• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 29
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 81
  • 76
  • 19
  • 19
  • 17
  • 16
  • 12
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Contribution de l'albumen au développement de la graine chez Medicago truncatula : caractérisation d'un facteur de transcription de type DOF exprimé dans l'albumen chalazal / Endosperm cintribution to Medicago truncatula seed development : characterization of a DOF transcription factor expressed in chalazal endosperm

Noguero, Mélanie 23 May 2014 (has links)
Dans un contexte actuel qui tend vers une réduction d’intrants dans les systèmes de culture et une relance de la production de protéines végétales pour réduire la dépendance alimentaire de la France, la culture des légumineuses constitue une alternative. Les légumineuses à graines offrent une source riche en protéines pour l’alimentation animale et humaine. Au sein de l'UMR1347 Agroécologie, le pôle "déterminismes Génétiques et Environnementaux de l’Adaptation des Plantes à des Systèmes de culture Innovants" (GEAPSI) étudie via une approche multidisciplinaire (génétique, écophysiologie, physiologie moléculaire) l’adaptation des espèces végétales, et notamment des légumineuses aux contraintes environnementales. Ces travaux de thèse ont été réalisés au sein de l'équipe "Étude des Mécanismes Moléculaires" qui s'intéresse plus particulièrement à des critères de qualité de la graine (teneur en protéine, taille de graine) et au déterminisme génétique de ces caractères chez la plante modèle Medicago truncatula en vue d'un transfert de connaissances vers l'espèce cible Pisum sativum. Chez les légumineuses, la taille de la graine est déterminée par la capacité de l’embryon à se diviser lors de l’embryogenèse et à accumuler des réserves lors du remplissage. Aux stades précoces du développement, l’assimilation de nutriments est réalisée majoritairement par les tissus qui entourent l’embryon: l’albumen et le tégument. Les recherches menées visent à évaluer la contribution de l’albumen dans le développement de la graine chez M. truncatula. Nous avons révélé plusieurs gènes DOF (DNA-binding with One zinc Finger) comme étant exprimé dans ce tissu. Ils appartiennent à une large famille de facteurs de transcription impliqués dans de nombreux processus biologiques mais dont les rôles restent à préciser. Un de ces gènes, nommé DASH pour Dof Affecting Seed embryogenesis and Hormone metabolism, est exprimé préférentiellement dans l’albumen lors de l’embryogenèse. Des mutants TILLING et Tnt-1 isolés pour ce facteur de transcription sont affectés dans le développement de la graine (avortement à environ 10 jap). La cytologie du développement aux stades précoces (6 à 10 jap) a révélé que l’expression de ce gène dans l’albumen est requise pour un développement normal de l’embryon, démontrant le rôle de l’albumen dans le contrôle de l’embryogenèse chez les légumineuses. Une étude comparative du transcriptome des gousses de dash vs sauvage a permis d’émettre des hypothèses quant à la fonction du gène DASH. Une dérégulation du métabolisme hormonal, en particulier de l’auxine, a été mise en évidence et plusieurs gènes cibles potentiels de ce facteur de transcription ont été sélectionnés. Une comparaison du transcriptome des trois tissus de la graine à 12 jap a été réalisée chez la lignée sauvage de référence (Jemalong, A17). Elle a permis de préciser la localisation tissulaire de ces gènes cibles putatifs, de mettre en évidence des voies métaboliques plus spécifiques de l’albumen et de proposer des hypothèses quant à la fonction de ce tissu dans le développement de la graine. / In the current context, which necessitates a reduction in inputs in crop systems and boosting of production of plant proteins to reduce France’s dependency on feed imports,, growing legumes represents an alternative. Grain legumes are major sources of proteins for animal and human nutrition. In the UMR1347 Agroécologie, the objectives of the study group "déterminismes Génétiques et Environnementaux de l’Adaptation des Plantes à des Systèmes de culture Innovants" (GEAPSI) are to promote legume cultivation and adaptation to environmental stresses, via multidisciplinary approaches (genetics, ecophysiology, molecular physiology). This thesis project was carried out in the "Étude des Mécanismes Moléculaires" team, particularly interested in seed quality traits such as protein content or seed size and identification of genes implicated in variations of these trait s. Experiments were performed using Medicago truncatula as a model species for legumes with a view to transferring the information to the target crop species Pisum sativum.Legume seed size is determined by the embryo’s capacity to divide during embryogenesis and to accumulate reserves during seed filling. At early developmental stages, nutrient assimilation occurs predominantly in embryo-surrounding tissues: the endosperm and seed coat. This thesis project aims to evaluate the endosperm contribution to seed development in M. truncatula. We have shown several DOF (DNA-binding One Zinc Finger) genes to be expressed in this tissue. They belong to a large family of transcription factors implicated in numerous biological processes, but whose role remain to be elucidated. One of these genes, termed DASH for Dof Affecting Seed embryogenesis and Hormone metabolism, is expressed preferentially in the endosperm during embryogenesis. TILLING and TnT1 mutants isolated for this transcription factor are affected in seed development (abortion at 10 DAP). The cytology of development at early stages (6 to 10 DAP) revealed that the expression of this gene in the endosperm is required for the normal development of the embryo, demonstrating the role of the endosperm in the control of embryogenesis in legumes. A comparative transcriptomics study of dash vs wild-type pods allowed us to suggest hypothesis about the function of the DASH gene. Evidence for a deregulation of hormone metabolism, in particular for auxin, was obtained, and several potential target genes of this transcription factor were selected. A comparison of the transcriptome of the three tissues of the seed at 12 DAP was carried out for the reference wild-type line (Jemalong A17). This allowed the tissue localization of the target genes, to reveal metabolic pathways preferentially expressed in the endosperm, and to propose hypotheses about the role of this tissue during seed development.
32

Effet de la nutrition azotée sur la résistance de la légumineuse Medicago truncatula à Aphanomyces euteiches / Effect of nitrogen nutrition on Medicago truncatula resistance against Aphanomyces euteiches

Thalineau, Elise 09 December 2016 (has links)
L’azote (N) est un facteur majeur limitant la croissance des plantes. Sa disponibilité peut également avoir un impact sur la résistance des plantes aux pathogènes en régulant leur immunité. Afin de mieux comprendre les liens entre la nutrition azotée et les défenses de la plante, nous avons analysé l’impact de la disponibilité en N sur la résistance de Medicago truncatula à un pathogène racinaire, Aphanomyces euteiches, en prenant en compte la variabilité génétique de la plante. Cet oomycète est considéré comme un des facteurs limitant le plus la production des légumineuses. Deux conditions de nutrition azotée, non limitante ou carencée en N, et dix génotypes de M. truncatula ont été testés in vitro. Les résultats ont montré que la résistance est modulée par les conditions nutritionnelles, dépendament du génotype. Les analyses d’expression de gènes impliqués dans le métabolisme azoté et dans les réponses de défense ainsi que la quantification des teneurs en acides aminés et des composés métaboliques secondaires ont montré des réponses différentes selon les génotypes et la condition nutritive. Elles ont souligné en particulier le rôle potentiellement important de la glutamine dans ce pathosystème. De plus, nous avons mis en évidence l’importance de l’homéostasie du monoxyde d’azote (NO) dans la résistance de M. truncatula à A. euteiches et que la disponibilité en azote impactait l’homéostasie du NO en affectant les niveaux de S-nitrosothiols et l’activité de la S-nitrosoglutathion réductase dans les racines. Ces résultats soulignent l’importance du métabolisme azoté et de son interaction avec le génotype de la plante dans les réactions de défense chez M. truncatula. / Nitrogen (N) is a major limiting factor for plant growth. N availability can also impact plant resistance to pathogens by regulating plant immunity. To better understand the links between N nutrition and plant defense, we analyzed the impact of N availability of plant on Medicago truncatula resistance to the root pathogen, Aphanomyces euteiches, taking into account plant genetic variability. This oomycete is considered as the most limiting factor for legume production. Two conditions of N nutrition, non-limiting or deprived in N, and ten plant genotypes were tested in vitro. The results showed that the resistance is modulated by nutritional conditions, depending on plant genotype. Analysis of the expression of genes involved in N metabolism and defense and quantification of different amino-acids contents and secondary metabolic compounds showed different responses of the genotypes and highlighted a potential role of glutamine in this pathosystem. Furthermore, our work underlined the importance of nitric oxide (NO) homeostasis for M. truncatula resistance to A. euteiches and that N availability impacts NO homeostasis by affecting S-nitrosothiol levels and S-nitrosoglutathione reductase activity in roots. These studies highlight, therefore, the importance of N metabolism and its interaction with plant genotype in defense responses in M. truncatula.
33

Ploidy-dependent changes in the epigenome of symbiotic cells correlate with specific patterns of gene expression / Des changements ploïdie-dépendant dans l’épigénome de cellules symbiotiques sont corrélés avec des profils spécifiques d’expression génique

Nagymihály, Marianna 15 November 2017 (has links)
Les légumineuses peuvent interagir avec les bactéries du sol de la famille des Rhizobiaceae. Cette interaction aboutit à la formation d'un organe spécialisé appelé nodosité. Au sein des cellules symbiotiques des nodosités, les rhizobia sont capables de fixer l'azote atmosphérique et de la convertir en ammoniac, qui est une source d'azote assimilable par les plantes. Chez la Légumineuse Medicago truncatula, les cellules symbiotiques produisent une large famille de peptides riches en cystéines appelées (NCRs) spécifiquement exprimés dans les nodosités. Ces NCRs induisent la différenciation des bactéroïdes qui se traduit par un allongement cellulaire couplé à une forte endoréplication du génome (les bactéroïdes deviennent polyploïdes) contribuant ainsi à une augmentation importante de la taille des cellules, ainsi qu’une perméabilité membranaire accrue et une perte de toute capacité reproductrice. Les peptides NCRs ressemblent à des défensines, des peptides antimicrobiens, acteurs clés de l’immunité innée. L'analyse de l'expression de 334 gènes NCR dans 267 différentes conditions expérimentales en utilisant la base de données MtGEA (Medicago truncatula Gene Expression Atlas) a révélé que l'ensemble des gènes NCR testés (sauf quatre) n'est exprimé que dans les nodosités, ils ne sont pas exprimés dans d’autres organes de la plante, ni lors d’une infection par des agents pathogènes. De plus l’expression des NCRs n’est induite en réponse à aucune interaction biotique ou abiotique testée ou à des facteurs Nod. Les gènes NCR sont activés en vagues successives au cours de l’organogenèse nodulaire et ce profil temporel est en corrélation avec une localisation spatiale spécifique de leurs transcrit de la zone apicale à la partie proximale de nodosités. En outre, nous avons montré que les NCRs ne sont pas induites pendant la sénescence des nodules. Ces analyses expérimentales ensemble avec des calculs d’entropie de Shannon, une métric pour la spécificité d’expression, montrent que les gènes NCR sont parmi les gènes les plus fortement et le plus spécifiquement exprimés chez M. truncatula. Ainsi, l'expression des NCRs est soumise à une régulation extrêmement stricte et ils sont activés exclusivement pendant l’organogenèse et au cours du développement nodulaire dans les cellules symbiotiques polyploïdes. Cette analyse a suggéré l'implication de la régulation épigénétique des gènes NCR. La formation des cellules symbiotiques s'exerce par une endoreplication et est associée à une reprogrammation transcriptionnelle. En utilisant le tri par cytométrie en flux des noyaux, en fonction de leur contenu en ADN, nous avons montré que les vagues transcriptionnelles sont en correlation avec les niveaux croissants de ploïdie et resultent des modifications épigénétiques durant les cycles d’endoréplication. Nous avons étudié la méthylation de l'ADN génomique et l'accessibilité à la chromatine, ainsi que la présence des marqueurs répresseurs (H3K27me3) ou activateurs transcriptionnels (H3K9ac) sur des gènes spécifiques des nodosités. La méthylation différentielle de l'ADN n'a été trouvée que dans un petit sous-ensemble de gènes symbiotiques spécifiques aux nodosités. Néanmoins, plus que la moitié des gènes NCR était différentiellement méthyles. D'autre part, l'expression des gènes était corrélée avec la décondensation de la chromatine (ouverture), un enrichissement du marqueur H3K9ac et une diminution du marqueur H3K27me3. Nos résultats suggèrent que l’endoréplication, pendant la différenciation cellulaire dans les nodosités, fasse partie des mécanismes qui lèvent l’inactivation transcriptionnelle des gènes spécifiques des nodosités, ceci résultant de modifications des codes épigénétiques au niveau de la chromatine. / Legume plants are able to interact with soil bacteria from the Rhizobiaceae family. This interaction leads to the development of a specialized organ called root nodule. Inside the symbiotic nodule cells, rhizobia are capable to fix atmospheric nitrogen and convert it to ammonia, which is a usable nitrogen source for the plant. In the legume Medicago truncatula the symbiotic cells produce high amounts of Nodule-Specific Cysteine-Rich (NCR) peptides which induce differentiation of the rhizobia into enlarged, polyploid and non-cultivable bacterial cells. NCRs are similar to innate immunity antimicrobial peptides. The NCR gene family is extremely large in Medicago with about 600 genes. The expression analysis of 334 NCR genes in 267 different experimental conditions using the Medicago truncatula Gene Expression Atlas (MtGEA) revealed that all the NCR genes except five are exclusively expressed in nodules. No NCR expression is induced in any other plant organ or in response to biotic, abiotic stress tested or to Nod factors. The NCR genes are activated in consecutive waves during nodule organogenesis, which correlated with a specific spatial localization of their transcripts from the apical to the proximal nodule zones. Moreover, we showed that NCRs are not induced during nodule senescence. According to their Shannon entropy, a metric for tissue specificity, NCR genes are among the most specifically and highest expressed genes in M. truncatula. Thus, NCR gene expression is subject to an extreme tight regulation since they are only activated during nodule organogenesis in the polyploid symbiotic cells. This analysis suggested the involvement of epigenetic regulation of the NCR genes. The formation of the symbiotic cells is driven by endoreduplication and is associated with transcriptional reprogramming. Using sorted nodule nuclei according to their DNA content, we demonstrated that the transcriptional waves correlate with growing ploidy levels and investigated how the epigenome changes during endoreduplication cycles. We studied genome-wide DNA methylation and chromatin accessibility as well as the presence of repressive H3K27me3 and activating H3K9ac histone tail modifications on selected genes. Differential DNA methylation was found only in a small subset of symbiotic nodule-specific genes, including over half of the NCR genes, while in most genes DNA methylation was unaffected by the ploidy levels and was independent of the genes’ active or repressed state. On the other hand, expression of these genes correlated with ploidy-dependent opening of the chromatin and in a subset of tested genes with reduced H3K27me3 levels combined with enhanced H3K9ac levels. Our results suggest that endoreduplication-dependent epigenetic changes contribute to transcriptional reprogramming in differentiation of symbiotic cells.
34

Map-based Cloning of an Anthracnose Resistance Gene in <i>Medicago truncatula</i>

Yang, Shengming 01 January 2008 (has links)
Anthracnose, caused by the fungal pathogen Colletotrichum trifolii, is one of the most destructive diseases of alfalfa worldwide. Cloning and characterization of the host resistance (R) genes against the pathogen will improve our knowledge of molecular mechanisms underlying host resistance and facilitate the development of resistant alfalfa cultivars. However, the intractable genetic system of cultivated alfalfa, owing to its tetrasomic inheritance and outcrossing nature, limits the ability to carry out genetic analysis in alfalfa. Nonetheless, the model legume Medicago truncatula, a close relative of alfalfa, provides a surrogate for cloning the counterparts of many agronomically important genes in alfalfa. In this study, we used genetic map-based approach to clone RCT1, a host resistance gene against C. trifolii race 1, in M. truncatula. The RCT1 locus was delimited within a physical interval spanning ~200 kilo-bases located on the top of M. truncatula linkage group 4. Complementation tests of three candidate genes on the susceptible alfalfa clones revealed that RCT1 is a member of the Toll-interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NBS-LRR) class of plant R genes and confers broad spectrum anthracnose resistance. Thus, RCT1 offers a novel resource to develop anthracnose-resistant alfalfa cultivars. Furthermore, the cloning of RCT1 also makes a significant contribution to our understanding of host resistance against the fungal genus Colletotrichum.
35

Map-based cloning of the NIP gene in model legume Medicago truncatula.

Morris, Viktoriya 05 1900 (has links)
Large amounts of industrial fertilizers are used to maximize crop yields. Unfortunately, they are not completely consumed by plants; consequently, this leads to soil pollution and negative effects on aquatic systems. An alternative to industrial fertilizers can be found in legume plants that provide a nitrogen source that is not harmful for the environment. Legume plants, through their symbiosis with soil bacteria called rhizobia, are able to reduce atmospheric nitrogen into ammonia, a biological nitrogen source. Establishment of the symbiosis requires communication on the molecular level between the two symbionts, which leads to changes on the cellular level and ultimately results in nitrogen-fixing nodule development. Inside the nodules hypoxic environment, the bacterial enzyme nitrogenase reduces atmospheric nitrogen to ammonia. Medicago truncatula is the model legume plant that is used to study symbiosis with mycorrhiza and with the bacteria Sinorhizobium meliloti. The focus of this work is the M. truncatula nodulation mutant nip (numerous infections and polyphenolics). The NIP gene plays a role in the formation and differentiation of nodules, and development of lateral roots. Studying this mutant will contribute knowledge to understanding the plant response to infection and how the invasion by rhizobia is regulated. Previous genetic mapping placed NIP at the top of linkage group 1 of the M. truncatula genome. A NIP mapping population was established with the purpose of performing fine mapping in the region containing NIP. DNA from two M. truncatula ecotypes A17 and A20 can be distinguished through polymorphisms. Positional mapping of the NIP gene is based on the A17/A20 genetic map of M. truncatula. The NIP mapping population of 2277 plants was scored for their nodulation phenotype and genotyped with flanking molecular genetic markers 146o17 and 23c16d, which are located ~1.5 cM apart and on either side of NIP. This resulted in the identification of 170 recombinant plants, These plants' DNAs were tested further with different available genetic markers located in the region of interest, to narrow the genetic interval that contains the NIP gene. Segregation data from genotyping analysis of recombinant plants placed NIP in the region between 4L4 and 807 genetic markers.
36

The metabolism of nitrogen assimilation in Medicago truncatula : a quest for sensors and regulators

Leitão, José Nuno de Araújo January 2012 (has links)
Trabalho de investigação desenvolvido no Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, na Faculdade de Engenharia da Universidade do Porto e no Instituto de Biologia Molecular e Celular da Universidade do Porto / Tese de mestrado integrado. Bioengenharia - Ramo de Biotecnologia Molecular. Faculdade de Engenharia. Universidade do Porto. 2012
37

Análisis del traductoma en etapas tempranas de la simbiosis fijadora de nitrógeno entre Medicago truncatula y Sinorhizobium meliloti

Reynoso, Mauricio 28 August 2013 (has links)
La capacidad de las leguminosas de establecer una asociación simbiotica con bacterias de suelo es de fundamental importancia para la incorporación de nitrógeno a los ecosistemas, particularmente en sistemas agronómicos. En el presente trabajo de tesis se estudió la dinámica de la asociación de transcriptos (mRNAs) y miRNAs a complejos traduccionales durante las etapas tempranas de la simbiosis. Para ello, inicialmente, se puso a punto de la técnica de purificación por afinidad de ribosomas y polisomas (TRAP) en Medicago truncatula. Se cuantificó la variación de los niveles de asociación a polisomas de quince mRNAs en respuesta a la inoculación con su simbionte Sinorhizobium meliloti. Se identificó un grupo de genes, cuyos mRNAs no varían significativamente a nivel de abundancia celular, pero que se regulan positivamente a nivel de su asociación a polisomas en respuesta al rizobio. Este grupo incluyó genes que codifican receptores de tipo quinasas requeridos para la infección bacteriana o la organogénesis del nódulo y factores de transcripción de la familia GRAS y NF-Y. Posteriormente, se evaluaron los niveles de asociación a polisomas de los mRNAs seleccionados en los tejidos específicos de la raíz involucrados en la formación de nódulos: epidermis, córtex y floema. Este análisis permitió identificar mRNAs que se asocian diferencialmente a polisomas en los distintos tipos celulares durante las etapas tempranas de la simbiosis. Por otro lado, se evaluó la presencia de pequeños RNAs (sRNAs) en los complejos traduccionales purificados mediante TRAP. Los sRNAs seleccionados, incluyendo miRNAs de 21 y 22 nts y tasiRNAs, se encontraron asociados a complejos traduccionales. En particular, los niveles de miR169 presentes en polisomas disminuyeron significativamente en respuesta a la inoculación. Esta dismunución se vió acompañada de un incremento en la asociación a polisomas de su gen blanco, NF-YA1, y de los niveles de la proteína en las raíces inoculadas. Estos resultados indican que tanto los mRNAs como los miRNAs estarían sometidos a un reclutamiento diferencial a polisomas y expone la importancia de la traducción selectiva durante la simbiosis. La extensión de la técnica TRAP a M. truncatula abre la posibilidad de profundizar este nivel de regulación tanto a nivel de raíz completa como de tipos celulares específicos en asociaciones simbióticas como la nodulación y la micorrización arbuscular. El presente trabajo de tesis contribuye a sustentar la relevancia de los niveles de regulación post-transcripcional en los cambios de la expresión génica que ocurren durante el establecimiento de una asociación simbiótica de importancia ecológica y agronómica.
38

Why are the symbioses between some genotypes of Sinorhizobium and Medicago suboptimal for N2 fixation?

J.Terpolilli@murdoch.edu.au, Jason Terpolilli January 2009 (has links)
The conversion of atmospheric dinitrogen (N2) into plant available nitrogen (N), by legumes and their prokaryotic microsymbionts, is an integral component of sustainable farming. A key constraint to increasing the amount of N2 fixed in agricultural systems is the prevalence of symbioses which fix little or no N. The biotic factors leading to this suboptimal N2 fixation have not been extensively analysed. Using the widely studied and cultivated perennial legume Medicago sativa and the model indeterminate annual legume Medicago truncatula with the sequenced bacterial microsymbiont Sinorhizobium meliloti 1021 (Sm1021) as a basis, the work presented in this thesis examined the effectiveness of N2 fixation in these associations and in other comparable systems and investigated factors which lead to the establishment of suboptimally effective symbioses. The ability of Sm1021, S. medicae WSM419 and the uncharacterised Sinorhizobium sp. WSM1022 to fix N with M. truncatula A17, M. sativa cv. Sceptre and a range of other Medicago spp. was evaluated in N-limited conditions. As measured by plant shoot dry weights and N-content, Sm1021 was partially effective with M. truncatula A17 whereas WSM1022 and WSM419 were both effective with this host in comparison to nitrogen-fed (N-fed) control plants. In contrast, Sm1021 and WSM1022 were effective with M. sativa while WSM419 was only partially effective. Nodules induced by Sm1021 on M. truncatula A17 were more numerous, paler, smaller in size and more widely distributed over the entire root system than in the two effective symbioses with this host. On the contrary, nodule number, size and distribution did not differ between these three strains on M. sativa. WSM1022 was effective on M. littoralis, M. tornata and two other cultivars of M. truncatula (Jemalong and Caliph) but Sm1021 was only partially effective on these hosts. These data indicate that the model indeterminate legume symbiosis between M. truncatula and Sm1021 is not optimally matched for N2 fixation and that Sm1021 possesses broader symbiotic deficiencies. In addition, the interaction of WSM1022 with M. polymorpha (small white nodules but does not fix N), M. murex (does not nodulate), M. arabica (partially effective N2 fixation) and M. sphaeorcarpus (partially effective N2 fixation), and the sequence of the 16S rDNA, are all consistent with this isolate belonging to the species S. meliloti. The colony morphology of TY, half-LA and YMA agar plate cultures of Sm1021, WSM419 and WSM1022 suggested differences in EPS profiles between these strains. Sm1021 is very dry, compared to the mucoid WSM419 and extremely mucoid WSM1022. Sm1021 is known to carry an insertion in expR rendering the gene non-functional and resulting in the dry colony phenotype. WSM419 has an intact copy of expR, while the expR status of WSM1022 is not known. Rm8530, a spontaneous mucoid derivative of Sm1021 with an intact expR, was significantly less effective with M. truncatula than Sm1021, but there was no difference in effectiveness between these strains on M. sativa. The effectiveness of Sm1021, when complemented with a plasmid-borne copy of expR from Rm8530, was significantly reduced on M. truncatula but not M. sativa, implicating a functional expR as being the cause of reduced N2 fixation observed with Rm8530 on M. truncatula. ExpR could reduce the effectiveness of Rm8530 by acting as a negative regulator of genes essential for symbiosis with M. truncatula, or by altering the quantity or structure of succinoglycan and/or galactoglucan produced. These data support the emerging view of ExpR being a central regulator of numerous cellular processes. The timing of nodulation between Sm1021 and WSM419 on M. truncatula and M. sativa was investigated. Compared to the other symbioses analysed, the appearance of nodule initials and nodules was delayed when M. truncatula was inoculated with Sm1021 by 3 and 4 days, respectively. To explore whether events during early symbiotic signalling exchange could account for these observed delays, leading to the establishment of a suboptimal N2-fixing symbiosis, a novel system was developed to compare the response of the Sm1021 transcriptome to roots and root exudates of M. truncatula A17 and M. sativa cv. Sceptre. This system consisted of a sealed 1 L polycarbonate chamber containing a stainless steel tripod with a wire mesh platform on which surface-sterilised seeds could be placed and allowed to germinate through the mesh, into a hydroponic medium below. After germination, Sm1021 cells were inoculated into the hydroponic solution, exposed to the roots and root exudates for 16 h, harvested and their RNA extracted. Comparison of Sm1021 mRNA from systems exposed to M. truncatula or M. sativa revealed marked differences in gene expression between the two. Compared to the no plant control, when M. sativa was the host plant, 23 up-regulated and 40 down-regulated Sm1021 genes were detected, while 28 up-regulated and 45 down-regulated genes were detected with M. truncatula as the host. Of these, 12 were up-regulated and 28 were down-regulated independent of whether M. truncatula or M. sativa was the host. Genes expressed differently when exposed to either M. truncatula or M. sativa included nex18, exoK, rpoE1 and a number of other genes coding for either hypothetical proteins or proteins with putative functions including electron transporters and ABC transporters. Characterisation of these differentially expressed genes along with a better understanding of the composition of M. truncatula root exudates would yield a clearer insight into the contribution of early signal exchange to N2 fixation. Comparison of the regulation of nodule number between Sm1021 and WSM419 on M. truncatula and M. sativa revealed nodule initials at 42 days post-inoculation (dpi) on M. truncatula inoculated with Sm1021. In contrast, no new nodule initials were present 21 dpi on any of the other interactions examined. Moreover, analysis of nodule sections revealed that the number of infected cells in M. truncatula-Sm1021 nodules was less than for comparable symbioses. These data suggest that nodule number is not tightly controlled in the M. truncatula-Sm1021 association, probably due to N2 fixation being insufficient to trigger the down regulation of nodulation. Quantification of N2 fixation activity in this and other more effective symbioses is required. The poor effectiveness of the M. truncatula-Sm1021 symbiosis makes these organisms unsuitable as the model indeterminate interaction and the implications for legume research are discussed. The recently sequenced WSM419 strain, revealed here to fix N2 more effectively with M. truncatula than Sm1021, may be a better model microsymbiont, although WSM419 is only partially effective for N2 fixation with M. sativa. The sequencing of S. meliloti WSM1022, a highly effective strain with both M. truncatula and M. sativa, would provide a valuable resource in indentifying factors which preclude the establishment of effective symbioses.
39

Métabolisme et transport du soufre dans les graines des espèces modèles M. truncatula et Arabidopsis : étude fonctionnelle des transporteurs de sulfate / Sulfur metabolism and transport in seeds of the model species M. truncatula and Arabidopsis : functional study of sulfate transporters

Zuber, Hélène 10 February 2010 (has links)
Le soufre est un macronutriment essentiel contribuant à l’élaboration du rendement et de la qualité des graines. Chez les espèces modèles M. truncatula et Arabidopsis, les gènes associés à la réduction du sulfate et à la biosynthèse des acides aminés soufrés sont exprimés dans l’embryon lors du remplissage de la graine, soulignant l’importance du transport de sulfate jusqu’à ce tissu. Chez M. truncatula, trois gènes codant des transporteurs de sulfate putatifs, MtSultr3;5, MtSultr2;2, et MtSultr4;1, sont fortement exprimés dans la graine. Le criblage des populations de mutants disponibles a permis d’identifier des mutants Tnt1 et EMS pour ces gènes. Cette étude a parallèlement été élargie à la caractérisation de mutants ADN-T d’Arabidopsis pour les cinq transporteurs de sulfate du groupe 3 (de la membrane plasmique) et pour SULTR4;1 (vacuolaire), dont les gènes s’expriment dans la graine en développement. Un rôle des transporteurs du groupe 3 dans les échanges de sulfate à l’intérieur de la graine a été mis en évidence. En particulier, l’analyse du protéome des graines de ces mutants a révélé un défaut d’accumulation des formes processées des protéines de réserve au sein de l’embryon (sultr3;5) et des modulations spécifiques de la composition protéique suggérant l’utilisation de sources alternatives de soufre (sultr3;4). Enfin, les résultats contrastés obtenus pour le mutant sultr4;1 suggèrent un rôle de l’efflux de sulfate des vacuoles pour le maintien de l’homéostasie redox lors du développement de la graine. / Sulfur is an essential macronutrient contributing to crop yield and seed quality. In the model species M. truncatula and Arabidopsis, genes involved in sulfate reduction and sulfur amino acid biosynthesis are expressed in the embryo during seed filling, underlying the importance of sulfate transport until this tissue. In M. truncatula, three genes encoding putative sulfate transporters, MtSultr3;5, MtSultr2;2, et MtSultr4;1, are strongly expressed in seeds. By screening mutant collections, we identified Tnt1 and EMS mutants for these genes. In parallel, this study was extended to the characterization of Arabidopsis T-DNA mutants for the five sulfate transporters belonging to group 3 (plasmalemma-located) and SULTR4;1 (vacuolar), whose genes are expressed in developing seeds. A role of the group 3 sulfate transporters in sulfate exchange between seed tissue was revealed. In particular, seed proteome analysis for these mutants revealed a reduced accumulation of storage protein processing within the embryo (sultr3;5), and specific modulations of protein composition suggesting the utilization of alternative sulfur sources (sultr3;4). Finally, contrasted results obtained for the sultr4;1 mutant suggest a role of sulfate efflux from vacuole for maintaining redox homeostasis during seed development.
40

Physical Map between Marker 8O7 and 146O17 on the Medicago truncatula Linkage Group 1 that Contains the NIP Gene

Lee, Yi-Ching 12 1900 (has links)
The Medicago truncatula NIP gene is located on M. truncatula Linkage Group 1. Informative recombinants showed crossovers that localize the NIP gene between markers 146O17 and 23C16D. Marker 164N9 co-segregates with the NIP gene, and the location of marker 164N9 is between markers 146O17 and 23C16D. Based upon data from the Medicago genome sequencing project, a subset of the model legume Medicago truncatula bacterial artificial chromosomes (BACs) were used to create a physical map on the DNA in this genetic internal. BACs near the potential NIP gene location near marker 164N9 were identified, and used in experiments to predict the physical map by a BAC-by-BAC strategy. Using marker 164N9 as a center point, and chromosome walking outward, the physical map toward markers 146O17 and 23C16D was built. The chromosome walk consisted of a virtual walk, made with existing sequence of BACs from the Medicago genome project, hybridizations to filters containing BAC DNA, and PCR reactions to confirm that predicted overlapping BACs contained DNA that yielded similar PCR products. In addition, the primers which are made for physical mapping via PCR could be good genetic markers helpful in discovering the location of the NIP gene. As a result of efforts repotted here, gap in physical map between marker 164N9 and 146O17 was closed.

Page generated in 0.1158 seconds