibenclamide decreased open probability of membrane K(ATP) channels. Addition of glibenclamide for 48 hr also altered the distribution of cells within stages of the cell cycle as determined by flow cytometry using 10-5 M bromodeoxyuridine. Glibenclamide (100 μM) increased the percentage of cells in G0/G1 from 33.6% (vehicle control) to 38.3% (P < 0.05), and it reduced the percentage of cells in S phase from 38.3% to 30.6%. On the other hand, diazoxide, which opens membrane K(ATP) channels in HTB-9 cells, stimulated growth measured by protein accumulation, but it did not increase the cell number. We conclude that the sulfonylurea receptor and the corresponding membrane K(ATP) channel are involved in mechanisms controlling HTB-9 cell growth. However, K(ATP) is not rate-limiting among the signaling mechanisms or molecular switches that regulate the cell cycle.
55

The metabolic dysregulation of calciphylaxis patients: the link between IL-6, PKM-2, and TYMP

Morrissey, Austin Patrick 06 March 2024 (has links)
This thesis explores the pathogenesis of calciphylaxis, a rare and potentially fatal complication of chronic kidney disease (CKD) characterized by calcification and thrombosis of small- to medium-sized arteries. A range of bench techniques, including cell culture, genetic analysis, and immunofluorescence, were utilized in combination with human samples from patients with calciphylaxis and healthy controls. The results revealed a pathway that may modulate the thrombotic phenotype in these patients and, in turn, may serve as a targetable therapeutic axis. This work provides a foundation for further research and clinical advances in the field of calciphylaxis. Moreover, this study has the potential to inform the development of therapeutic interventions that could greatly improve the outcomes of CKD patients suffering from calciphylaxis. / 2026-03-05T00:00:00Z
56

The Commercilazation of a Noval Antithrombotic Drug

Dai, Yuheng 01 February 2018 (has links)
No description available.
57

Thymidine kinase as a molecular target for the development of novel anticancer and antibiotic agents

Byun, Youngjoo 21 September 2006 (has links)
No description available.
58

Herpes Simplex Virus Thymidine Kinase Gene Expression Under Control of a Late Viral Promoter / Post-Transcriptional Regulation of HSV Thymidine Kinase Expression

Davies, Sherry January 1986 (has links)
Herpes simplex virus (HSV) genes are expressed as at least three coordinately regulated gene classes during lytic infection. The delayed-early (DE) and late (L) genes require previous expression of one or more immediate-early (IE) genes for their own expression. The DE genes achieve maximal expression prior to viral DNA synthesis, while the L genes are maximally expressed after DNA replication (Honess and Roizman, 1974). A recombinant strain of HSV-1, X1N17, was used in this study to examine the effect of the gene promoter on the temporal expression of HSV genes. This virus carries a late viral promoter upstream from the coding sequences of a DE gene (thymidine kinase; TK). S1-mapping studies showed that X1N17-TK transcripts initiated under the control of the late promoter and accumulated with L class kinetics. However, the TK activity levels in X1N17-infected cells were not consistent with HSV late gene expression. Western blot analysis of infected cell proteins revealed that despite the high levels of X1N17-TK mRNA present in the cytoplasm late after infection, little TK polypeptide was being synthesized. This suggested that HSV genes are subject to post-transcriptional control mechanisms that modulate the efficiency of translation of viral transcripts. More specifically, it appears as though HSV-TK transcripts are not efficiently translated at late times in infected cells. / Thesis / Master of Science (MS)
59

Mise au point d'un système de thérapie génique utilisant le gène HSV-TK couplé au promoteur muté de l'alpha-foetoprotéine dans un vecteur adénoviral

Fortier, Pascale 12 April 2018 (has links)
L'alpha-foetoprotéine (AFP) est une protéine hépatique feotale souvent réexprimée dans les hépatomes. L'utilisation de son promoteur en thérapie génique pourrait donc augmenter la spécificité du traitement. Nous avons tenté de mettre au point un système de thérapie génique utilisant des mutants plus puissants du promoteur de l'AFP associés au gène suicide de la thymidine kinase (TK). La comparaison de l'efficacité du gène TK sauvage et du mutant TK30 à induire la mort cellulaire en présence de la prodrogue ganciclovir (GCV) dans notre lignée cellulaire d'hépatome de rat v7.6 nous a révélé que le mutant n'était pas supérieur au gène sauvage. Nous avons comparé l'efficacité de mutants plus actifs du promoteur de l'AFP, MO1 et M11, à induire l'expression du gène TK placé sous leur contrôle ainsi que leur effet bystander respectif. Le mutant MO1 s'est révélé être le meilleur choix pour la thérapie. Un effet bystander a pu être observé in vivo chez des rats Buffalo injectés avec des v7.6 contenant le plasmide MO1-TK. Nous avons démontré la capacité de l'adénovirus Ad-CMV-LacZ ainsi que nos constructions Ad-MO1-EGFP et Ad-MO1-TK à transduire les hépatomes en culture et chez l'animal (sauf pour Ad-MO1-TK). Finalement, nous avons testé l'efficacité de notre système de thérapie génique in vivo. L'Ad-MO1-TK n'a pas réussi à éliminer les tumeurs. Notre système n'est donc pas encore fonctionnel tel qu'utilisé.
60

Le virus herpes simplex de type 1 : résistance aux antiviraux et réponse inflammatoire cérébrale

Sergerie, Yan 13 April 2018 (has links)
La résistance du virus herpes simplex (VHS) aux antiviraux, particulièrement chez des sujets immunosupprimés, et sa capacité d’envahir le système nerveux central soulèvent de nombreuses questions au niveau clinique. Des mutations au sein du gène de la thymidine kinase et de l’ADN polymérase virale sont responsables de la résistance aux traitements antiviraux. Il est donc important d’élucider davantage les différents mécanismes moléculaires à l’origine de ces évènements de résistance et de développer de nouvelles avenues thérapeutiques. De plus, le VHS est la cause la plus fréquente d’encéphalite sporadique et potentiellement fatale dans les pays de l’ouest. Ce type de pathologie est occasionné en partie par une intense réplication virale mais également par une réponse immunologique encore incomprise jusqu’à maintenant. Les travaux présentés dans cette thèse de doctorat ont pour but de développer de nouveaux modèles in vitro et in vivo permettant d’étudier ces deux facettes importantes du VHS. L’impact de certaines mutations et l’effet d’un nouveau traitement dans la résistance du VHS aux antiviraux ont été évalués. La réponse immunitaire innée cérébrale de même qu’une nouvelle approche thérapeutique en rapport avec une encéphalite à VHS ont également été caractérisées. / Herpes simplex virus (HSV) resistance to antiviral treatment is a real concern among immunocompromised population. Mutations localized in the thymidine kinase (TK) and/or the DNA polymerase (pol) genes are mainly responsible for those resistance issues. Thus, it is becoming important to increase knowledge in this area and to develop new therapeutic strategies. Also, HSV has this unique biological property to invade the nervous central system and causes encephalitis. During this type of infection, an important immunological process occurs. However, this inflammatory response is still very controversial and needs to be elucidated. The main objectives of this doctoral thesis consisted of: 1- the characterization of antiviral resistance and 2- the elucidation of the brain inflammatory response to HSV. The first part consisted in the development of an in vitro system allowing the characterization of several mutations in the TK and/or the DNA pol genes responsible for antiviral resistance and the elaboration of a new antiviral strategy. The second part was to characterize the inflammatory response following the induction of HSV-1 encephalitis in a mouse model and to develop an alternative immunomodulatory approache. Mutations localized in conserved and non-conserved regions of the TK are associated with ACV resistance. Hydroxyurea increases the activity of nucleoside (ACV) and nucleotide (CDV) analogues. A delayed glucocorticoid treatment is highly beneficial by decreasing the brain viral load as well as pro-inflammatory cytokine production in the brain of infected mice. TNF- and IL-1permit the initiation of an innate immune response allowing a control of the viral replication and an efficient transition to the adaptive immune response required for viral clearance during HSV-1 encephalitis. A prophylactic treatment with a TLR3 agonist significantly increases the mean life expectancy and survival rate of mice infected with HSV-1 compared to non-treated mice. The experimental models developed during this Ph. D. allow a better understanding of the molecular mechanisms of resistance and of the brain inflammatory response to the HSV.

Page generated in 0.2578 seconds