• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 19
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 92
  • 92
  • 26
  • 21
  • 20
  • 17
  • 16
  • 16
  • 15
  • 15
  • 15
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Numerical and Experimental Investigations of Design Parameters Defining Gas Turbine Nozzle Guide Vane Endwall Heat Transfer

Rubensdörffer, Frank G. January 2006 (has links)
The primary requirements for a modern industrial gas turbine consist of a continuous trend of an increasing efficiency combined with very low emissions in a robust, cost-effective manner. To fulfil these tasks a high turbine inlet temperature together with advanced dry low NOX combustion chambers are employed. These dry low NOX combustion chambers generate a rather flat temperature profile compared to previous generation gas turbines, which have a rather parabolic temperature profile before the nozzle guide vane. This means that the nozzle guide vane endwall heat load for modern gas turbines is much higher compared to previous generation gas turbines. Therefore the prediction of the nozzle guide vane flow field and endwall heat transfer is crucial for the engineering task of the design layout of the vane endwall cooling system. The present study is directed towards establishing new in-depth aerodynamic and endwall heat transfer knowledge for an advanced nozzle guide vane of a modern industrial gas turbine. To reach this objective the physical processes and effects which cause the different flow fields and the endwall heat transfer pattern in a baseline configuration, a combustion chamber variant, a heat shield variant without and with additional cooling air and a cavity variant without and with additional cooling air have been investigated. The variants, which differ from the simplified baseline configuration, apply design elements which are commonly used in real modern gas turbines. This research area is crucial for the nozzle guide vane endwall heat transfer, especially for the advanced design of the nozzle guide vane of a modern industrial gas turbine and has so far hardly been investigated in the open literature. For the experimental aerodynamic and endwall heat transfer research of the baseline configuration of the advanced nozzle guide vane geometry a new low pressure, low temperature test facility has been developed, designed and constructed, since no experimental heat transfer data exist in the open literature for this type of vane configuration. The new test rig consists of a linear cascade with the baseline configuration of the advanced nozzle guide vane geometry with four upscaled airfoils and three flow passages. For the aerodynamic tests the two middle airfoils and the hub and the tip endwall are instrumented with pressure taps to monitor the Mach number distribution. For the heat transfer tests the temperature distribution on the hub endwall is measured via thermography. The analysis of these measurements, including comparisons to research in the open literature shows that the new test rig generates accurate and reproducible results which give confidence that it is a reliable tool for the experimental aerodynamic and heat transfer research on the advanced nozzle guide vane of a modern industrial gas turbine. Previous own research work together with the numerical analysis performed in another part of the project as well as conclusions from a detailed literature study lead to the conclusion that advanced Navier-Stokes CFD tools with the v2-f turbulence model are most suitable for the calculation of the flow field and the endwall heat transfer of turbine vanes and blades. Therefore this numerical tool, validated against different vane and blade geometries and for different flow conditions, has been chosen for the numerical aerodynamic and endwall heat transfer research of the advanced nozzle guide vane of a modern industrial gas turbine. The evaluation of the numerical and experimental investigations of the baseline configuration of the advanced design of a nozzle guide vane shows the flow field of an advanced mid-loaded airfoil design with the features to reduce total airfoil losses. For the hub endwall of the baseline configuration of the advanced design of a nozzle guide vane the flow characteristics and heat transfer features of the classical vane endwall secondary flow model can be detected with a very weak intensity and geometric extension compared to the studies of less advanced vane geometries in the open literature. A detailed analysis of the numerical simulations and the experimental data showed very good qualitative and quantitative agreement for the three-dimensional flow field and the endwall heat transfer. These findings, together with the evaluations obtained from the open literature, lead to the conclusions that selected CFD software Fluent together with the applied v2-f turbulence model exhibits a high level of general applicability and is not tuned to a special vane or blade geometry. Therefore the CFD code Fluent with the v2-f turbulence model has been selected for the research of the influence of the several geometric variants of the baseline configuration on the flow field and the hub endwall heat transfer of the advanced nozzle guide vane of a modern industrial gas turbine. Most of the vane endwall heat transfer research in the open literature has been carried out only for baseline configurations of the flow path between combustion chamber and nozzle guide vane. Such a simplified geometry consists of a long, planar undisturbed approach length upstream of the nozzle guide vane. The design of real modern industrial gas turbines however requires often significant variations from this baseline configuration consisting of air-cooled heat shields and purged cavities between the combustion chamber and the nozzle guide vane. A detailed evaluation of the flow field and the endwall heat transfer shows major differences between the baseline and the heat shield configuration. The heat shield in front of the airfoil of the nozzle guide vane influences the secondary flow field and the endwall heat transfer pattern strongly. Additional cooling air, released under the heat shield has a distinctive influence as well. Also the cavity between the combustion chamber and the nozzle guide vane affects the secondary flow field and the endwall heat transfer pattern. Here the influence of additional cavity cooling air is more decisive. The results of the detailed studies of the geometric variants are applied to formulate guidelines for an optimized design of the flow path between the combustion chamber and the nozzle guide vane and the nozzle guide vane endwall cooling configuration of next-generation industrial gas turbines. / QC 20100917
82

Simulation numérique d'écoulements autour de corps non profilés par des modèles de turbulence hybrides et un schéma multirate / Numerical simulation of flows around bluff bodies with hybrid models and a multirate scheme

Itam, Emmanuelle 30 November 2017 (has links)
Ce travail est une contribution à la simulation numérique d'écoulements turbulents autour de corps non profilés. Après avoir précisé les ingrédients numériques et les modèles de turbulence utilisés dans nos simulations, nous présentons une étude sur l'évaluation des effets de la procédure dynamique des modèles de sous-maille dans un modèle VMS-LES et une approche hybride RANS/VMS-LES. Des problèmes d'écoulements autour d'un cylindre seul et en tandem sont considérés. Nous étudions ensuite le comportement de modèles de turbulence hybrides pour la simulation d'écoulements en régime sous-critique autour d'un cylindre circulaire. Le calcul de l'écoulement autour d'un cylindre de section rectangulaire par l'approche VMS-LES est aussi présenté. Enfin, dans une dernière partie, après avoir fait une revue des travaux importants sur les schémas d'avancement en temps multirate, nous proposons une nouvelle approche explicite multirate par agglomération de volumes finis que nous appliquons à des calculs d'écoulements turbulents complexes en utilisant un modèle de turbulence hybride. / This work is a contribution to the numerical simulation of turbulent flows around bluff bodies. After specifying the numerical ingredients and the turbulence models used in our simulations, we present a study on the impact of the dynamic sub-grid scale modeling in VMS-LES model and a RANS/VMS-LES hybrid turbulence approach. Simulations of flows around a cylinder and a tandem are performed. Next, we assess the behaviour of some hybrid turbulence models for the simulation of flows around a circular cylinder in the subcritical regime. The computation of the flow around a rectangular cylinder with the VMS-LES approach is also presented. At last, after a review of some important works on multirate time advancing schemes, we propose a new volume-agglomeration explicit multirate approach that is applied to the computation of complex turbulent flows by a hybrid turbulence model.
83

Kinetic Theory Based Numerical Schemes for Incompressible Flows

Ruhi, Ankit January 2016 (has links) (PDF)
Turbulence is an open and challenging problem for mathematical approaches, physical modeling and numerical simulations. Numerical solutions contribute significantly to the understand of the nature and effects of turbulence. The focus of this thesis is the development of appropriate numerical methods for the computer simulation of turbulent flows. Many of the existing approaches to turbulence utilize analogies from kinetic theory. Degond & Lemou (J. Math. Fluid Mech., 4, 257-284, 2002) derived a k-✏ type turbulence model completely from kinetic theoretic framework. In the first part of this thesis, a numerical method is developed for the computer simulation based on this model. The Boltzmann equation used in the model has an isotropic, relaxation collision operator. The relaxation time in the collision operator depends on the microscopic turbulent energy, making it difficult to construct an efficient numerical scheme. In order to achieve the desired numerical efficiency, an appropriate change of frame is applied. This introduces a stiff relaxation source term in the equations and the concept of asymptotic preserving schemes is then applied to tackle the stiffness. Some simple numerical tests are introduced to validate the new scheme. In the second part of this thesis, alternative approaches are sought for more efficient numerical techniques. The Lattice Boltzmann Relaxation Scheme (LBRS) is a novel method developed recently by Rohan Deshmukh and S.V. Raghuram Rao for simulating compressible flows. Two different approaches for the construction of implicit sub grid scale -like models as Implicit Large Eddy Simulation (ILES) methods, based on LBRS, are proposed and are tested for Burgers turbulence, or Burgulence. The test cases are solved over a largely varying Reynolds number, demonstrating the efficiency of this new ILES-LBRS approach. In the third part of the thesis, as an approach towards the extension of ILES-LBRS to incompressible flows, an artificial compressibility model of LBRS is proposed. The modified framework, LBRS-ACM is then tested for standard viscous incompressible flow test cases.
84

Vírová trubice / Vortex tube

Chýlek, Radomír January 2017 (has links)
The purpose of this diploma thesis was to find optimal operational parameters of Ranque–Hilsch vortex tube that would give the best results of temperature separation, and to create a numerical model of the device. Firstly, extensive research of current literature was done and analytical model of the tube was created. Then, the numerical model of the vortex tube was designed using Star-CCM+ software. Afterward, best fitting turbulence model was chosen to do the calculation and optimal geometrical parameters of the tube were obtained as a result of CFD simulation. Then, inlet nozzles for the tube were designed and manufactured. Experimental evaluation of the vortex tube and description of its optimal settings form a substantial part of the project. Finally, the data obtained from the experiment were compared to the results of numerical analysis and conclusions were deduced.
85

Numerical study of a continuous casting process with electromagnetic brake

Miao, Xincheng 28 May 2014 (has links)
This dissertation investigates the effect of electromagnetic braking and gas injection on the fluid flow in a continuous casting slab mold numerically and makes verifications on basis of a small Liquid Metal Model for Continuous Casting of steel (mini-LIMMCAST). Numerical calculations were performed by means of the software package CFX with an implemented RANS-SST turbulence model. The non-isotropic nature of the MHD turbulence was taken into account by specific modifications of the turbulence model. The numerical results were validated by flow measurements at the mini-LIMMCAST facility. Numerical simulations disclose the damping effect on the flow closely depending on the wall conductance ratio. In addition, specific modifications of the turbulence model play a crucial role in reconstructing the peculiar phenomenon of an excitation of nonsteady, nonisotropic, large-scale flow perturbations caused by the application of the DC magnetic field.
86

Advanced turbulence models for the simulation of air pollutants dispersion in urban area

Longo, Riccardo 10 September 2020 (has links) (PDF)
NOWADAYS, a number of studies keep on demonstrating the existence of a strong relation between high concentrations of particulate matter (PM) and the prevalence of human morbidity and mortality. Large particles can be filtered in the nose or in the throat, while fine particles (about10 micrometer) can settle in the bronchi and lungs, leading to more serious consequences. According to Karagulian et al. the major sources of urban air pollution are traffic (25%), combustion and agriculture (22%), domestic fuel burning (20%), natural dust (18%) and industrial activities (15%).As a consequence, the detailed study of dispersion phenomena within the urban canopy becomes a target of great interest. To this end, Computational Fluid Dynamics (CFD) can be successfully employed to predict turbulence and dispersion patterns, accounting for a detailed characterization of the pollutant sources, complex obstacles and atmospheric stability classes.Despite being intrinsically different phenomena, turbulence and dispersion are closely related. It is universally accepted that, to reach accurate prediction of the concentration field, it is necessary to properly reproduce the turbulence one. For this reason, the present PhD thesis is split into two main Sections: one focused on turbulence modelling and the subsequent, centered on the dispersion modelling.Thanks to its good compromise between accuracy of results and calculation time, Reynolds-averaged Navier-Stokes (RANS) still represents a valid alternative to more resource-demanding methods. However, focusing on the models’ performance in urban studies, Large Eddy Simulation (LES) generally outperforms RANS results, even if the former is at least one order of magnitude more expensive. Stemming from this consideration, the aim of this work is to propose a variety of approaches meant to solve some of the major limitations linked to standard RANS simulation and to further improve its accuracy in disturbed flow fields, without renouncing to its intrinsic feasibility. The proposed models are suitable for the urban context, being capable of automatically switching from a formulation proper for undisturbed flow fields to one suitable for disturbed areas. For neutral homogeneous atmospheric boundary layer (ABL), a comprehensive approach is adopted, solving the issue of the erroneous stream-wise gradients affecting the turbulent profiles and able to correctly represent the various roughness elements. Around obstacles, more performing closures are employed. The transition between the two treatments is achieved through the definition of a Building Influence Area (BIA). The finalgoal is to offer more affordable alternatives to LES simulations without sacrificing a good grade of accuracy.Focusing on the dispersion modelling framework, there exists a number of parameters which have to be properly specified. In particular, the definition of the turbulent Schmidt number Sct, expressing the ratio of turbulent viscosity to turbulent mass diffusivity, is imperative. Despite its relevance, the literature does not report a clear guideline on the definition of this quantity. Nevertheless, the importance of Sct with respect to dispersion is undoubted and further demonstrated in the works of different authors. For atmospheric boundary layer flows, typical constant values range between 0.2 and 1.3. As a matter of fact, the local variability of Sct is supported by experimental evidence and by direct numerical simulations (DNS). These observations further suggest that the turbulent Schmidt number should be prescribed as a dynamic variable. Following these observations a variable turbulent Schmidt number formulation is proposed in this work. The latter stems from the same hypothesis of the variable formulation developed by Gorlé et al. Moreover, the relevant uncertain model parameters are optimized through uncertainty quantification (UQ). This formulation further increased the accuracy of the predictions, and was successfully verified by Di Bernardino et al. However, the turbulent Schmidt number resulting from this formulation is still intrinsically linked to the turbulence model employed, i.e. to the Cμ coefficient. To overcome this constraint, the nature and the dependencies of Sct were further analyzed through correlation studies and employing principal component analysis (PCA) on data obtained through the proposed ABL RANS model. Subsequently, the same data-driven technique was employed based on the high-fidelity outcomes of a delayed Detached Eddy Simulation (dDES) to derive a generalized turbulentSchmidt number formulation. The latter can be employed within a wide range of turbulence models, without limiting its variability. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
87

A Numerical Study of Melt Pool Heat Transfer in the IVR of a PWR / En numerisk studie av smältpoolvärmeöverföring i IVR för en PWR

Zhao, Yuer January 2021 (has links)
This thesis aims to provide the thermal condition of melt pool convection by CFD simulation, which is important to the assessment of the invessel melt retention (IVR) strategy widely adopted in Generation III pressurized water reactors (PWRs). As a severe accident mitigation measure, the IVR strategy is realized through external cooling of the lower head of a reactor pressure vessel (RPV). To achieve the coolability and retention of the corium pool in the RPV lower head, the heat flux at the outer surface of the vessel should be less than the critical heat flux (CHF) of boiling around the lower head. Under such condition, the integrity of the RPV is guaranteed by the adequate thickness of the unmelted vessel wall. The thesis work starts from the selection and validation of a turbulence model in the CFD computational tool chosen (Fluent). Afterwards a numerical model is set up for estimation of melt pool heat transfer of a reference PWR with the power capacity of 1000 MWe, including a mesh sensitivity study. Based on the numerical model of a twolayer melt pool, four tasks are carried out to investigate the effects of Zr oxidation ratio, Fe content, and radiation emissivity on heat flux profiles, as well as the focus effect under extreme conditions. Selection and validation of the turbulence model are conducted by comparing the simulation results of different turbulence models with the DNS data on the convection of volumetrically heated fluid layer bounded by rigid isothermal horizontal walls at equal temperature. The internal Rayleigh numbers of the flow reach up to 10e6. The comparison shows a good agreement of the SST k-ω turbulence model results with the DNS data. The simulations with the Zr oxidation ratio of 0, 0.2 and 0.5, correspondingly, the oxide layer of 1.389m, 1.467m and 1.580m, and the metal layer of 0.705m, 0.646m and 0.561m in height, show that, the temperature of the oxide layer will increase with Zr oxidation ratio, while the temperature of the metal layer will decrease resulting in more heat transfer through the oxide layer sidewall and less top radiation. Nevertheless, the effect of the Zr oxidation ratio is not pronounced in the range of 00.5. The simulations with the Fe mass of 22t, 33t and 45t, and respective height of the metal layer of 0.462m, 0.568m and 0.646m, show that, the inner metal layer will significantly increase the temperatures of both the metal layer and the oxide layer. The percentage of heat transfer at the oxide layer sidewall will increase to supplement the reduction of that at the metal layer. The simulations with the radiation emissivity of 0.2, 0.35, 0.45 and 0.7 show that, the emissivity below 0.45 has an impact on heat transfer, and the temperatures and sidewall heat flux of both the oxide layer and the metal layer will increase with decreasing emissivity. The impact is negligible when the emissivity is above 0.45. The simulations under the hypothetically extreme conditions with either an adiabatic top boundary or a very thin metal layer show the focusing effect may occur, i.e., the heat flux through the metal sidewall is larger than that in the oxide layer. But the local high heat flux is flattened by the vessel wall with good heat conductivity. In summary, the simulations demonstrate that, except for the cases under extreme conditions, the heat fluxes of the melt pools in all other cases are significantly lower than the CHF of external cooling of the lower head. Therefore, the safety margin of the IVR strategy of the PWR chosen is seems sufficient. However, due to some limitations (e.g., simplification and assumptions) in the simulation cases and coupling of different influential factors, as indicated by the present study, the precise predictions of heat flux under all scenarios are still difficult. Therefore, the conclusions could not be generalized to the other conditions or other configurations of the molten pools. By discussing the model and simplifications/assumptions adopted in this work, the improvement directions of the numerical model and other perspectives are proposed at the end of the thesis. / Denna avhandling syftar till att tillhandahålla det termiska tillståndet för smältbassängskonvektion genom CFD-simulering, vilket är viktigt för bedömningen av IVR-strategin som allmänt antagits i tryckvattenreaktorer (PWR) i Generation III. Som en åtgärd för att mildra allvarliga olyckor realiseras IVR-strategin genom extern kylning av det nedre huvudet av ett reaktortryckkärl (RPV). För att uppnå kylbarhet och kvarhållning av koriumbassängen i det nedre RPV-huvudet bör värmeflöde vid den yttre ytan av kärlet vara mindre än det kritiska värmeflödet (CHF) som kokar runt det nedre huvudet. Under sådant tillstånd garanteras RPV: s integritet av den osmälta kärlväggens tillräckliga tjocklek. Examensarbetet startar från valet och valideringen av en turbulensmodell i det valda CFD-beräkningsverktyget (Fluent). Därefter sätts en numerisk modell upp för uppskattning av smältbassängens värmeöverföring av en referens PWR med en effektkapacitet på 1000 MWe, inklusive en nätkänslighetsstudie. Baserat på den numeriska modellen för en tvålagers smältbassäng utförs fyra uppgifter för att undersöka effekterna av Zr-oxidationsförhållande, Fe-innehåll och strålningsemissivitet på värmeflödesprofiler, liksom fokuseffekten under extrema förhållanden. Val och validering av turbulensmodellen utförs genom att jämföra simuleringsresultaten för olika turbulensmodeller med DNS-data för konvektionen av volymetriskt uppvärmt fluidskikt avgränsat av styva isoterma horisontella väggar vid lika temperatur. De interna Rayleigh-siffrorna i flödet når upp till 10e6. Jämförelsen visar att SST k-ω turbulensmodellresultaten överensstämmer med DNS-data. Simuleringarna med Zr-oxidationsförhållandet 0, 0,2 och 0,5, motsvarande oxidskiktet på 1,389 m, 1,467 m och 1,580 m, och metallskiktet på 0,705 m, 0,664 m och 0,561 m i höjd, visar att temperaturen av oxidskiktet kommer att öka med Zr-oxidationsförhållandet, medan metallskiktets temperatur kommer att minska vilket resulterar i mer värmeöverföring genom oxidskiktets sidovägg och mindre toppstrålning. Ändå är effekten av Zr-oxidationsförhållandet inte uttalad i intervallet 00,5. Simuleringarna med Fe-massan på 22t, 33t och 45t och respektive höjd av metallskiktet på 0,462m, 0,568m och 0,664m visar att det inre metallskiktet avsevärt kommer att öka temperaturerna för både metallskiktet och oxiden lager. Andelen värmeöverföring vid oxidskiktets sidovägg ökar för att komplettera minskningen av den vid metallskiktet. Simuleringarna med strålningsemissiviteten 0,2, 0,35, 0,45 och 0,7 visar att emissiviteten under 0,45 påverkar värmeöverföringen, och temperaturerna och sidoväggens värmeflöde för både oxidskiktet och metallskiktet kommer att öka med minskande emissivitet. Effekten är försumbar när strålningen är över 0,45. Simuleringarna under de hypotetiskt extrema förhållandena med antingen en adiabatisk övre gräns eller ett mycket tunt metallskikt visar att fokuseringseffekten kan uppstå, dvs. värmeflödet genom metallsidan är större än det i oxidskiktet. Men det lokala höga värmeflödet plattas ut av kärlväggen med god värmeledningsförmåga. Sammanfattningsvis visar simuleringarna att, förutom fall under extrema förhållanden, är värmeflödet från smältpoolerna i alla andra fall betydligt lägre än CHF för extern kylning av nedre huvudet. Därför verkar säkerhetsmarginalen för IVR-strategin för den valda PWR tillräcklig. På grund av vissa begränsningar (t.ex. förenkling och antaganden) i simuleringsfall och koppling av olika inflytelserika faktorer, vilket indikeras av den aktuella studien, är de exakta förutsägelserna av värmeflöde under alla scenarier fortfarande svåra. Därför kunde slutsatserna inte generaliseras till de andra förhållandena eller andra konfigurationer av de smälta poolerna. Genom att diskutera modellen och förenklingar / antaganden som antagits i detta arbete föreslås förbättringsriktningarna för den numeriska modellen och andra perspektiv i slutet av avhandlingen.
88

Análise e implementação de esquemas de convecção e modelos de turbulência para simulação de escoamentos incompressíveis envolvendo superfícies livres. / Analysis and implementation of convection schemes and turbulence models for simulation of incompressible flows involving free surfaces.

Ferreira, Valdemir Garcia 26 September 2001 (has links)
Uma parte significativa dos escoamentos encontrados em aplicações tecnológicas é caracterizada por envolver altos números de Reynolds, principalmente aqueles em regime turbulento e com superfície livre. Obter soluções numéricas representativas para essa classe de problemas é extremamente difícil, devido à natureza não-linear das equações diferenciais parciais envolvidas nos modelos. Conseqüentemente, o tema tem sido uma das principais preocupações da comunidade científica moderna em dinâmica de fluidos computacional. Aproximações de primeira ordem para os termos convectivos são as mais adequadas para amortecer oscilações que estão associadas às aproximações de alta ordem não-limitadas. Todavia, elas introduzem dissipação artificial nas representações discretas comprometendo os resultados numéricos. Para minimizar esse efeito não-físico e, ao mesmo tempo, conseguir aproximações incondicionalmente estáveis, é indispensável adotar uma estratégia que combine aproximações de primeira ordem com as de ordem mais alta e que leve em conta a propagação de informações físicas. Os resultados dessa composição são os esquemas "upwind" limitados de alta ordem. Em geral, espera-se que esses esquemas sejam apropriados para a representação das derivadas convectivas nos modelos de turbulência kappa-varepsilon. No contexto de diferenças finitas, a presente tese dedica-se à solução numérica das equações de Navier-Stokes no regime de números de Reynolds elevados. Em particular, ela contém uma análise de algoritmos monotônicos e antidifusivos e modelos de turbulência kappa-varepsilon para a simulação de escoamentos incompressíveis envolvendo superfícies livres. Esquemas de convecção são implementados nos códigos GENSMAC para proporcionar um tratamento robusto dos termos convectivos nas equações de transporte. Duas versões do modelo kappa-varepsilon de turbulência são implementadas nos códigos GENSMAC, para problems bidimensionais e com simetria radial, para descrever os efeitos da turbulência sobre o escoamento médio. Resultados numéricos de escoamentos com simetria radial são comparados com resultados experimentais e analíticos. Simulações numéricas de problemas tridimensionais complexos são apresentadas para avaliar o desempenho de esquemas "upwind". Finalmente, os modelos de turbulência kappa-varepsilon são utilizados para a simulação de escoamentos confinados e com superfícies livres. / A considerable part of fluid flows encountered in technological applications is characterised by involving high-Reynolds numbers, especially those in turbulent regime and with free-surface. It is extremely difficult to obtain representative numerical solutions for this class of problems, due to the non-linear nature of the partial differential equations involved in the models. Consequently, this subject has been one of main concerns in the modern computational fluid dynamics community. First-order approximation to the convective terms is one of the most appropriate to smooth out oscilations/instabilities which are associated with high-order unlimited approximation. However, it introduces numerical dissipation in the discrete representation jeopardizing the numerical results. In order to minimize this non-physical effect and, at the same time, to obtain unconditionally stable approximation, it is essential to adopt a strategy that combines first and high-order approximations and takes into account the propagation of physical information. The results of this composition are the high-order bounded upwind techniques. In general, it is expected that these algorithms are satisfactory for the representation of the convective derivatives in the kappa-varepsilon turbulence model. In the context of finite-difference, the present thesis deals with the numerical solution of the Navier-Stokes equations at high-Reynolds number regimes. In particular, it contains an analysis of monotonic and anti-difusive convection schemes and kappa-varepsilon turbulence models for the simulation of free-surface fluid flows. Upwinding methods are implemented into the GENSMAC codes to provide a robust treatment of the convective terms in the transport equations. Two versions of the K-Epsilon turbulence model are implemented into the two-dimensional and axisymmetric GENSMAC codes, in order to describe the turbulent effects on the average flow. Numerical results of axisymmetric flows are compared with experimental and analytical results. Numerical simulations of complex three-dimensional problems are presented to assess the performance of high-order bounded upwind schemes. Finally, the K-Epsilon turbulence models are employed in the simulation of confined and free-surface flows.
89

The significance of coherent flow structures for the turbulent mixing in wall-bounded flows / Die Bedeutung kohärenter Strukturen für die turbulente Vermischung in Wandgrenzschichten

Kähler, Christian Joachim 01 July 2004 (has links)
No description available.
90

Análise e implementação de esquemas de convecção e modelos de turbulência para simulação de escoamentos incompressíveis envolvendo superfícies livres. / Analysis and implementation of convection schemes and turbulence models for simulation of incompressible flows involving free surfaces.

Valdemir Garcia Ferreira 26 September 2001 (has links)
Uma parte significativa dos escoamentos encontrados em aplicações tecnológicas é caracterizada por envolver altos números de Reynolds, principalmente aqueles em regime turbulento e com superfície livre. Obter soluções numéricas representativas para essa classe de problemas é extremamente difícil, devido à natureza não-linear das equações diferenciais parciais envolvidas nos modelos. Conseqüentemente, o tema tem sido uma das principais preocupações da comunidade científica moderna em dinâmica de fluidos computacional. Aproximações de primeira ordem para os termos convectivos são as mais adequadas para amortecer oscilações que estão associadas às aproximações de alta ordem não-limitadas. Todavia, elas introduzem dissipação artificial nas representações discretas comprometendo os resultados numéricos. Para minimizar esse efeito não-físico e, ao mesmo tempo, conseguir aproximações incondicionalmente estáveis, é indispensável adotar uma estratégia que combine aproximações de primeira ordem com as de ordem mais alta e que leve em conta a propagação de informações físicas. Os resultados dessa composição são os esquemas "upwind" limitados de alta ordem. Em geral, espera-se que esses esquemas sejam apropriados para a representação das derivadas convectivas nos modelos de turbulência kappa-varepsilon. No contexto de diferenças finitas, a presente tese dedica-se à solução numérica das equações de Navier-Stokes no regime de números de Reynolds elevados. Em particular, ela contém uma análise de algoritmos monotônicos e antidifusivos e modelos de turbulência kappa-varepsilon para a simulação de escoamentos incompressíveis envolvendo superfícies livres. Esquemas de convecção são implementados nos códigos GENSMAC para proporcionar um tratamento robusto dos termos convectivos nas equações de transporte. Duas versões do modelo kappa-varepsilon de turbulência são implementadas nos códigos GENSMAC, para problems bidimensionais e com simetria radial, para descrever os efeitos da turbulência sobre o escoamento médio. Resultados numéricos de escoamentos com simetria radial são comparados com resultados experimentais e analíticos. Simulações numéricas de problemas tridimensionais complexos são apresentadas para avaliar o desempenho de esquemas "upwind". Finalmente, os modelos de turbulência kappa-varepsilon são utilizados para a simulação de escoamentos confinados e com superfícies livres. / A considerable part of fluid flows encountered in technological applications is characterised by involving high-Reynolds numbers, especially those in turbulent regime and with free-surface. It is extremely difficult to obtain representative numerical solutions for this class of problems, due to the non-linear nature of the partial differential equations involved in the models. Consequently, this subject has been one of main concerns in the modern computational fluid dynamics community. First-order approximation to the convective terms is one of the most appropriate to smooth out oscilations/instabilities which are associated with high-order unlimited approximation. However, it introduces numerical dissipation in the discrete representation jeopardizing the numerical results. In order to minimize this non-physical effect and, at the same time, to obtain unconditionally stable approximation, it is essential to adopt a strategy that combines first and high-order approximations and takes into account the propagation of physical information. The results of this composition are the high-order bounded upwind techniques. In general, it is expected that these algorithms are satisfactory for the representation of the convective derivatives in the kappa-varepsilon turbulence model. In the context of finite-difference, the present thesis deals with the numerical solution of the Navier-Stokes equations at high-Reynolds number regimes. In particular, it contains an analysis of monotonic and anti-difusive convection schemes and kappa-varepsilon turbulence models for the simulation of free-surface fluid flows. Upwinding methods are implemented into the GENSMAC codes to provide a robust treatment of the convective terms in the transport equations. Two versions of the K-Epsilon turbulence model are implemented into the two-dimensional and axisymmetric GENSMAC codes, in order to describe the turbulent effects on the average flow. Numerical results of axisymmetric flows are compared with experimental and analytical results. Numerical simulations of complex three-dimensional problems are presented to assess the performance of high-order bounded upwind schemes. Finally, the K-Epsilon turbulence models are employed in the simulation of confined and free-surface flows.

Page generated in 0.0899 seconds