Spelling suggestions: "subject:"trypsin""
11 |
Immobilisation de la trypsine sur un support de polyéthylène fonctionnalisé par voie plasmaGhasemi, Mahsa 28 September 2007 (has links) (PDF)
La technologie plasma basse pression est utilisée pour contrôler les modifications des propriétés physico-chimiques de surface des polymères, sans altérer les propriétés de coeur des matériaux. Nous avons utilisé cette technique pour activer des films de polyethylène (PE) dans afin d'immobiliser des biomolécules à leur surface. Différents types de plasma basse pression ont été mis en oeuvre afin d'incorporer des fonctions aminées, en particulier des amines primaires à la surface: plasma ammoniac, N2 + H2 et allylamine. Dans une deuxième étape, on a fait réagir le dialdéhyde glutarique (glutaraldéhyde) avec les fonctions amines primaires de la surface (formation de liaisons imines), afin qu'il joue le rôle de bras espaceur. Enfin, la dernière étape consiste en l'immobilisation covalente de la trypsine via la réaction de l'extrémité libre du bras avec les groupements amine primaire portés par l'enzyme (résidus lysine). Dans certaines expériences, la réduction des fonctions imine en amine secondaire a été effectuée à l'aide du cyanoborohydrure de sodium. L'analyse XPS a permis de caractériser chaque étape de fixation, de la surface traitée par plasma jusqu'à l'enzyme immobilisée. Différents protocoles de rinçage des échantillons ont été testés afin de s'assurer de la bonne immobilisation de l'enzyme. L'activité enzymatique a été mesurée en suivant les cinétiques de dégradation du substrat N-α-Benzoyl-L-Arginine Ethyl Ester (BAEE). On a pu ainsi mettre en évidence une activité enzymatique d'environ 0,08 U/cm2 sur les échantillons traités subissant l'étape de réduction, sans relargage d'enzyme pendant les essais. L'étude de la stabilité de l'activité au cours du temps et au cours d'essais répétitifs montre une activité significative pour le deuxième essai et une décroissance progressive jusqu'au 4ème, soit après une période d'environ 2 mois.
|
12 |
Développement d'un microréacteur à base d'enzyme protéolytique réticulée avec le glutaraldéhyde pour la cartographie peptidiqueNguyen, Quynh Vy January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
13 |
Droplet-based microfluidics for the genotype-phenotype mapping of model enzymes / Microfluidique en gouttelettes pour la cartographie génotype-phénotype d’enzymes modèlesChauvin, Dany 29 September 2017 (has links)
La relation qui lie la séquence d'une protéine à sa fonction nous échappe toujours en grande partie, pourtant elle est essentielle à la compréhension de l'évolution moléculaire.La microfluidique permet de remplacer les traditionnels tubes à essais par des micro-gouttelettes afin de tester séparément des mutants d'enzyme à des fréquences de l'ordre du kilohertz. Cette technique fournit un moyen de coupler le génotype et le produit de l'activité enzymatique (phénotype). Sélectionner et récupérer les gouttelettes sur demande et séquencer leur contenu permet d'effectuer la cartographie génotype-phénotype de millions de mutants d'enzymes en une seule expérience.Au cours de cette thèse, j'ai tout d'abord développé un système microfluidique basé sur l'expression de protéines in vitro afin de pouvoir réaliser la cartographie génotype-phénotype de Streptomyces griseus aminopeptidase (SGAP). Des gènes mutants de l'enzyme SGAP sont encapsulés (un par gouttelette au maximum) amplifiés, exprimés et testés contre un substrat fluorogénique. Des incompatibilités entre les étapes d'amplification, d'expression et d'essai enzymatique en gouttelettes obligent à réaliser chacune de ces étapes séparément et successivement, afin de diluer le produit de chaque réaction par l'électro-coalescence des gouttelettes. Je montre qu'un work-flow microfluidique dans lequel (i) les gènes sont encapsulés et amplifiés dans des gouttes de 0.2 pL, (ii) exprimés in vitro, (iii) testés contre un substrat fluorogenique dans des gouttelettes de 20 pL, permet de mesurer l'activité de variants de SGAP avec un contraste important. Afin d'optimiser l'essai enzymatique en gouttelettes de SGAP, j'ai aussi développé, en collaboration avec Dr. Johan Fenneteau (Laboratoire de Chimie Organique, ESPCI Paristech), un nouveau substrat fluorogénique basé sur une rhodamine hydrophile. Cette sonde est caractérisée par un échange limité de la rhodamine entre les gouttelettes.J'ai ensuite développé un work-flow microfluidique in vivo, pour Ratus norvegicus trypsin (la trypsine du rat), dans lequel les capacité de sécrétion de Bacillus subtilis sont utilisées afin de simplifier les expériences. Des cellules uniques de B. subtilis sont encapsulées dans des gouttelettes de 20 pL où elles sécrètent des mutants de la trypsine en protéine de fusion avec un rapporteur permettant de mesurer le niveau d'expression. Les mutants sont testés par électro-coalescence avec des gouttelettes de 2 pL contenant un substrat fluorogénique de la trypsine. En normalisant l'activité totale détectée par la fluorescence du rapporteur du niveau d'expression, l'efficacité catalytique peut être directement mesurée en gouttelettes. C'est la première fois qu'un système expérimental d'essai enzymatique haut-débit fournit l'opportunité de mesurer directement l’efficacité catalytique de mutants d'une enzyme à une fréquence de l'ordre du kilo Hertz. Une méthode afin de réaliser la mutagenèse saturée (tous les simples mutants) du gène de la trypsine du rat a aussi été développée. Combinée au séquençage nouvelle génération, la méthode microfluidique développée permettra de réaliser la première cartographie génotype-phénotype de tous les simples mutants de la trypsine du rat / The question of how sequence encodes proteins' function is essential to understand molecular evolution but still remains elusive.Droplet-based microfluidics allows to use micro-metric droplets as reaction vessels to separately assay enzyme variants at the kHz frequency. It also provides an elegant solution to couple the genotype with the product of the catalytic activity of enzymes. Sorting droplets on demand and sequencing their content enables to map the genotype of millions of enzyme variants to their phenotype in a single experiment.First, I developed a cell-free microfluidic work-flow to carry out genotype-phenotype mapping of Streptomyces griseus aminopeptidase (SGAP). Single enzyme variant genes are encapsulated and amplified in droplets, expressed, and assayed against a fluorogenic substrate. Incompatibilities between gene amplification, expression and assay reactions, constrain to execute each one of those steps successively and to dilute the product of each reaction by droplet electro-coalescence. I show that a work-flow in which (i) genes are encapsulated and amplified into 0.2 pL droplets, (ii) expressed using cell-free expression reagents in 2 pL droplets and (iii) assayed with a fluorogenic substrate in 20 pL droplets, allows to measure SGAP variants activity with high contrast. To optimize the SGAP droplet assay, I also developed in collaboration with Dr. Johan Fenneteau (Laboratory of Organic Chemistry, ESPCI Paristech), a hydrophilic rhodamine based substrate, characterized by limited exchange of the released fluorophore between droplets.Second, I developed an in vivo microfluidic work-flow on Ratus norvegicus trypsin (rat trypsin), in which Bacillus subtilis secretion abilities are used to simplify the microfluidic work-flow. Single B. subtilis cells are encapsulated in 20 pL droplets where they secrete trypsin variants as fusion proteins with a fluorescent expression-level reporter. The variants are assayed by droplet electro-coalescence with 2 pL droplets containing a trypsin fluorogenic substrate. Trypsin variants catalytic efficiency can be directly measured in droplets, by normalizing the total trypsin activity by the expression-level reporter fluorescence. This is the first time a high-throughput protein assay work-flow gives the opportunity to directly measure the catalytic efficiency of enzyme variants at the kHz frequency. A method to carry out saturated mutagenesis on the rat trypsin gene was also developed. Together with deep sequencing, the developed experimental work-flow will allow to perform the first quantitative genotype-phenotype mapping of all single point mutants of the rat trypsin protein
|
14 |
Fonction de la glycoprotéine Golgi apparatus protein 1 (GLG1) dans la différenciation des adipocytes et l'effet de la forme de type sauvage et la forme tronquée de GLG1 sur le métabolisme des lipidesKatbe, Alisar 08 1900 (has links)
Golgi apparatus protein 1 (GLG1) est une protéine transmembranaire de 160 kDa
qui interagit avec l’apolipoprotéine B100 (apoB100), le récepteur des lipoprotéines de
basse densité (LDLR) et la proprotein convertase subtilisin/kexin type 9 (PCSK9).
Cependant, son mécanisme d’action et sa régulation post-traductionnelle sont inconnus.
Des études ont montré que GLG1 subit deux clivages résultant en fragments solubles
secrétés de 150 kDa et 55 kDa. Dans cette étude, notre premier objectif est d’identifier les
enzymes responsables de la protéolyse de GLG1 ainsi que l’effet du clivage sur sa fonction
dans le métabolisme des lipides. De plus, les résultats de nos collaborateurs montrent que
les souris adultes déficientes en GLG1 ont un plus grand nombre d’adipocytes mais de
taille plus petite que les souris de type sauvage. Notre deuxième objectif est de mesurer la
variation de l’expression ainsi qu’identifier l’effet de GLG1 lors de la différentiation des
fibroblastes en adipocytes. Pour le premier objectif, les cellules HEK293T surexprimant
GLG1 ont été soit transfectées avec des convertases de proprotéines (PCSK) soit incubées
avec différents inhibiteurs d’enzymes. Les milieux et les lysats cellulaires ont été analysés
par immunobuvardage à la Western. Il n’y a pas eu de nouveaux fragments générés en
présence des PCSK. Cependant, en présence d’inhibiteurs des sérines protéases
apparentées à la trypsine soit AEBSF et Gabexate mesylate, il y a eu une réduction de la
formation du fragment de 55 kDa. Pour identifier la métalloprotéase responsable du clivage
de l’ectodomaine générant le fragment de 150 kDa, GLG1 a été transfectée avec les Tissue
Inhibitor of Metalloproteinase (TIMP 1-4). Nos résultats ont montré que TIMP3 empêche
la relâche de l’ectodomaine de GLG1 dans le milieu de culture. Finalement, nos analyses
de plasma de souris par immunobuvardage à la Western ont montré la présence des
fragments de 150 kDa et 55 kDa de GLG1 in vivo. Pour le deuxième objectif de l’étude,
les fibroblastes préadipocytaires de souris 3T3-L1 ont été différenciés en adipocytes. Des
lysats cellulaires et l’isolation d’ARN ont été effectués aux jours 0, 2, 4, 6, 8 et 10 de la
différenciation. Des immunobuvardages à la Western ainsi que des RT-qPCR ont été
réalisés pour analyser l’expression de GLG1 au cours de la différenciation. Nos résultats
ont montré que l’expression de GLG1 augmente durant la différenciation. Bref, nos
résultats démontrent que des enzymes trypsin-like clivent GLG1 et génèrent le fragment
de 55 kDa. L’inhibition du clivage de l’ectodomaine de GLG1 par TIMP3 suggère que les
ADAMs sont impliquées dans la relâche du fragment de 150 kDa. De plus, nous avons
montré que l’expression de GLG1 augmente au cours de la différenciation adipocytaire. / Golgi apparatus protein 1 (GLG1) is a 160 kDa transmembrane protein interacting
with apolipoprotein B100 (apoB100), low-density lipoprotein receptor (LDLR) and
proprotein convertase subtilisin/kexin type 9 (PCSK9). However, the protein’s posttranslational
regulation and mechanism of action are poorly understood. Previous studies
showed that GLG1 is cleaved resulting in two fragments of 150 kDa and 55 kDa secreted
at the cell surface and in the extracellular matrix. The first objective of this study is to
identify enzymes responsible for GLG1 proteolysis and the effect of cleavage on its
function in lipid metabolism. Furthermore, our collaborators showed that mice with GLG1
knockout have a higher number of adipocytes, but those cells are smaller in size compared
to those in wild type mice. Therefore, the second objective of the study is to measure the
variation of GLG1 expression during adipocytes differentiation and to identify the effects
of GLG1 knockout on adipocytes differentiation. For the first objective, HEK293T cells
overexpressing GLG1 were either transfected with basic amino acid-specific proprotein
convertases (PCSK) or treated with enzyme inhibitors. Media and cell lysates were
analyzed by Western blot. No new fragments were detected in media of PCSK-transfected
cells. Cell treatment with trypsin-like serine proteases inhibitors, AEBSF and Gabexate
mesylate, reduced the secretion of the 55 kDa fragment. To identify the metalloproteinase
responsible for GLG1 shedding, GLG1 was co-transfected with Tissue Inhibitors of
Metalloproteinase (TIMP1-4). Our results showed that TIMP3 inhibits shedding of the 150
kDa fragment. Finally, wild-type mouse plasma was analyzed by Western blot and showed
the presence of both fragments in vivo. For the second objective of the study, fibroblasts
3T3-L1 cells were differentiated into adipocytes and GLG1 mRNA and protein expression
were measured at day 0, 2, 4, 6, 8 and 10 by qPCR and Western Blot. Our results showed
that GLG1 expression increased during differentiation and a peak was observed at day 4.
To conclude, in the first objective of our study, our results showed that trypsin-like
enzymes cleave GLG1 and produce a 55 kDa fragment. Shedding of GLG1 is inhibited by
TIMP3, which suggests that ADAM10 or ADAM17 are involved in the release of the 150
kDa fragment. In addition, both 55 kDa and 150 kDa fragments were found in normal
mouse plasma supporting the relevance of our findings in vivo. In the second objective of
our study, GLG1 expression increased during adipocyte differentiation suggesting a role
in adipose tissue development and/or morphology. In conclusion, our study will help
elucidate how proteolysis of GLG1 impacts its role in the regulation of apoB and PCSK9
secretion and lipid metabolism and how can GLG1 expression affect adipocytes
differentiation.
|
Page generated in 0.0258 seconds