• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 7
  • 2
  • Tagged with
  • 52
  • 52
  • 42
  • 41
  • 24
  • 19
  • 15
  • 12
  • 12
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Efficacité de détection en tomographie d'émission par positrons: une approche par intelligence artificielle

Michaud, Jean-Baptiste January 2014 (has links)
En Tomographie d'Émission par Positrons (TEP), la course à la résolution spatiale nécessite des détecteurs de plus en plus petits, produisant plus de diffusion Compton avec un impact négatif sur l’efficacité de détection du scanner. Plusieurs phénomènes physiques liés à cette diffusion Compton entachent tout traitement des coïncidences multiples d'une erreur difficile à borner et à compenser, tandis que le nombre élevé de combinaisons de détecteurs complexifie exponentiellement le problème. Cette thèse évalue si les réseaux de neurones constituent une alternative aux solutions existantes, problématiques parce que statistiquement incertaines ou complexes à mettre en œuvre. La thèse réalise une preuve de concept pour traiter les coïncidences triples et les inclure dans le processus de reconstruction, augmentant l'efficacité avec un minimum d'impact sur la qualité des images. L'atteinte des objectifs est validée via différents critères de performance comme le gain d'efficacité, la qualité de l'image et le taux de succès du calcul de la ligne de réponse (LOR), mesurés en priorité sur des données réelles. Des études paramétriques montrent le comportement général de la solution : un réseau entraîné avec une source générique démontre pour le taux d'identification de la LOR une bonne indépendance à la résolution en énergie ainsi qu'à la géométrie des détecteurs, du scanner et de la source, pourvu que l'on ait prétraité au maximum les données pour simplifier la tâche du réseau. Cette indépendance, qui n'existe en général pas dans les solutions existantes, laisse présager d'un meilleur potentiel de généralisation à d'autres scanners. Pour les données réelles du scanner LabPET[indice supérieur TM], la méthode atteint un gain d'efficacité aux alentours de 50%, présente une dégradation de résolution acceptable et réussit à recouvrer le contraste de manière similaire aux images de référence, en plus de fonctionner en temps réel. Enfin, plusieurs améliorations sont anticipées.
32

Conception d’un système d’alignement temporel basé sur une sonde temporelle pour le scanner LabPET II

Samson, Arnaud January 2017 (has links)
La tomographie d’émission par positrons est une technique d’imagerie médicale importante dans les domaines clinique et préclinique. Elle permet de diagnostiquer des cancers, des maladies cardiovasculaires ou encore des maladies neurodégénératives. Dans le domaine préclinique, la TEP permet de mener des recherches de pointe pour mieux comprendre les métabolismes au niveau moléculaire afin de développer des thérapies ciblées qui seront utilisées dans la médecine de demain. C’est pourquoi, depuis plus de quinze ans, le Groupe de Recherche en Appareillage Médical de Sherbrooke (GRAMS) et le Centre d’Imagerie Moléculaire de Sherbrooke (CIMS) collaborent pour concevoir des scanners TEP permettant d’obtenir des images avec un contraste et une résolution inégalée. Pour obtenir ces images, les paramètres des scanners doivent être optimisés de manière minutieuse. L’un des paramètres les plus importants en TEP est la mesure temporelle pour minimiser les coïncidences fortuites et ainsi améliorer le rapport signal sur bruit de l’image. La mesure temporelle peut être entachée d’une part, de bruit statistique provenant de différentes sources comme le bruit thermique, le bruit d’amplification, la pente du signal au point de discrimination et d’autre part, les variations systémiques qui peuvent être corrigées par un traitement approprié de l’information. Le travail présenté dans ce mémoire porte sur la conception d’une nouvelle méthode embarquée et automatisée faisant appel à une sonde d’alignement temporel pour effectuer cet alignement et corriger la dispersion temporelle systémique dans le scanner. Cette méthode a été testée sur le scanner LabPET II, la dernière génération de scanner développé au GRAMS et a permis une amélioration de la mesure temporelle de 47%.
33

Système intelligent de détection et diagnostic de fautes en tomographie d'émission par positrons

Charest, Jonathan January 2017 (has links)
La tomographie d'émission par positrons (TEP) est un outil de choix en imagerie moléculaire grâce à sa capacité à quantifier certains métabolismes et à porter des diagnostics précis sur l'évolution de pathologies. Cependant, la qualité du diagnostic est dépendante de la qualité de l'image obtenue. La complexité des appareils TEP fait en sorte que ceux-ci nécessitent des calibrations fréquentes demandant un professionnel qualifié dans le domaine que très peu de laboratoires pourvus d'un scanner possèdent. Conséquemment, ce projet vise à concevoir un système intelligent pouvant détecter des fautes et porter un diagnostic sur un scanner TEP de façon automatique dans le but de maximiser la qualité des images produites. Le système intelligent développé permettra alors de pallier à la surcharge ou à l'absence d'un professionnel en laboratoire puisqu'il automatisera le contrôle de qualité de l'appareil. Le projet englobe donc: l'identification de données permettant de détecter et diagnostiquer les fautes, l'implantation de système intelligent par module et de façon hiérarchique, la validation de l'exactitude des diagnostics et finalement l'évaluation de l'impact du système sur la qualité des images produites par le scanner. Pour arriver à son but, le système intelligent met en oeuvre différentes méthodes d'intelligence artificielle comprenant des réseaux de neurones artificiels, un système expert à base de règles et diverses méthodes de traitement de signal. Ce projet se penche plus spécifiquement sur le scanner LabPET, un scanner TEP pour petits animaux développé à Sherbrooke. LabPET est un bon candidat car il comporte un nombre élevé de canaux non interdépendants accentuant ainsi les bénéfices de la parallélisation apportés par le système proposé. Ainsi, les travaux ont permis de réaliser un système ayant une efficacité de détection et une exactitude de diagnostic dépassant les attentes et, une étude de l'impact du système sur la qualité des images a démontré une amélioration significative des paramètres de qualité d'image. Il en découle que le système est bien en mesure d'aider les professionnels dans l'entretien du scanner LabPET. Les résultats devraient permettre de promouvoir le développement de systèmes intelligents de détection et de diagnostic de fautes d'appareils TEP. Des systèmes similaires seront certainement nécessaires au bon fonctionnement des prochaines générations d'appareils TEP, et les résultats de ce projet pourront alors servir de référence.
34

Conception des circuits de polarisation des détecteurs et de maintien de la tension de base du LabPET II

Panier, Sylvain January 2014 (has links)
Par le passé, la collaboration entre le Centre d'Imagerie Médicale de Sherbrooke (CIMS) et le Groupe de Recherche en Appareillage Médicale de Sherbrooke (GRAMS) a permis de développer le scanner LabPET. Celui-ci fut le premier scanner de Tomographie d'Émission par Positrons (TEP) commercial utilisant des photodiodes à effet avalanche (PDA) comme détecteur. Depuis, cette collaboration a permis de faire évoluer le scanner afin d'améliorer cette modalité d'imagerie et d'y ajouter la tomodensitométrie (TDM). Les attentes pour la prochaine génération du scanner sont donc grandes. Cette nouvelle génération du scanner, le LabPET II, verra les deux modalités nativement intégrées et elles utiliseront la même chaine de détection. Ce scanner se verra doté de nouveaux détecteurs organisés en matrices de 64 cristaux de 1,1 par 1,1 mm². Cette nouvelle matrice, associée à ses deux matrices de 32 PDA, a prouvé sa capacité à fournir une résolution spatiale inférieure au millimètre. L'utilisation de ce nouveau module de détection pourra donc permettre au LabPET II d'être le premier scanner bimodal (TEP/TDM) commercial atteignant une résolution submillimétrique. Ce scanner permettra de s'approcher un peu plus de la résolution spatiale ultime en TEP tout en permettant une bonne localisation anatomique grâce à l'ajout d'une imagerie TDM rudimentaire. Pour atteindre ces objectifs, une intégration complète de l'électronique frontale a été nécessaire. Dans les versions précédentes, seuls les préamplificateurs de charge et les filtres de mise en forme étaient intégrés; dans cette nouvelle version, toute l'électronique analogique ainsi que la numérisation et les liens de communications devront être intégrés. Pour ce faire, la technique de temps de survol au-dessus d'un seuil (ou ToT pour «Time-over-Threshold») a été préférée à la solution utilisée par le LabPET I qui nécessitait un convertisseur analogique-numérique par canal. La contrepartie de cette solution est l'obligation de maintenir la tension de base à une valeur fixe et commune à tous les canaux. Le circuit de polarisation des PDA a aussi dû être intégré dans l'ASIC, car il occupait énormément de place sur la carte d'électronique frontale du LabPET 1. Dans ce mémoire seront décrits la conception, l'intégration et les tests de ces deux circuits du système. Ils ont démontré leur efficacité tout en n'occupant que très peu de place dans le circuit intégré spécialisé (ASIC) du «module de détection». Au vu des sources bibliographiques recensées, le module de détection du LabPET II devrait être l'un de ceux ayant la plus forte densité de canaux (environ 45 par centimètre carré) et le seul combinant électronique analogique faible bruit, numérique et haute tension (~450 V). La réalisation de cette nouvelle génération devrait permettre au partenariat CIMS/GRAMS de réaffirmer leur position de leader dans le domaine en améliorant les outils d'imagerie à la disposition des chercheurs en médecine préclinique.
35

Conception et implémentation d'un convertisseur temps numérique dans un ASIC en technologie CMOS 0,18 ?m, appliqué à la tomographie d'émission par positrons

Abidi, Mouadh January 2012 (has links)
L'imagerie moléculaire est un domaine permettant d'observer et d'analyser in vivo le fonctionnement cellulaire et tissulaire. Elle permet une meilleure compréhension des bioprocessus et par ricochet, le diagnostic, le traitement et le suivi de plusieurs maladies telles que les maladies neurologiques, cardiovasculaires ou les tumeurs cancéreuses. Le LabPET[indice supérieurTM] II, un scanner d'imagerie médicale TEP en développement au sein du Groupe de Recherche en Appareillage Médical de Sherbrooke (GRAMS), vise à atteindre une résolution spatiale submillimétrique. Ceci demande une densité de détecteurs de l'ordre de 37 000, répartis sur un anneau de 15 cm de diamètre par 12 cm de longueur axiale. Le but ultime est de pouvoir jumeler la tomodensitométrie (TDM) durant la même séance, et de combiner ainsi les informations métaboliques et les informations anatomiques tout en assurant une réduction par un facteur 1,5 à 5 la dose de rayon X par rapport aux doses actuelles en TDM. Ce défi est réparti sur plusieurs axes, parmi lesquels se trouve la chaîne de détection frontale analogique. Un circuit intégré (ASIC) a été développé pour atteindre les performances attendues en TEP et initier des travaux en TDM par comptage de photons individuels. La conception se base sur l'approche de mesures au-dessus d'un seuil (Time Over Threshold (TOT)). Ce choix impose un soin particulier au niveau de l'extraction de l'information temporelle des événements détectés. Ainsi, un convertisseur temps numérique a été conçu à partir d'une boucle à verrouillage de délai (DLL). Le convertisseur comporte deux composantes dont un compteur grossier synchronisé sur l'horloge de référence de 100 MHz (10 ns) et un autre compteur d'une résolution de 312.5 ps.
36

Contribution aux méthodes de reconstruction d'images appliquées à la tomographie d'émission par positrons par l'exploitation des symétries du système

Leroux, Jean-Daniel January 2014 (has links)
Le désir d’atteindre une haute résolution spatiale en imagerie médicale pour petits animaux conduit au développement d’appareils composés de détecteurs de plus en plus petits. Des appareils s’approchant de la résolution théorique maximale en tomographie d’émission par positrons (TEP) sont à nos portes. Pour retirer le maximum d’information de ces appareils, il importe d’utiliser des méthodes de traitement évoluées qui prennent en considération l’ensemble des phénomènes physiques entourant la prise de mesure en TEP. Le problème est d’autant plus complexe à résoudre du fait que ces caméras sont composées de milliers de détecteurs qui donnent lieu à des millions de lignes de réponses mesurées pouvant alors être traitées par un algorithme de reconstruction d’images. Cette situation mène à des problèmes de reconstruction d’images en 3 dimensions (3D) qui sont difficiles à résoudre principalement à cause des limites en ressources mémoires et de calcul des ordinateurs modernes. Les travaux réalisés dans le cadre de cette thèse répondent à deux grands besoins relatifs au domaine de la reconstruction d’images en TEP, soit l'atteinte d'une meilleure qualité d'image et l'accélération des calculs menant à l'obtention de celle-ci. Le premier volet des travaux repose sur le l'élaboration de méthodes de modélisation 3D précises du processus d’acquisition en TEP permettant d'atteindre une meilleure qualité d’image. Ces modèles 3D s'expriment sous forme de matrices systèmes qui sont utilisées par un algorithme de reconstruction d'images. Pour générer ces modèles 3D pour la TEP, des méthodes de calculs analytiques et basées sur des simulations Monte Carlo (MC) ont été développées. Des méthodes hybrides, basé sur des stratégies analytiques et Monte Carlo, ont également été mises en œuvre afin de combiner les avantages des deux approches. Les méthodes proposées se distinguent de l'art antérieur en ce qu'elles tirent profit des symétries du système afin de réduire considérablement le temps de calcul requis pour l'obtention de matrices 3D précises. Pour l’approche analytique, le calcul de la matrice est divisé en diverses étapes qui favorisent la réutilisation de modèles pré-calculés entre les lignes de réponses symétriques de l’appareil. Pour l’approche par simulations MC, la réutilisation des événements MC collectés entre les lignes de réponse symétriques de l’appareil permet d’augmenter la statistique utilisée pour générer la matrice MC et du même coup de réduire le temps de simulation. La méthode hybride proposée permet de réduire encore davantage le temps de simulation MC et cela, sans faire de compromis sur la qualité de la matrice système. Le second volet des travaux repose sur le développement de nouvelles méthodes de reconstruction d’images basées sur un référentiel en coordonnées cylindriques permettant de réduire les contraintes d’espace mémoire et d'accélérer les calculs menant à l’image. Ces méthodes se divisent en deux catégories distinctes. Les premières sont des méthodes dites itératives qui permettent de résoudre le problème de reconstruction d’images par un processus itératif qui réalise une nouvelle estimation de l’image à chaque itération de façon à maximiser le degré de vraisemblance entre l’image et la mesure de l’appareil. Les secondes sont des méthodes dites directes qui permettent de résoudre le problème en inversant la matrice système qui relie l’image à la mesure de projections par une décomposition en valeurs singulières (DVS) de la matrice. La matrice inverse ainsi obtenue peut alors être multipliée directement avec la mesure pour obtenir l’image reconstruite. L’utilisation d’une image en coordonnées cylindriques entraîne une redondance au niveau des coefficients de la matrice système obtenue. En exploitant ces redondances, il est possible d’obtenir une matrice système avec une structure dite bloc circulante qui peut alors être transformée dans le domaine de Fourier afin d’accélérer les calculs lors du processus de reconstruction d’images itératif ou par DVS. De plus, pour la méthode par DVS, l’utilisation d’une matrice bloc circulante factorisée facilite grandement la procédure d'inversion de la matrice par DVS, ce qui rend l’application de la méthode possible pour des problèmes de reconstruction d’images en 3D. Or, la résolution de problèmes aussi complexes n’était jusqu’ici pas possible avec les méthodes par DVS de l’art antérieur dû aux contraintes d’espace mémoire et à la charge excessive de calcul. En somme, les travaux combinés ont pour objectif ultime de réunir à la fois la vitesse de calcul et une qualité d'image optimale en un même algorithme afin de créer un outil de reconstruction 3D idéal pour l'utilisation dans un contexte clinique.
37

Conception d'un circuit d'étouffement de photodiodes avalanches monophotoniques pour une intégration matricielle dans un module de comptage monophotonique

Nolet, Frédéric January 2016 (has links)
De nombreuses applications en sciences nucléaires bénéficieraient d’un détecteur possédant une précision temporelle de 10 ps largeur à mi-hauteur à la mesure d’un photon unique. Par exemple, le projet de Time-Imaging Calorimeter en cours de conception au CERN requiert un détecteur possédant une telle précision temporelle afin de mesurer le temps de vol (TDV) et la trajectoire des particules émises lors des collisions dans les expériences du Large Hadron Collider (LHC), ce qui permet d’identifier ces dites particules. De plus, un détecteur possédant une précision temporelle de l’ordre de 10 ps permettra la mitigation de l’empilement des événements. Un second exemple est la tomographie d’émission par positrons (TEP), une modalité d’imagerie médicale non-invasive qui mesure la distribution d’un traceur radioactif afin d’étudier et détecter le cancer. Dans le but de développer un scanner TEP temps réel, le groupe de recherche en appareillage médical de Sherbrooke (GRAMS) travaille sur l’intégration de la mesure du TDV de l’interaction TEP. Les meilleures performances actuelles des détecteurs TEP se situent aux alentours de 150 ps, ce qui n’est pas suffisant pour intégrer le TDV dans un scanner TEP préclinique. Cette mesure exige une résolution temporelle TEP de l’ordre de 10 ps. La solution proposée par le GRAMS est de développer un module de comptage monophotonique (MCMP) 3D qui est composé d’une matrice de photodiodes avalanches monophotoniques (PAMP) reliée par des interconnexions verticales (TSV) à une matrice de circuits de lecture composée d’un circuit d’étouffement et d’un convertisseur temps-numérique. Ce détecteur permet donc de mesurer précisément le temps d’arrivée de chaque photon détecté. Ce document présente la conception du circuit d’étouffement réalisé en technologie CMOS 65 nm de TSMC (Taiwan Semiconductor Manufacturing Company) intégré à chaque pixel de 50 × 50 µm2 dans un MCMP 3D. Afin de répondre au besoin de précision temporelle de 10 ps dans un détecteur 3D, le circuit proposé est un circuit d’étouffement passif avec une recharge active possédant un amplificateur opérationnel en boucle ouverte à titre de comparateur de tension. L’amplificateur opérationnel utilisé possède un seuil ajustable de 0 à 2,5 V afin d’être en mesure d’évaluer le seuil optimal pour la mesure de gigue temporelle avec une PAMP. La taille finale du circuit d’étouffement est de 18 × 30 µm2 incluant l’amplificateur qui est d’une taille de 13 × 8 µm2, ce qui représente respectivement environ 22% et 4% de la taille totale du pixel. Le circuit d’étouffement possède une gigue temporelle de 4 ps largeur à mi-hauteur (LMH). Les résultats obtenus prouvent qu’il est possible d’intégrer de l’électronique de lecture de PAMP dans un MCMP 3D possédant des performances temporelles sous les 10 ps.
38

Conception, caractérisation et optimisation de SPAD en technologie Dalsa HV CMOS 0.8 μm pour intégration dans un 3D-SiPM

Parent, Samuel January 2016 (has links)
Résumé : Les photodiodes à avalanche monophotonique (SPAD) sont d'intérêts pour les applications requérant la détection de photons uniques avec une grande résolution temporelle, comme en physique des hautes énergies et en imagerie médicale. En fait, les matrices de SPAD, souvent appelés photomultiplicateurs sur silicium (SiPM), remplacent graduellement les tubes photomultiplicateurs (PMT) et les photodiodes à avalanche (APD). De plus, il y a une tendance à utiliser les matrices de SPAD en technologie CMOS afin d'obtenir des pixels intelligents optimisés pour la résolution temporelle. La fabrication de SPAD en technologie CMOS commerciale apporte plusieurs avantages par rapport aux procédés optoélectroniques comme le faible coût, la capacité de production, l'intégration d'électronique et la miniaturisation des systèmes. Cependant, le défaut principal du CMOS est le manque de flexibilité de conception au niveau de l'architecture du SPAD, causé par le caractère fixe et standardisé des étapes de fabrication en technologie CMOS. Un autre inconvénient des matrices de SPAD CMOS est la perte de surface photosensible amenée par la présence de circuits CMOS. Ce document présente la conception, la caractérisation et l'optimisation de SPAD fabriqués dans une technologie CMOS commerciale (Teledyne DALSA 0.8µm HV CMOS - TDSI CMOSP8G). Des modifications de procédé sur mesure ont été introduites en collaboration avec l'entreprise CMOS pour optimiser les SPAD tout en gardant la compatibilité CMOS. Les matrices de SPAD produites sont dédiées à être intégrées en 3D avec de l'électronique CMOS économique (TDSI) ou avec de l'électronique CMOS submicronique avancée, produisant ainsi un SiPM 3D numérique. Ce SiPM 3D innovateur vise à remplacer les PMT, les APD et les SiPM commerciaux dans les applications à haute résolution temporelle. L'objectif principal du groupe de recherche est de développer un SiPM 3D avec une résolution temporelle de 10 ps pour usage en physique des hautes énergies et en imagerie médicale. Ces applications demandent des procédés fiables avec une capacité de production certifiée, ce qui justifie la volonté de produire le SiPM 3D avec des technologies CMOS commerciales. Ce mémoire étudie la conception, la caractérisation et l'optimisation de SPAD fabriqués en technologie TDSI-CMOSP8G. / Abstract : Single Photon Avalanche Diodes (SPAD) generate much interest in applications which require single photon detection and excellent timing resolution, such as high energy physics and medical imaging. In fact, SPAD arrays such as Silicon PhotoMultipliers (SiPM) are gradually replacing PhotoMultiplier Tubes (PMT) and Avalanche PhotoDiodes (APD). There is now a trend moving towards SPAD arrays in CMOS technologies with smart pixels control for high timing demanding applications. Making SPAD in commercial CMOS technologies provides several advantages over optoelectronic processes such as lower costs, higher production capabilities, easier electronics integration and system miniaturization. However, the major drawback is the lack of flexibility when designing the SPAD architecture because all fabrication steps are fixed by the CMOS technology used. Another drawback of CMOS SPAD arrays is the loss of photosensitive areas caused by the CMOS circuits integration. This document presents SPAD design, characterization and optimization made in a commercial CMOS technology (Teledyne DALSA 0.8 µm HV CMOS - TDSI CMOSP8G). Custom process variations have been performed in partnership with the CMOS foundry to optimize the SPAD while keeping the CMOS line compatibility. The realized SPAD and SPAD arrays are dedicated to 3D integration with either low-cost TDSI CMOS electronics or advanced deep sub-micron CMOS electronics to perform a 3D digital SiPM (3D-SiPM). The novel 3D-SiPM is intended to replace PMT, APD and commercially available SiPM in timing demanding applications. The group main objective is to develop a 10 ps timing resolution 3D-SiPM for use in high energy physics and medical imaging applications. Those applications require reliable technologies with a certified production capability, which justifies the actual effort to use commercial CMOS line to develop our 3D-SiPM. This dissertation focuses on SPAD design, characterization and optimization made in the TDSI-CMOSP8G technology.
39

Validation de la simulation Monte-Carlo de la gamma-caméra petit animal Biospace sur la grille légère CiGri. Application à l'évaluation de l'algorithme de l'inversion analytique de la transformée de Radon atténuée

Aoun, Joe 30 October 2009 (has links) (PDF)
Les simulations Monte-Carlo SMC représentent actuellement en imagerie médicale nucléaire un outil puissant d'aide à la conception et à l'optimisation des détecteurs, et à l'évaluation des algorithmes de reconstruction et des méthodes de correction des effets physiques responsables de la dégradation des images reconstruites (atténuation, diffusion, etc...). L'inconvénient majeur des simulations Monte-Carlo réside dans le temps de calcul important qu'elles nécessitent. Au cours de cette thèse, nous avons tiré parti de la plate-forme de SMC GATE (Geant4 Application for Tomographic Emission) dédiée aux examens SPECT/PET pour une modélisation réaliste des phénomènes physiques, et de la grille de calcul légère CiGri (Ciment Grid) afin de réduire le temps de calcul. Le premier objectif de cette thèse consiste à modéliser la gamma-caméra Biospace dédiée à l'imagerie petit animal à l'aide du logiciel GATE. Le modèle de la gamma-caméra est validé en comparant les résultats issus des simulations GATE avec les données acquises expérimentalement. Les résultats des simulations reproduisent avec précision les performances mesurées de la gamma-caméra. Le modèle validé est ensuite utilisé pour l'évaluation de l'algorithme de Novikov-Natterer de reconstruction analytique de la transformée de Radon atténuée. Les résultats de cette étude montrent que l'algorithme de reconstruction de Novikov-Natterer permet d'améliorer les images d'un point de vue qualitatif et quantitatif par rapport à la méthode analytique standard FBP.
40

Suivi in situ de cultures tridimensionnelles en bioréacteur à perfusion grâce à la tomographie d'émission par positrons

Chouinard, Julie January 2012 (has links)
Le suivi continu des substituts tissulaires en développement est crucial afin de comprendre leur évolution au fil du temps. Par contre, la tâche représente tout un défi quand vient le temps d'évaluer des échantillons de grande taille avec les techniques de microscopie. De plus, les méthodes de caractérisation les plus courantes sont fastidieuses et entraînent le sacrifice des cultures. Le développement d'approches de suivi in situ en temps réel, non invasives et non destructives, adaptées aux échantillons non transparents et de grandes tailles, est essentiel dans le domaine du génie tissulaire. Les techniques d'imagerie médicale peuvent répondre à ces besoins sans perturber ni interrompre les cultures en cours. L'hypoThèse de travail de cette Thèse était de démontrer la possibilité d'établir des méthodes d'imagerie in situ, non invasives, non destructives et en temps réel pour le suivi de la viabilité et du métabolisme de cultures tridimensionnelles (3D) de cellules endothéliales dans un gel de fibrine perfusé. Afin d'y arriver, une chambre de culture à perfusion munie de fibres creuses pour la croissance de cellules endothéliales à l'intérieur d'un gel de fibrine a d'abord été conçue. Ensuite, un bioréacteur pulsatif à perfusion apte à assurer la survie et la croissance de cultures 3D in vitro pour le génie tissulaire a été développé et validé. Dans un second temps, les protocoles d'imagerie par tomographie d'émission par positrons (TEP) n'étant pas adaptés aux systèmes de bioréacteurs, il a fallu en développer et valider un en utilisant un radiotraceur bien connu : le [indice supérieur 18]F-fluorodésoxyglucose ([indice supérieur 18]FDG) qui est un marqueur capable de détecter le métabolisme cellulaire. L'imagerie au [indice supérieur 18]FDG d'un bioréacteur permet d'évaluer la perfusion de la culture, de contrôler sa viabilité ainsi que d'estimer la densité cellulaire et le positionnement des structures tissulaires émergentes. Ainsi, les conditions optimales favorisant sa capture par les cellules ont été déterminées au préalable sur des monocouches afin d'optimiser le signal TEP correspondant. Enfin, les paramètres actifs identifiés précédemment ont été mis en application pour le suivi de cultures 3D où les densités cellulaires ont pu être estimées après seulement 12 heures de culture et des structures émergentes décelées dans les gels de fibrine au bout d'une à deux semaines. L'imagerie TEP au FDG est une approche très prometteuse pour effectuer le suivi non destructif de cultures tridimensionnelles en génie tissulaire et pour comprendre l'évolution des tissus en croissance in vitro.

Page generated in 0.1058 seconds