11 |
Analysis of Frequency Stabilization and Modulation of Airborne Telemetry TransmitterXizhou, Zhang, Jun, Yao 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1993 / Riviera Hotel and Convention Center, Las Vegas, Nevada / This paper analyzes the feature of frequency stability and
modulation of airborne telemetry transmitters. According to
the characteristic of telemetry information transmission,
several methods for frequency stabilization and modulation
are briefly compared. Emphasis is given to discuss frequency
dividing phase- locked frequency modulation and on-off keying
modulation and FM/on- off keying double modulation. With the
view of raising frequency stability and modulation
sensibility, extending the linear range of modulation, the
contradiction between frequency stabilization and modulation
should be coordinated properly. In addition, a compatible
method between conventional telemetry channel and super fast
signal telemetry channel is introduced. A satisfactory
result has been acquired with those views and methods used in
engineering application.
|
12 |
Partial Zero-forcing Precoding for Interference Channels with Limited Transmitter CooperationHari, Siddarth 01 January 2011 (has links)
This thesis looks at the problem of designing a coding strategy for interference channels with rate-limited transmitter cooperation. We first consider a simple communication model in which the classic two-user
Gaussian interference channel is augmented by rate-limited conferencing links between the transmitters. The main contribution is a partial zero-forcing precoding strategy based on a shared-private rate
splitting scheme at the transmitter, in which each transmitter communicates
part of its message to the other transmitter, and subsequently
partially pre-subtracts the interfering signal using a zero-forcing
precoder. We extend the proposed strategy to a class of multiuser interference channels, and outline a distributed algorithm to compute the precoder coefficients. The partial zero-forcing precoding strategy is shown to be particularly effective in certain high SNR/INR regimes, and simulation results for a multicell system highlight the cooperation gain due to the proposed strategy.
|
13 |
Partial Zero-forcing Precoding for Interference Channels with Limited Transmitter CooperationHari, Siddarth 01 January 2011 (has links)
This thesis looks at the problem of designing a coding strategy for interference channels with rate-limited transmitter cooperation. We first consider a simple communication model in which the classic two-user
Gaussian interference channel is augmented by rate-limited conferencing links between the transmitters. The main contribution is a partial zero-forcing precoding strategy based on a shared-private rate
splitting scheme at the transmitter, in which each transmitter communicates
part of its message to the other transmitter, and subsequently
partially pre-subtracts the interfering signal using a zero-forcing
precoder. We extend the proposed strategy to a class of multiuser interference channels, and outline a distributed algorithm to compute the precoder coefficients. The partial zero-forcing precoding strategy is shown to be particularly effective in certain high SNR/INR regimes, and simulation results for a multicell system highlight the cooperation gain due to the proposed strategy.
|
14 |
A New S-Band FM Telemetry TransmitterFengden, Lou 10 1900 (has links)
International Telemetering Conference Proceedings / October 17-20, 1988 / Riviera Hotel, Las Vegas, Nevada / This paper describes the design, test and the analysis of the test results of a new type S-band FM telemetry transmitter. Compared with the modulator adopting conventional fundamental crystal direct modulation, the transmitter which adopts UHF fundamental crystal direct modulation has a comparatively better modulation characteristics and a higher center frequency stability. The test results show that the deviation sensitivity of the transmitter is up to 400KHz/Vrms, frequency response is DC~200 KHz, total harmonic distortion is 3% and the center frequency stability is ten to the minus fifth power within the range of - 30~+70°c. Because of the high operating frequency of the modulator, the complicacy of the frequency multiplier has been requced, design of circuitry simplified and harmonic and spurious outputs has been improved to a great extent.
|
15 |
DEVELOPMENT 0F MICROWAVE HIGH POWER SOLID STATE PULSE TRANSMITTERHonglin, Yang, Yonghui, Yang 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / This paper introduces the development of an S-band miniaturized solid-state pulse
transmitter. Four-way power combination technique is applied to raise output power. The
output power of the RF pulse exceeds 500W, and the combined efficiency amounts to
90%. The transmitter has many other good characteristics, such as small dimensions,
light weight, low power consumption, high duty factor and so on. Development of this
transmitter will greatly improve the ability of telemetry. It will undoubtedly promote the
application and development of pulse telemetry system.
|
16 |
Millimeter-Wave Concurrent Dual-Band BiCMOS RFIC Transmitter for Radar and Communication SystemsHuynh, Cuong Phu Minh 1976- 14 March 2013 (has links)
This dissertation presents new circuit architectures and techniques for improving the performance of several key BiCMOS RFIC building blocks used in radar and wireless communication systems operating up to millimeter-wave frequencies, and the development of an advanced, low-cost and miniature millimeter-wave concurrent dual-band transmitter for short-range, high-resolution radar and high-rate communication systems.
A new type of low-power active balun consisting of a common emitter amplifier with degenerative inductor and a common collector amplifier is proposed. The parasitic neutralization and compensation techniques are used to keep the balun well balanced at very high frequencies and across an ultra-wide bandwidth. A novel RF switch architecture with ultra-high isolation and possible gain is proposed, analyzed and demonstrated. The new RF switch architecture achieves an ultra-high isolation through implementation of a new RF leaking cancellation technique. A new class of concurrent dual-band impedance matching networks and technique for synthesizing them are presented together with a 25.5/37-GHz concurrent dual-band PA. These matching networks enable simultaneous matching of two arbitrary loads to two arbitrary sources at two different frequencies, utilizing the impedance-equivalence properties of LC networks that any LC network can be equivalent to an inductor, capacitor, open or short at different frequencies. K- and Ka-band ultra-low-leakage RF-pulse formers capable of producing very narrow RF pulses in the order of 200 ps with small rising and falling time for short-range high-resolution radar and high-data-rate communication systems are also developed.
The complete transmitter exhibiting unique characteristics obtained from capabilities of producing very narrow and tunable RF pulses with extremely RF leakage and working concurrently in dual bands at 24.5 and 35 GHz was designed. Capability of generating narrow and tunable RF pulses allows the radar system to flexibly work at high and multiple range resolutions. The extremely low RF leakage allows the transmitter to share one antenna system with receiver, turn on the PA at all time, comply the transmitting spectrum requirements, increase the system dynamic range, avoid harming to other systems; hence improving system size, cost and performance. High data-rate in communication systems is achieved as the consequence of transmitting very narrow RF pulses at high rates. In addition, the dissertation demonstrates a design approach for low chip-area, cost and power consumption systems in which a single dual-band component (power amplifier) is designed to operate with two RF signals simultaneously.
|
17 |
Next Generation Silicon Photonic Transceiver: From Device Innovation to System AnalysisGuan, Hang January 2018 (has links)
Silicon photonics is recognized as a disruptive technology that has the potential to reshape many application areas, for example, data center communication, telecommunications, high-performance computing, and sensing. The key capability that silicon photonics offers is to leverage CMOS-style design, fabrication, and test infrastructure to build compact, energy-efficient, and high-performance integrated photonic systems-on- chip at low cost. As the need to squeeze more data into a given bandwidth and a given footprint increases, silicon photonics becomes more and more promising. This work develops and demonstrates novel devices, methodologies, and architectures to resolve the challenges facing the next-generation silicon photonic transceivers. The first part of this thesis focuses on the topology optimization of passive silicon photonic devices. Specifically, a novel device optimization methodology - particle swarm optimization in conjunction with 3D finite-difference time-domain (FDTD), has been proposed and proven to be an effective way to design a wide range of passive silicon photonic devices. We demonstrate a polarization rotator and a 90◦ optical hybrid for polarization-diversity and phase-diversity communications - two important schemes to increase the communication capacity by increasing the spectral efficiency. The second part of this thesis focuses on the design and characterization of the next- generation silicon photonic transceivers. We demonstrate a polarization-insensitive WDM receiver with an aggregate data rate of 160 Gb/s. This receiver adopts a novel architecture which effectively reduces the polarization-dependent loss. In addition, we demonstrate a III-V/silicon hybrid external cavity laser with a tuning range larger than 60 nm in the C-band on a silicon-on-insulator platform. A III-V semiconductor gain chip is hybridized into the silicon chip by edge-coupling to the silicon chip. The demonstrated packaging method requires only passive alignment and is thus suitable for high-volume production. We also demonstrate all silicon-photonics-based transmission of 34 Gbaud (272 Gb/s) dual-polarization 16-QAM using our integrated laser and silicon photonic coherent transceiver. The results show no additional penalty compared to commercially available narrow linewidth tunable lasers. The last part of this thesis focuses on the chip-scale optical interconnect and presents two different types of reconfigurable memory interconnects for multi-core many-memory computing systems. These reconfigurable interconnects can effectively alleviate the memory access issues, such as non-uniform memory access, and Network-on-Chip (NoC) hot-spots that plague the many-memory computing systems by dynamically directing the available memory bandwidth to the required memory interface.
|
18 |
Design of a Low Power 70MHz-110MHz Harmonic Rejection Filter with Class-AB Output StageHuang, Shan 2010 May 1900 (has links)
An FM transmitter becomes the new feature in recent portable electronic
development. A low power, integrable FM transmitter filter IC is required to meet the
demand of FM transmitting feature. A low pass filter using harmonic rejection technique
along with a low power class-AB output buffer is designed to meet the current market
requirements on the FM transmitter chip.
A harmonic rejection filter is designed to filter FM square wave signal from
70MHz to 110MHz into FM sine wave signal. Based on Fourier series, the harmonic
rejection technique adds the phase shifted square waves to achieve better THD and less
high frequency harmonics. The phase shifting is realized through a frequency divider,
and the summation is implemented through a current summation circuit. A RC low pass
filter with automatic tuning is designed to further attenuate unwanted harmonics. In this
work, the filter's post layout simulation shows -53dB THD and harmonics above
800MHz attenuation of -99dB. The power consumption of the filter is less than 0.7mW.
Output buffer stage is implemented through a resistor degenerated transconductor
and a class-AB amplifier. Feedforward frequency compensation is applied to compensate the output class-AB stage, which extends the amplifier's operating
bandwidth. A fully balanced class-AB driver is proposed to unleash the driving
capability of common source output transistors. The output buffer reaches -43dB THD at
110MHz with 0.63Vpp output swing and drives 1mW into 50 load. The power
consumption of the output buffer is 7.25mW.
By using harmonic rejection technique, this work realizes the 70MHz-110MHz
FM carrier filtering using TSMC 0.18um nominal process. Above 800MHz harmonics
are attenuated to below -95dB. With 1.2V supply, the total power consumption including
output buffer is 7.95mW. The total die area is 0.946mm2.
|
19 |
Study of Pre-distortion Technique for Directly Modulated AM-VSB Video TransmitterJuang, Min-Shi 12 June 2001 (has links)
Direct RF modulation on semiconductor lasers of wavelength 1310 nm has been widely applied to amplitude modulation vestigial side-band(AM-VSB)lightwave cable television (CATV) systems. The channel capacity is limited mainly by the nonlinear distortion of laser diode, which induces system performance degradation of composite second order (CSO) and composite triple beats (CTB). Though the linearity of laser diode has been improved during the fabrication process, carrier to noise ratio (CNR), CSO, and CTB were still degraded by increasing either RF output power level or the channel loading. Thus, some linearization techniques were proposed to extend the channel capacity. The predistortion approach is the simplest and the lowest cost one among the techniques. This paper describes a distortion compensation method with an electrical ¡§branch¡¨ circuit configuration, which is designed to reduce the nonlinear distortion induced by the laser diode. In this architecture, we utilize the method of impedance non-matching and the reflection of signals. According to the experiment results, we have found that before predistortion compensation, CNR / CSO / CTB are 51.6 dB / 62 dBc / 70 dBc, respectively. After compensation, CNR / CSO / CTB are 51.5 dB / 70 dBc / 71 dBc, respectively. Comparing with and without the distortion compensation, we found that CSO has an improvement with 8 dB, which reveals that the predistorion circuit improves the linearity of laser obviously. This study may give a guideline of predistortion technique and help to design optical transmitter.
|
20 |
The Roles of the Voa Subunit of the Vacuolar H+-ATPase in Dense-core Vesicle Acidification, Transmitter Uptake and StorageSaw, Ner Mu Nar 20 December 2011 (has links)
The Vo sector of the vacuolar H+-ATPase is a multi-subunit complex that forms a proteolipid pore. The largest subunit in this complex is the a subunit which has four isoforms (a1-a4). The isoform(s) critical for secretory vesicle acidification has yet to be identified. Using a cell line derived from rat pheochromocytoma in which Voa1 and/or Voa2 had been down-regulated this study revealed that Voa1, and to a lesser extent, Voa2 are critical for acidifying dense-core vesicles (DCVs). The acidification defects resulting from down-regulation of Voa1 and Voa1/ Voa2 were suppressed by the expression of knockdown-resistant Voa1. Defects in DCV acidification resulted in reductions in their transmitter uptake and storage. Lastly, Ca2+-dependent peptide secretion appeared normal in Voa1 and Voa1/ Voa2 knockdown cells. . This study demonstrated that Voa1 and Voa2 cooperatively regulate dense-core vesicle acidification as well as transmitter uptake/storage, while they may not be critical for dense-core vesicle exocytosis.
|
Page generated in 0.0868 seconds