Spelling suggestions: "subject:"twophoton"" "subject:"twophoton""
301 |
Molecular Quadratic Response Properties with Inclusion of RelativityHenriksson, Johan January 2008 (has links)
This thesis concerns quadratic response properties and their application to properties in Jablonski diagrams such as resonant two-photon absorption and excited state absorption. Our main interest lies in optical power limiting applications, and in this context, molecules containing heavy metal atoms prove superior. Therefore, we are interested in how relativity affects these properties, and in order to assess this, a four-component relativistic framework is adopted. To properly address the molecular properties of interest, both relativistic effects and electron correlation need to be accounted for. These two properties are not additive, and, therefore, correlation needs to be incorporated into the four-component framework. We present the implementation of quadratic response properties at the four-component density functional level of theory. For second-harmonic generation, we have, with numerical examples, demonstrated that correlation and relativity are indeed not additive and that the inclusion of noncollinear magnetization is of little importance. We report that both electron correlation as well as relativity strongly affect results for second-harmonic generation. For example, relativity alone reduces the µβ-response signal by 62% and 75% for meta- and ortho-bromobenzene, respectively, and enhances the same response by 17% and 21% for meta- and ortho-iodobenzene, respectively. In the four-component framework, we present the implementations of single and double residues of the quadratic response function, which allows for the evaluation of resonant two-photon absorption cross sections and excited state properties. Using these tools, we discuss different levels of approximation to the relativistic Hamiltonian and we demonstrate that for two-photon absorption, a proper treatment of relativistic effects qualitatively alters the spectrum. For example, already for an element as light as neon, significant differences are seen between the relativistic and nonrelativistic spectra as triplet transitions acquire substantial absorption cross sections in the former case. Finally, quantum mechanics in conjunction with electrodynamics is applied to determine clamping levels in macroscopic samples. The microscopic properties of the optically active chromophores are determined by response theory, and then, electrodynamics is used to describe the interactions between the chromophores and incident laser pulses. Using this approach a series of molecules have been investigated and their performances have been compared and ranked in order to find novel materials for optical power limiting applications.
|
302 |
High-speed Properties of 1.55-micron-wavelength Quantum Dot Semiconductor Amplifiers and Comparison with Higher-Dimensional StructuresZilkie, Aaron John 26 February 2009 (has links)
This thesis reports an experimental characterization of the ultrafast gain and refractive index dynamics of a novel InAs/InGaAsP/InP quantum-dot (QD) semiconductor optical amplifier (SOA) operating near 1.55-µm wavelengths, assessing its high-speed performance characteristics for the first time. The thesis also studies the influence of the degree of quantum confinement on the dynamics of SOAs by comparing the zero-dimensional (0-D) QD's dynamics to those in 1-D InAs/InAlGaAs/InP quantum-dash (QDash), and 2-D InGaAsP/InGaAsP/InP quantum-well (QW) SOAs, both of which also operate near 1.55-µm wavelengths, and are made with matching or similar materials and structures. The ultrafast (around 1 ps) and long-lived (up to 2 ns) amplitude and phase dynamics of the SOAs are characterized via advanced heterodyne pump-probe measurements with 150-femtosecond resolution. It is found that the QD SOA has an 80-picosecond amplitude, and 110-picosecond phase recovery lifetime in the gain regime, 4-6 times faster than the QDash and QW recovery lifetimes, as well as reduced ultrafast transients, giving it the best properties for high-speed (> 100 Gb/s) all-optical signal processing in the important telecommunications wavelength bands.
An impulse response model is developed and used to analyze the dynamics, facilitating a comparison of the gain compression factors, time-resolved linewidth enhancement factors (alpha-factors), and instantaneous dynamic coefficients (two-photon absorption and nonlinear refractive-index coefficients) amongst the three structures. The quantum-dot device is found to have the lowest effective alpha-factor, 2-10, compared to 8-16 in the QW, as well as time-resolved alpha-factors lower than in the QW—promising for reduced-phase-transient operation at high bitrates. Significant differences in the alpha-factors of lasers with the same structure are found, due to the differences between gain changes that are induced optically or through the electrical bias. The relative contributions of stimulated transitions and free-carrier absorption to the total carrier heating dynamics in SOAs of varying dimensionality are also reported for the first time.
Examining the QD electroluminescence and linear gain spectra in combination with the carrier dynamics also brings about conclusions on the nature of the quantum confinement, dot energy-level structure, and density of states—aspects of the material that have not been previously well understood.
|
303 |
High-speed Properties of 1.55-micron-wavelength Quantum Dot Semiconductor Amplifiers and Comparison with Higher-Dimensional StructuresZilkie, Aaron John 26 February 2009 (has links)
This thesis reports an experimental characterization of the ultrafast gain and refractive index dynamics of a novel InAs/InGaAsP/InP quantum-dot (QD) semiconductor optical amplifier (SOA) operating near 1.55-µm wavelengths, assessing its high-speed performance characteristics for the first time. The thesis also studies the influence of the degree of quantum confinement on the dynamics of SOAs by comparing the zero-dimensional (0-D) QD's dynamics to those in 1-D InAs/InAlGaAs/InP quantum-dash (QDash), and 2-D InGaAsP/InGaAsP/InP quantum-well (QW) SOAs, both of which also operate near 1.55-µm wavelengths, and are made with matching or similar materials and structures. The ultrafast (around 1 ps) and long-lived (up to 2 ns) amplitude and phase dynamics of the SOAs are characterized via advanced heterodyne pump-probe measurements with 150-femtosecond resolution. It is found that the QD SOA has an 80-picosecond amplitude, and 110-picosecond phase recovery lifetime in the gain regime, 4-6 times faster than the QDash and QW recovery lifetimes, as well as reduced ultrafast transients, giving it the best properties for high-speed (> 100 Gb/s) all-optical signal processing in the important telecommunications wavelength bands.
An impulse response model is developed and used to analyze the dynamics, facilitating a comparison of the gain compression factors, time-resolved linewidth enhancement factors (alpha-factors), and instantaneous dynamic coefficients (two-photon absorption and nonlinear refractive-index coefficients) amongst the three structures. The quantum-dot device is found to have the lowest effective alpha-factor, 2-10, compared to 8-16 in the QW, as well as time-resolved alpha-factors lower than in the QW—promising for reduced-phase-transient operation at high bitrates. Significant differences in the alpha-factors of lasers with the same structure are found, due to the differences between gain changes that are induced optically or through the electrical bias. The relative contributions of stimulated transitions and free-carrier absorption to the total carrier heating dynamics in SOAs of varying dimensionality are also reported for the first time.
Examining the QD electroluminescence and linear gain spectra in combination with the carrier dynamics also brings about conclusions on the nature of the quantum confinement, dot energy-level structure, and density of states—aspects of the material that have not been previously well understood.
|
304 |
Ingénierie moléculaire pour l'imagerie par microscopie non-linéaire : synthèse et propriétés de nouvelles sondes / Molecular engineering for nonlinear imaging microscopy : Synthesis and properties of new probesMassin, Julien 15 December 2011 (has links)
L’objectif de cette thèse est l’élaboration de sondes organiques pour la microscopie optique non-linéaire par fluorescence excitée à deux photons (F2P) et génération de seconde harmonique (GSH). Dans une première partie, cette thèse décrit la synthèse de sondes pour l’imagerie de potentiels de membrane par GSH, comportant un ou plusieurs motifs sucres ainsi que leurs caractérisations spectroscopiques. Les premiers essais en imagerie biologique ont permis de démontrer une bonne affinité des sondes sucres pour la membrane cellulaire et un signal de GSH sur cellule neuronale a pu être observé sur une période de temps allant jusqu'à près de trois heures. La seconde approche a consisté à synthétiser et étudier des chromophores possédant des propriétés de fluorescence à l’état solide pour des applications dans la synthèse de nanoparticules fluorescentes pour l’imagerie biologique. 18 des 21 composés synthétisés ont pu être cristallisés et leur structure résolue par diffraction des rayons X et les propriétés spectroscopique en solution et à l’état solide ont été réalisées. Cette étude a permis de montrer que l’arrangement des molécules les unes par rapport aux autres avait une grande influence sur la fluorescence à l’état solide et donc que les substituants avaient une grande importance. Enfin, cette partie se termine sur les premiers essais effectués pour synthétiser des nanoparticules fluorescentes. / The objective of this thesis is the design of new organic probes for nonlinear optical microscopy by two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). In the first part, we describe the synthesis of probes for voltage sensitive imaging by SHG, bearing one or more sugar units and their spectroscopic characterization. The first biological imaging tests have shown good affinity of the probes to the cell membrane and the SHG signal of neuronal cell was observed over a period of nearly three hours. The second part comprises the synthesis and the study of chromophores with solid state fluorescence properties for use in fluorescent nanoparticles for biological imaging. 18 of the 21 compounds synthesized have been crystallized, their crystal structures determined by X-ray diffraction and their spectroscopic properties studied in solution and in the solid state. These studies showed that the arrangement of molecules relative to each had a great influence on the solid state fluorescence and therefore that the substitution was very important. The chapter ends with the first tests of fluorescent nanoparticles synthesis.
|
305 |
Telecom wavelength quantum devicesFelle, Martin Connor Patrick January 2017 (has links)
Semiconductor quantum dots (QDs) are well established as sub-Poissonian sources of entangled photon pairs. To improve the utility of a QD light source, it would be advantageous to extend their emission further into the near infrared, into the low absorption wavelength windows utilised in long-haul optical telecommunication. Initial experiments succeeded in interfering O-band (1260—1360 nm) photons from an InAs/GaAs QD with dissimilar photons from a laser, an important mechanism for quantum teleportation. Interference visibilities as high as 60 ± 6 % were recorded, surpassing the 50 % threshold imposed by classical electrodynamics. Later, polarisation-entanglement of a similar QD was observed, with pairs of telecom-wavelength photons from the radiative cascade of the biexciton state exhibiting fidelities of 92.0 ± 0.2 % to the Bell state. Subsequently, an O-band telecom-wavelength quantum relay was realised. Again using an InAs/GaAs QD device, this represents the first implementation of a sub-Poissonian telecom-wavelength quantum relay, to the best knowledge of the author. The relay proved capable of implementing the famous four-state BB84 protocol, with a mean teleportation fidelity as high as 94.5 ± 2.2 %, which would contribute 0.385 secure bits per teleported qubit. After characterisation by way of quantum process tomography, the performance of the relay was also evaluated to be capable of implementing a six-state QKD protocol. In an effort to further extend the emitted light from a QD into the telecom C-band (1530—1565 nm), alternative material systems were investigated. InAs QDs on a substrate of InP were shown to emit much more readily in the fibre-telecom O- and C-bands than their InAs/GaAs counterparts, largely due to the reduced lattice mismatch between the QD and substrate for InAs/InP (~3 %) compared to InAs/GaAs (~7 %). Additionally, to minimize the fine structure splitting (FSS) of the exciton level, which deteriorates the observed polarisation-entanglement, a new mode of dot growth was investigated. Known as droplet epitaxy (D-E), QDs grown in this mode showed a fourfold reduction in the FSS compared to dots grown in the Stranski-Krastanow mode. This improvement would allow observation of polarisation-entanglement in the telecom C-band. In subsequent work performed by colleagues at the Toshiba Cambridge Research Labs, these D-E QDs were embedded in a p-i-n doped optical cavity, processed with electrical contacts, and found to emit entangled pairs of photons under electrical excitation. The work of this thesis provides considerable technological advances to the field of entangled-light sources, that in the near future may allow for deterministic quantum repeaters operating at megahertz rates, and in the further future could facilitate the distribution of coherent multipartite states across a distributed quantum network.
|
306 |
Super-resolution STED and two-photon microscopy of dendritic spine and microglial dynamics / Imagerie de la dynamique des microglies et des épines dendritiques par microscopie super-résolutive STED et bi-photoniquePfeiffer, Thomas 21 November 2017 (has links)
Les changements des connections neuronales interviendraient dans la formation de la mémoire. J’ai développé de nouvelles approches basées sur l’imagerie photonique pour étudier (i) les interactions entre les microglies et les épines dendritiques, et (ii) le renouvellement des épines dans l’hippocampe in vivo. Ces deux phénomènes contribueraient au remodelage des circuits synaptiques intervenant dans la mémoire. (i) Les microglies sont impliquées dans de nouvelles fonctions en condition saine. J’ai examiné l’effet de la plasticité synaptique sur la dynamique morphologique des microglies, et sur leur interaction avec les épines. En combinant l’électrophysiologie et l’imagerie bi-photonique dans des tranches aigües de souris transgéniques, je démontre que la microglie intensifie son interaction physique avec les épines. Ainsi pour continuer l’étude de ces interactions et leur impact fonctionnel plus précisément, j’ai optimisé l’imagerie STED dans des tranches aigües. (ii) La plasticité structurale des épines est cruciale pour la mémoire, mais les connaissances à ce sujet dans l’hippocampe in vivo restent limitées. J’ai donc établi une technique d’imagerie chronique STED in vivo pour visualiser les épines dans l’hippocampe. Cette approche a révélé une densité double de celle reportée précédemment à l’aide de la microscopie bi-photonique. De plus j’ai observé un renouvellement des épines de 40% en 5 jours, représentant un taux important de remodelage synaptique dans l’hippocampe. Les approches d’imagerie super-résolutive permettent l’étude des interactions microglie-épine, et du renouvellement des épines hippocampiques avec une résolution inédite chez la souris vivante. / Activity-dependent changes in neuronal connectivity are thought to underlie learning and memory. I developed and applied novel high-resolution imaging-based approaches to study (i) microglia-spine interactions and (ii) the turnover of dendritic spines in the mouse hippocampus, which are both thought to contribute to the remodeling of synaptic circuits underlying memory formation. (i) Microglia have been implicated in a variety of novel tasks beyond their classic immune defensive roles. I examined the effect of synaptic plasticity on microglial morphological dynamics and interactions with spines, using a combination of electrophysiology and two-photon microscopy in acute brain slices. I demonstrated that microglia intensify their physical interactions with spines after the induction of hippocampal synaptic plasticity. To study these interactions and their functional impact in greater detail, I optimized and applied time-lapse STED imaging in acute brain slices. (ii) Spine structural plasticity is thought to underpin memory formation. Yet, we know very little about it in the hippocampus in vivo, which is the archetypical memory center of the mammalian brain. I established chronic in vivo STED imaging of hippocampal spines in the living mouse using a modified cranial window technique. The super-resolution approach revealed a spine density that was two times higher than reported in the two-photon literature, and a spine turnover of 40% over 5 days, indicating a high level of structural remodeling of hippocampal synaptic circuits. The developed super-resolution imaging approaches enable the examination of microglia-synapse interactions and dendritic spines with unprecedented resolution in the living brain (tissue).
|
307 |
Processamento de poli(p-fenilenovinileno) (PPV) com pulsos laser de femtossegundos: fabricação de microestruturas óptica e eletricamente ativas / Processing of poly (p-phenylenevinylene) (PPV) with femtosecond laser pulses: fabrication of optically and electrically active microstructuresOriana Ines Avila Salas 12 July 2018 (has links)
O poli (p-fenilenevinileno), ou PPV, é um polímero de grande relevância tecnológica devido a suas propriedades eletroluminescentes, que têm sido exploradas em diodos emissores de luz orgânicos, displays flexíveis e outros dispositivos optoeletrônicos. Embora o PPV seja um material de importância para muitas aplicações, a sua síntese na nano/microescala não pode ser obtida através do método padrão, o qual utiliza o aquecimento de um polímero precursor poli (cloreto de xileno tetrahidrotiofenio) (PTHT). Este trabalho mostra como a microestruturação com pulsos de femtosegundo pode ser empregada para a síntese de PPV em regiões pré-determinadas, empregando três diferentes abordagens, permitindo uma nova metodologia para a fabricação precisa de microcircuitos poliméricos complexos, (i) na primeira abordagem, o processo de conversão é obtido pela irradiação de filmes de PTHT com pulsos laser ultracurtos em regiões previamente determinadas, o que leva ao controle espacial da formação de PPV em microescala, (ii) na segunda abordagem, microestruturas tridimensionais dopadas com PTHT foram fotopolimerizadas por absorção de dois fótons. A conversão de PTHT para PPV nestas microestruturas dopadas foi obtida após um tratamento térmico, (iii) na terceira abordagem, a transferência direta induzida por laser (LIFT) com pulsos de femtossegundos permite a deposição controlada de PPV com alta resolução espacial, fornecendo micropadrões 2D, preservando sua estrutura e propriedades ópticas. As estruturas foram caracterizadas por microscopia eletrônica de varredura, microscopia óptica de transmissão, microscopia de fluorescência e microscopia confocal de fluorescência. Suas propriedades ópticas foram analisadas através de sistemas de micro-fotoluminescência e micro-absorção implementadas em um microscópio invertido. Medidas de espectroscopia Raman, microscopia de força atômica e medidas elétricas também foram realizadas. Este trabalho mostra como a microestruturação com laser de fs pode ser explorada para a síntese de PPV em regiões pré-determinadas para fabricar uma variedade de microdispositivos, abrindo novos caminhos na optoeletrônica baseada em polímeros. / Poly(p-phenylenevinylene), or PPV, is a polymer of great technological relevance due to its electroluminescent properties, which have been exploited in organic light emitting diodes, flexible displays and other optoelectronic devices. Although PPV is a material of foremost importance for many applications, its synthesis at the nano/micro scale cannot be achieved through the standard method that uses heating of a precursor polymer poly(xylene tetrahydrothiophenium chloride)(PTHT). This work demonstrates the use of direct laser writing with femtosecond pulses to obtain the synthesis of PPV in pre-determined regions, by applying three different approaches, allowing the precise fabrication of complex polymeric microcircuits, (i) in the first approach the conversion process is achieved by irradiating PTHT films with ultra-short laser pulses in previously determined regions, which leads to the spatial control of PPV formation at microscale, (ii) in the second approach, three-dimensional microstructures doped with PTHT were photopolymerized by two photons absorption. The conversion of PTHT to PPV in these doped microstructures was obtained by a subsequent thermal treatment, (iii) in the third approach, laser-induced forward transfer (LIFT) with femtosecond pulses enables the controlled deposition of PPV with high spatial resolution, providing 2D micropatterns, while preserving its structure and optical properties. The structures were characterized by scanning electron, fluorescence, transmission and confocal fluorescence microscopies. Their optical properties were analyzed by micro-photoluminescence and micro-absorption setups assembled on an inverted microscope. Raman spectroscopy, electrical measurements and atomic force microscopy were also performed. This thesis shows the use of fs-laser writing methods for the synthesis of PPV in pre-determined regions, to fabricate a variety of microdevices, thus opening new avenues in polymer-based optoelectronics.
|
308 |
Estudo da cinética e formação de agregados em cristais iônicos pela técnica de absorção de dois fótons. / Study of kinetic and formation of aggregates in ionic crystals using two photon absorption technique.Franklin Massami Matinaga 19 August 1985 (has links)
Neste trabalho realizamos o estudo da cinética e formação de agregados em cristais iônicos halogenetos alcalinos dopados com impurezas divalentes, através da técnica de espectroscopia de absorção de dois fótons (ADF). Analisamos a formação dos agregados em cristais envelhecidos a temperaturas fixas (50 e 250°C), através de medidas de ADF das transições 4f7 → 4f7 do Eu2+, proibidas por um fóton. A evolução do espectro de ADF em função do tempo, mostrou a existência de três fases distintas de agregação. A primeira fase consiste na formação de dímeros e é observada no espectro de ADF através de três absorções muito próximas às absorções do dipolo isolada. As outras duas fases (II e III) evoluem a partir dos dímeros, dependendo do tratamento térmico a que a amostra é submetida. Estas fases são observadas no espectro de ADF através de absorções relativamente afastadas das absorções do dipolo isolado. Todo sistema experimental foi montado em nosso laboratório, consistindo de um sistema de aquisição de dados controlado por um micro-computador; laser de corante bombeado por um YAG:Nd3+; motores de passos para a varredura do comprimento de onda do laser de corante; sistema de detecção; etc. / In this work we realize the study of the Kinetic and formation of precipitates in ionic crystals doped with divalent impurities by the TPA (two photon absorption) spectroscopy technique. We analyze the formation of the aggregates in crystals annealed at temperatures of 50 and 250°C. We measured the TPA of the transition 4f7 → 4f7 of the Eu2+, which is forbidden by one photon. The evolution of the TPA spectra at the time showed us three phases of the precipitates. The dimmers formation was observed in the first phase, by three absorptions bands near the one of the impurity vacancy dipole. The others phases (II and III) involve from the dimmers, depending on the annealing temperature that the samples were submitted. Those phases are observed in the TPA spectra through absorptions which are relatively far from the absorptions due to the isolated (I-V) dipole. All experimental system employed is home made. It consists of a data acquisition system controlled by a micro-computer; a Dye laser pumped by a YAG:Nd3+ laser; step motors to scan the wavelength of the Dye laser; detection system and others devices.
|
309 |
Estudo de propriedades ópticas de moléculas de chalconasSantos, Francisco de Assis 28 July 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work reports on the optical properties of chalcones molecules in solution, using methanol
as solvent. For the characterization of the linear optical properties, were obtained absorbance
spectra. While for the characterization of the nonlinear optical properties, it has been used techniques
hyper-Rayleigh scattering and Z-scan. Using hyper-Rayleigh scattering technique, were
determined the first hyperpolarizabilities of the molecules studied. With the Z-scan technique,
we could obtain the two-photon absorption spectra at several wavelengths in the range of 480
to 790 nm. From the two-photon absorption spectra were possible to determine the coefficients
of two-photon absorption and their respective cross section. The results help to understand the
effects of substituents added to the basic structure of chalcones in both linear optical properties
as nonlinear. / Neste trabalho, estudamos as propriedades ópticas de moléculas de chalconas em solução,
usando o metanol como solvente. Para a caracterização das propriedades ópticas lineares foram
determinados os espectros de absorção. Na caracterização das propriedades ópticas não lineares
foram utilizadas as técnicas de espalhamento hiper-Rayleigh e de varredura-Z. Utilizando a
técnica de espalhamento hiper-Rayleigh foram determinadas as primeiras hiperpolarizabilidades
das moléculas estudadas. Com a técnica de varredura-Z conseguimos obter os espectros de
absorção de dois fótons em vários comprimentos de onda no intervalo dos 480 aos 790 nm. A
partir dos espectros de absorção de dois fótons foi possível determinar o coeficiente da absorção
de dois fótons e sua respectiva seção de choque. Os resultados ajudam a compreender os efeitos
de substituintes, adicionados à estrutura básica das chalconas, tanto nas propriedades ópticas
lineares quanto não lineares.
|
310 |
Não linearidades de segunda e terceira ordem de sistemas moleculares ramificados / Second and third order nonlinearities of branched molecular systemsRuben Dario Fonseca Rodriguez 26 October 2016 (has links)
Compostos orgânicos constituem uma classe interessante de materiais para aplicações em óptica por apresentarem boa processabilidade, relativa facilidade para integração em dispositivos e, principalmente, pela possibilidade de otimização de suas propriedades ópticas através da engenharia molecular. Várias estratégias têm sido empregadas para sintetizar moléculas orgânicas, que exibam singificativos efeitos ópticos não lineares. Nesta direção, nos últimos anos moléculas multi-ramificadas vêm sendo produzidas com o objetivo de intensificar efeitos não lineares, já que estas podem exibir um forte efeito cooperativo entre seus ramos. Nesta tese estudamos a relação da absorção de dois fótons (A2F) e da primeira hiperpolarizabilidade com a estrutura molecular, para um conjunto de nove derivados de trifenilamina com diferentes grupos aceitadores de elétrons arranjadas em geometrias dipolar, quadrupolar e octopolar. O processo A2F foi estudados através da técnica de Varredura-Z, enquanto que a primeira hiperpolarizabilidade foi caracterizada pela técnica de espelhamento hiper Rayleigh. Os dados experimentais para a absorção de dois fótons revelaram espectros bem definidos, com valores razoáveis de seção de choque na região do visível e infravermelho próximo. Observamos ainda um engrandecimento para a seção de choque de A2F para as moléculas quadrupolares. Os resultados obtidos para a primeira hiperpolarizabilidade (β) mostraram que moléculas quadrupolares apresentam maior β do que as dipolares e octopolares, portanto, nossos resultados permitem concluir que o acoplamento eletrônico entre os ramos contribuem fortemente para a seção de choque por A2F e β nas moléculas quadrupolares, não sendo este processo relevante nas moléculas octopolares. Todos os resultados foram interpretados por meio de estudos teóricos empregando a teoria do funcional da densidade (DFT). / Organic compounds constitute an interesting class of materials for optical applications due to their excellent processability, easy integration into devices and, mainly, the possibility of optimizing its optical properties through molecular engineering. Several strategies have been employed to synthesize organic molecules, which exhibit significant nonlinear optical effects. In this direction, in the last few years multi-branched molecules have been obtained aiming at intensifying nonlinear optical effects, since they may exhibit a strong cooperative effect among their branches. On this thesis we have studied the relationship of two-photon absorption (2PA) and first hyperpolarizability with the molecular structure of a group of nine triphenylamine derivatives attached to distinct electron acceptor groups arranged in dipole, quadrupole and octopolar geometries. The 2PA process was studied by Z-scan technique, while the first hyperpolarizability was characterized by the hyper-Rayleigh scattering technique. The experimental data for two-photon absorption revealed well-defined spectra with reasonable cross section magnitude in the visible and near infrared range. We also observed an enhancement of the 2PA cross-section for the quadrupolar molecules in comparison to the dipolar and octopolar ones. The results obtained for the first hyperpolarizability (β) shown that the quadrupolar molecules present higher β than the dipolar and octopolar, suggesting that the electronic coupling between the branches strongly contribute to the 2PA cross-section and β in quadrupolar molecules, being not relevant in the octopolar molecules. All results were interpreted through theoretical studies based on the density functional theory (DFT).
|
Page generated in 0.0349 seconds