• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamical constraints on group actions

Morris, Gary January 1998 (has links)
No description available.
2

Topological entropy of linear systems and its application to optimal control /

Sun, Hui. January 2008 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2008. / Includes bibliographical references (leaves 71-73). Also available in electronic version.
3

Some results on recurrence and entropy

Pavlov, Ronald Lee. January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 162-164).
4

Poincaré recurrence, measure theoretic and topological entropy. / CUHK electronic theses & dissertations collection

January 2007 (has links)
Consider a dynamical system which is positively expansive and satisfies the condition of specification. We further study the topological entropy of the level sets for local Poincare recurrence, i.e. the recurrence spectrum. It turns out that the spectrum is quite irrational as any level set has the same (topological) entropy as the whole system. The erratic recurrence behavior of the orbits brings chaos. For the system concerned, we show that it contains a Xiong chaotic set C which is large in the sense that the intersection of any non-empty open set with C has the same topological entropy as the whole system. The ergodic average can be regarded as a certain recurrence average. We give multifractal analysis of the generalized spectrum for ergodic average, which incorporates the information of the set of divergence points. Note that the set of divergence points for Poincare recurrence or ergodic average has measure zero with respect to any invariant measure. (A Xiong chaotic set may has measure zero with respect to some invariant measures with full support.) The above results support the point of view that small set unobservable in measure may account for the anomalous chaotic behavior of the whole system. / The thesis is on the recurrence and chaotic behavior of a dynamical system. Let the local Poincare recurrence rate at a point be defined as the exponential rate of the first return time of the orbit into its neighborhoods defined by the Bowen metric. Given any reference invariant probability measure mu, we show that the rate equals to the local entropy of mu a.e. Hence, the integration of the rate is exactly the (measure theoretic) entropy of the measure mu. / Shu, Lin. / "January 2007." / Adviser: Ka-Sing Lau. / Source: Dissertation Abstracts International, Volume: 68-08, Section: B, page: 5286. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (p. 83-91). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
5

Set of periods, topological entropy and combinatorial dynamics for tree and graph maps

Juher Barrot, David 13 June 2003 (has links)
La tesi versa sobre sistemes dinàmics discrets 1-dimensionals, des d'un punt de vista combinatori i topològic. Estem interessats en les òrbites periòdiques i l'entropia topològica de les aplicacions contínues definides en arbres i grafs.El problema central és la caracterització del conjunt de períodes de totes les òrbites periòdiques d'una aplicació contínua d'un arbre en ell mateix. El teorema de Sharkovskii (1964) fou el primer resultat remarcable en aquest sentit. Aquest bonic teorema estableix que el conjunt de períodes d'una aplicació de l'interval és un segment inicial d'un ordre lineal (ordre de Sharkovskii). Recíprocament, donat qualsevol segment inicial d'aquest ordre, existeix una aplicació de l'interval que el té com a conjunt de períodes. Durant les darreres dècades hi ha hagut diversos intents de trobar resultats similars al de Sharkovskii per a altres espais 1-dimensionals. Recentment, el cas d'arbres ha estat tractat especialment. El Teorema de Baldwin (1991) resol el problema en el cas de les n-estrelles i ha estat un dels avenços més significatius en aquesta direcció. Aquest resultat estableix que el conjunt de períodes per a una aplicació de la n-estrella és unió finita de segments inicials de n ordres parcials (ordres de Baldwin), i recíprocament.El nostre objectiu principal és descriure l'estructura del conjunt de períodes de qualsevol aplicació contínua d'un arbre T en termes de les propietats combinatòries i topològiques de T: quantitat i disposició d'extrems, vèrtexs i arestes. En el capítol 1 discutim detalladament la manera més natural d'atacar el problema, i proposem una estratègia consistent en tres etapes consecutives. L'eina principal d'aquesta estratègia són els models minimals de patrons. Aquestes nocions es van desenvolupar i utilitzar durant les darreres dècades en el context de l'interval. En canvi, no es disposava de definicions operatives equivalents per a arbres, fins que al 1997 Alseda, Guaschi, Los, Manyosas i Mumbru proposaren de definir el patró d'un conjunt finit invariant P essencialment com una classe d'homotopia d'aplicacions relativa a P, i provaren (constructivament) que sempre existeix un model P-canònic amb propietats de minimalitat dinàmica. L'objectiu del capítol 2 és implementar completament el programa proposat, duent a terme les etapes 2 i 3. El resultat principal d'aquest capítol diu que, donada una aplicació g definida en un arbre T, existeix un conjunt S de successions finites d'enters positius tal que el conjunt de períodes de g és (excepte un conjunt finit explícitament acotat) una unió finita de segments inicials d'ordres de Baldwin donats en termes del conjunt S, que depèn de les propietats combinatòries de l'arbre T. També provem el recíproc. En el capítol 3 duem a terme experiments informàtics sobre la minimalitat dinàmica dels models canònics. En un esperit de programació modular, hem dissenyat moltes funcions autocontingudes que poden ser usades per implementar una gran varietat d'aplicacions d'ús divers. Entre altres, tenim funcions que calculen el model canònic d'un patró donat per l'usuari, calculen la matriu de Markov associada a un model monòton a trossos i extreuen tots els llaços simples d'una matriu de transició de Markov. Finalment, en el capítol 4 generalitzem alguns resultats de Block i Coven, Misiurewicz i Nitecki i Takahashi, en els quals l'entropia topològica d'una aplicació de l'interval s'aproxima per les entropies de les seves òrbites periòdiques. Hem provat relacions anàlogues en el context de les aplicacions de grafs. / This memoir deals with one-dimensional discrete dynamical systems, from both a topological and a combinatorial point of view. We are interested in the periodic orbits and topological entropy of continuous self-maps defined on trees and graphs.The central problem is the characterisation of the set of periods of all periodic orbits exhibited by any continuous map from a tree into itself. The Sharkovskii's Theorem (1964) was the first remarkable result in this setting. This theorem states that the set of periods of any interval map is an initial segment of a linear ordering (the so-called Sharkovskii ordering). Conversely, given any initial segment of the Sharkovskii ordering, there exists an interval map whose set of periods coincides with it.During the last decades there have been several attempts to find results similar to that of Sharkovskii for other one-dimensional spaces. Recently, the case of maps defined on general trees has been specially treated. Baldwin's Theorem (1991), which solves the problem in the case of n-stars for any n, has been one of the most significant advances in this direction. This result states that the set of periods of any n-star map is a finite union of initial segments of n-many partial orderings (the Baldwin orderings). The converse is also true.Our main purpose is to describe the generic structure of the set of periods of any continuous self-map defined on a tree T in terms of the combinatorial and topological properties of T: amount and arrangement of endpoints, vertices and edges. In Chapter 1 we make a detailed discussion about which is the more natural approach to this problem, and we propose a strategy consisting on three consecutive stages and using minimal models of patterns as the main tool. These notions were developed in the context of interval maps and widely used in a number of papers during the last two decades. However, equivalent operative definitions for tree maps were not available until 1997, when Alseda, Guaschi, Los, Manosas and Mumbru proposed to define the pattern of a finite invariant set P essentially as a homotopy class of maps relative to the points of P, and proved (constructively) that there always exists a P-canonical model displaying dynamic minimality properties.The goal of Chapter 2 is to implement in full the above programme by completing stages 2 and 3. The main result of Chapter 2 tells us that for each tree map g defined on a tree T there exists a finite set S of sequences of positive integers such that the set of periods of g is (up to an explicitly bounded finite set) a finite union of initial segments of Baldwin orderings, given in terms of the set S, which depends on the combinatorial properties of the tree T. We also prove the converse result.In Chapter 3 we report some computer experiments on the minimality of the dynamics of canonical models. In a spirit of modular programming, we have designed lots of self-contained functions which can be used to implement a wide variety of several-purpose software. Among other, we have functions that: compute the canonical model of a pattern provided by the user, calculate the Markov transition matrix associated to a piecewise monotone tree map and extract all the simple loops of a given length from a Markov transition matrix.Finally, in Chapter 4 we generalize some results of Block & Coven, Misiurewicz & Nitecki and Takahashi, where the topological entropy of an interval map was approximated by the entropies of its periodic orbits. We prove analogous relations in the setting of graph maps.
6

Growth rate of Legendrian contact homology and dynamics of Reeb flows

Ribeiro De Resende Alv. Marcelo 05 December 2014 (has links)
L'objectif de cette thèse est d'investiguer la relation entre l'homologie de contact Legendrienne d'une variété de contact de dimension 3, et l'entropie topologique des flots de Reeb associés à cette variété de contact. Une variété de contact est une variété differentielle M de dimension impaire munie d'un champ d'hyperplan Y maximalement non-intégrable. Les champs de Reeb sont une classe speciale de champs de vecteurs sur M qui sont définis en utilisant la structure de contact; ils préservent la structure de contact et ils préservent aussi une forme de volume sur M.<p><p>L'entropie topologique h est un nombre non-négatif qu'on associe à un système dynamique et qui mesure la complexité de ce système. Si un système dynamique est d'entropie topologique positive, on dit que ce système est chaotique.<p><p>Comme les champs de Reeb sont construits en utilisant la structure de contact Y, il est naturel d'attendre que la topologie de (M,Y) influence la dynamique des champs de Reeb auxquels elle est associée. En particulier, il est naturel de se demander s'il existe des variétés de contact dont tous les champs de Reeb associés ont une entropie topologique positive. Si une varieté de contact a cette propriété, on dira qu'elle est d'entropie positive. <p><p>Macarini et Schlenk ont été les premiers à étudier cette question. Ils ont montré qu'il existe un grand ensemble de variétés différentielles Q, telles que le fibré unitaire T_1 Q muni de sa structure de contact canonique Y_{can} est d'entropie topologique positive. Plus précisement, ils ont utilisé l'homologie de Floer Lagrangienne, qui est un invariant symplectique, pour montrer que si Q est rationnellement hyperbolique alors (T_1 Q,Y_{can}) est d'entropie positive. <p><p>Pour étudier l'entropie topologique dans le cas où M n'est pas un fibré unitaire on substitue à l'homologie de Floer Lagrangienne un invariant plus naturel des variétés de contact: l'homologie de contact Legendrienne à bandes. On demontre dans cette thèse que l'homologie de contact Legendrienne à bandes est bien adaptée pour étudier l'entropie topologique. Plus précisement, on montre que quand l'homologie de contact Legendrienne à bandes est bien définie pour un champ de Reeb associé à (M,Y) et sa croissance est exponentielle, alors (M,Y) est d'entropie positive. <p><p>On utilise ce résultat pour trouver des nouveaux exemples de variétés de contact de dimension 3 qui sont d'entropie positive. On montre même qu'il y a des variétés de dimension 3 qui possèdent une infinité de structures de contact différentes qui sont toutes d'entropie positive. Ces résultats et bien d'autres nous permettent de conjecturer que la ``plupart' des variétés de contact de dimension 3 sont d'entropie positive. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
7

A study of the sensitivity of topological dynamical systems and the Fourier spectrum of chaotic interval maps

Roque Sol, Marco A. 02 June 2009 (has links)
We study some topological properties of dynamical systems. In particular the rela- tionship between spatio-temporal chaotic and Li-Yorke sensitive dynamical systems establishing that for minimal dynamical systems those properties are equivalent. In the same direction we show that being a Li-Yorke sensitive dynamical system implies that the system is also Li-Yorke chaotic. On the other hand we survey the possibility of lifting some topological properties from a given dynamical system (Y, S) to an- other (X, T). After studying some basic facts about topological dynamical systems, we move to the particular case of interval maps. We know that through the knowl- edge of interval maps, f : I → I, precious information about the chaotic behavior of general nonlinear dynamical systems can be obtained. It is also well known that the analysis of the spectrum of time series encloses important material related to the signal itself. In this work we look for possible connections between chaotic dynamical systems and the behavior of its Fourier coefficients. We have found that a natural bridge between these two concepts is given by the total variation of a function and its connection with the topological entropy associated to the n-th iteration, fn(x), of the map. Working in a natural way using the Sobolev spaces Wp,q(I) we show how the Fourier coefficients are related to the chaoticity of interval maps.
8

Estimativas para entropia, extensões simbólicas e hiperbolicidade para difeomorfismos simpléticos e conservativos / Lower bounds for entropy, symbolic extensions and hyperbolicity in the symplectic and volume preserving scenario

Catalan, Thiago Aparecido 14 February 2011 (has links)
Provamos que \'C POT. 1\' genericamente difeomorfismos simpléticos ou são Anosov ou possuem entropia topológica limitada por baixo pelo supremo sobre o menor expoente de Lyapunov positivo dos pontos periódicos hiperbólicos. Usando isto exibimos exemplos de difeomorfismos conservativos sobre superfícies que não são pontos de semicontinuidade superior para a entropia topológica. Provamos também que \'C POT. 1\' genericamente difeomorfismos simpléticos não Anosov não admitem extensões simbólicas. Mudando de assunto, Hayashi estendeu um resultado de Mañé, provando que todo difeomorfismo f que possui uma \'C POT. 1\' vizinhança U, onde todos os pontos periódicos de qualquer g \'PERTENCE A\' U são hiperbólicos, é de fato um difeomorfismo Axioma A. Aqui, provamos o resultado análogo a este no caso conservativo, e a partir deste é possível exibir uma demonstração de um fato \"folclore\", a conjectura de Palis no caso conservativo / We prove that a \'C POT.1\' generic symplectic diffeomorphism is either Anosov or the topological entropy is bounded from below by the supremum over the smallest positive Lyapunov exponent of the periodic points. By means of that we give examples of area preserving diffeomorphisms which are not point of upper semicontinuity of entropy function in \'C POT. 1\' topology. We also prove that \'C POT. 1\'- generic symplectic diffeomorphisms outside the Anosov ones do not admit symbolic extension. Changing of subject, Hayashi has extended a result of Mañé, proving that every diffeomorphism f which has a \'C POT. 1\'-neighborhood U, where all periodic points of any g \'IT BELONGS\' U are hyperbolic, it is an Axiom A diffeomorphism. Here, we prove the analogous result in the volume preserving scenario, and using it we prove a \"folklore\" fact, the Palis conjecture in this context
9

Estimativas de entropia e um resultado de existência de ferraduras para uma teoria de forcing de homeomorfismos de superfícies / Entropy estimates and a stronger theorem on the existence of horseshoes for a forcing theory for surface homeomorphism

Silva, Everton Juliano da 17 June 2019 (has links)
Neste trabalho estudamos o valor mínimo da entropia topológica para uma classe de aplicações isotópicas à identidade em superfícies orientáveis (sem bordo, não necessariamente compactas e possivelmente de tipo finito) sob um ponto de vista estritamente topológico. Este estudo é feito utilizando a nova teoria de forcing para trajetórias transversas de Le Calvez e Tal que se baseia na teoria de Brouwer equivariante, em que é possível folhear superfícies com folhas relacionadas a teoria de Brouwer no plano. O principal resultado deste trabalho é uma melhora na estimativa da entropia topológica obtida por Le Calvez e Tal em um recente trabalho em que os autores buscam ferraduras topológicas em superfícies orientáveis utilizando ferramentas similares apresentadas aqui. Uma aplicação deste resultado acima é feita utilizando aplicações em S^2 que possuam um ponto fixo cuja trajetória pela isotopia deste ponto não seja homotópica a um múltiplo de um loop simples. Com estas hipóteses, melhoramos a estimativa dada por Le Calvez e Tal em que é encontrado um valor mínimo estritamente positivo para a entropia topológica desta aplicação. / In this work we study the minimum topological entropy value for one class of maps isotopics to the identity in oriented surfaces (without border, not necessary compacts and possibly of finite type) under the point of view strictly topological. This study is done using the new forcing theory to transverse trajectories from Le Calvez and Tal which it is based to equivariant Brouwer Theory, on what it is possible to leaf surfaces with leaves related to plane Brouwer theory. The main result in this work is a improvement in the estimates from the topological entropy obtained by Le Calvez and Tal in one recent work where the authors seek topological horseshoes on oriented surfaces using tools very similar to that are shown here. One application of the above result is done using maps on S^2 that have a fixed point whose trajectory by the isotopy of this point do not be homotopic to a multiple of a simple loop. With these hypotheses, we improve the estimates given by Le Calvez and Tal on what is found a strictly positive minimum value to the topological entropy of this map.
10

Estimativas para entropia, extensões simbólicas e hiperbolicidade para difeomorfismos simpléticos e conservativos / Lower bounds for entropy, symbolic extensions and hyperbolicity in the symplectic and volume preserving scenario

Thiago Aparecido Catalan 14 February 2011 (has links)
Provamos que \'C POT. 1\' genericamente difeomorfismos simpléticos ou são Anosov ou possuem entropia topológica limitada por baixo pelo supremo sobre o menor expoente de Lyapunov positivo dos pontos periódicos hiperbólicos. Usando isto exibimos exemplos de difeomorfismos conservativos sobre superfícies que não são pontos de semicontinuidade superior para a entropia topológica. Provamos também que \'C POT. 1\' genericamente difeomorfismos simpléticos não Anosov não admitem extensões simbólicas. Mudando de assunto, Hayashi estendeu um resultado de Mañé, provando que todo difeomorfismo f que possui uma \'C POT. 1\' vizinhança U, onde todos os pontos periódicos de qualquer g \'PERTENCE A\' U são hiperbólicos, é de fato um difeomorfismo Axioma A. Aqui, provamos o resultado análogo a este no caso conservativo, e a partir deste é possível exibir uma demonstração de um fato \"folclore\", a conjectura de Palis no caso conservativo / We prove that a \'C POT.1\' generic symplectic diffeomorphism is either Anosov or the topological entropy is bounded from below by the supremum over the smallest positive Lyapunov exponent of the periodic points. By means of that we give examples of area preserving diffeomorphisms which are not point of upper semicontinuity of entropy function in \'C POT. 1\' topology. We also prove that \'C POT. 1\'- generic symplectic diffeomorphisms outside the Anosov ones do not admit symbolic extension. Changing of subject, Hayashi has extended a result of Mañé, proving that every diffeomorphism f which has a \'C POT. 1\'-neighborhood U, where all periodic points of any g \'IT BELONGS\' U are hyperbolic, it is an Axiom A diffeomorphism. Here, we prove the analogous result in the volume preserving scenario, and using it we prove a \"folklore\" fact, the Palis conjecture in this context

Page generated in 0.0959 seconds