• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 7
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cubulations de variétés hyperboliques compactes

Dufour, Guillaume 23 March 2012 (has links) (PDF)
Cette thèse est une contribution au domaine des cubulations de groupes hyperboliques au sens de Gromov. Nous nous intéressons au cas particulier des groupes fondamentaux de variétés hyperboliques réelles compactes. La philosophie inspirée dans ce domaine par les travaux de M. Sageev est que si un groupe hyperbolique possède suffisamment de sous-groupes de codimension 1 quasi-convexes, alors il agit géométriquement sur un complexe cubique CAT(0) de dimension finie. Nous démontrons un critère précis de cubulation pour les groupes fondamentaux de variétés hyperboliques compactes, à l'aide de constructions d'espaces à murs quasi-isométriques à l'espace hyperbolique réel. Nous nous restreignons par la suite au cas particulier de la dimension 3 et plus particulièrement aux 3-variétés hyperboliques compactes virtuellement fibrées sur le cercle. Nous exploitons alors une construction de surfaces immergées incompressibles dites coupées-croisées due à D. Cooper, D. Long et A. Reid dans une telle 3-variété M pour fabriquer des sous-groupes de surface de son groupe fondamental~G. En raffinant des arguments de J. Masters et en exploitant la structure de l'application de Cannon-Thurston, nous parvenons à construire des sous-groupes de surfaces quasi-convexes de G en quantité suffisante pour que leurs ensembles limites permettent de séparer toutes les paires de points distincts du bord du revêtement universel de M. En conséquence de cette construction, G agit géométriquement sur un complexe cubique CAT(0) de dimension finie. D. Wise soulève alors la question de savoir si ce groupe G peut agir géométriquement et également virtuellement co-spécialement (au sens de F. Haglund et D. Wise) sur un complexe cubique CAT(0). Une réponse positive résoudrait les conjectures selon lesquelles G est large et le premier nombre de Betti virtuel de M est infini. Nous faisons remarquer que pour obtenir une réponse positive à cette question, il suffit de trouver une surface coupée-croisée virtuellement plongée dans un revêtement fini fibré sur le cercle de M. Nous concluons en présentant des conditions algébriques, puis géométriques et cohomologiques suffisantes pour qu'une surface coupée-croisée donnée soit virtuellement plongée.
2

Equations hessiennes complexes sur des variétés kählériennes compactes

Jbilou, Asma 19 February 2010 (has links) (PDF)
Sur une variété kählérienne compacte connexe de dimension 2m, ! étant la forme de Kähler, ­ une forme volume donnée dans [!]m et k un entier 1 < k < m, on cherche à résoudre de façon unique dans [!] l'équation ˜ !k ^!m−k = ­ en utilisant une notion de k-positivité pour ˜ ! 2 [!] (les cas extrêmes sont résolus : k = m par Yau, k = 1 trivialement). Nous résolvons par la méthode de continuité l'équation hessienne d'ordre k complexe elliptique correspondante sous l'hypothèse que la variété est à courbure bisectionelle holomorphe non-négative, ici requise seulement pour établir un pincement a priori de valeurs propres.
3

Équation de Monge-Ampère complexe, métriques kählériennes de type Poincaré et instantons gravitationnels ALF

Auvray, Hugues 21 June 2012 (has links) (PDF)
Ce travail de thèse s'intéresse à la résolution d'équations de Monge-Ampère complexes et à ses applications sur certains types de variétés non compactes. Ce mémoire décrit plus précisément deux situations distinctes dans lesquelles on résout des équations de Monge-Ampère, avant de tirer les conséquences de ces résolutions. Dans une première partie, on travaille sur le complémentaire d'un diviseur à croisements normaux dans une variété kählérienne compacte. On fixe sur le complémentaire du diviseur une classe de métriques kählériennes à singularités cusp le long du diviseur. Pour construire des géodésiques entre métriques de cette classe, on résout une équation de Monge-Ampère homogène, sur le produit de notre ouvert de Zariski par une surface de Riemann à bord. On applique cette construction à un résultat d'unicité de métriques à courbure scalaire constante dans la classe considérée ; on résout encore pour cela une équation de Monge-Ampère avec second membre sur le complémentaire du diviseur. On exhibe enfin des obstructions topologiques à l'existence de métriques à courbure scalaire constante au sein des classes de métriques kählériennes singulières envisagées. La seconde partie du mémoire traite d'une construction analytique d'instantons gravitationnels ALF, ou variétés complètes de dimension 4, hyperkählériennes, à croissance cubique du volume. On donne la construction d'instantons diédraux ; on considère plus exactement des résolutions de singularités kleiniennes diédrales. Le traitement d'une équation de Monge-Ampère, donné pour des variétés kählériennes ALF assez générales, nous permet sur nos exemples de corriger un prototype simple pour obtenir la métrique hyperkählérienne recherchée.
4

Déformation de variétés kählériennes compactes : invariance de la $\Gamma$-dimension et extension de sections pluricanoniques

Claudon, Benoît 06 December 2007 (has links) (PDF)
L'objectif de cette thèse consiste en l'étude du revêtement universel des variétés kählériennes compactes, de leurs systèmes pluricanoniques et des liens qui les unissent. Dans un premier temps, nous étudions la $\Gamma$-réduction d'une variété kählérienne compacte vue comme quotient de Remmert biméromorphe de son revêtement universel. La dimension de l'espace quotient est par définition la $\Gamma$-dimension d'une telle variété. Les grandes lignes de l'étude de cet invariant sont les suivantes : lien avec l'existence de formes holomorphes $L^2$ sur le revêtement universel, comportement de la $\Gamma$-dimension dans les fibrations, place de la $\Gamma$-réduction dans la théorie de la classification, structure des variétés de type $\pi_1$-général (au moins en petite dimension). La fin de cette première partie est consacrée à l'étude de l'invariance par déformation de la $\Gamma$-dimension en dimension 3. Cette propriété est établie dans diverses situations, par exemple dans les cas des familles de variétés kählériennes qui ne sont pas de type général. La deuxième partie porte sur la méthode One-Tower d'extension de formes pluricanoniques. Nous mettons en effet cette partie à profit pour montrer comment adapter cette méthode dans différentes situations. Ainsi, après quelques rappels sur les différentes notions de positivité des fibrés en droites et sur les idéaux multiplicateurs, nous établissons des résultats d'extension de sections pluricanoniques dans les contextes suivants : famille projective de variétés (avec fibré canonique tordu par un fibré en droites pseudo-effectif), hypersurface d'une variété projective, fibre générale de la $\Gamma$-réduction pour les variétés de type général et famille des revêtements universels.
5

Géométrie à l'infini de certaines variétés riemanniennes non-compactes / Geometry at infinity of some noncompact Riemannian manifolds

Deruelle, Alix 23 November 2012 (has links)
On s'intéresse à la géométrie globale et asymptotique de certaines variétés riemanniennes non compactes. Dans une première partie, on étudie la topologie et la géométrie à l'infini des variétés riemanniennes à courbure (de Ricci) positive ayant un rapport asymptotique de courbure fini. On caractérise le cas non effondré via la notion de cône asymptotique et on donne des conditions suffisantes sur le groupe fondamental pour garantir un non effondrement. La seconde partie est dédiée à l'étude des solutions de Type III du flot de Ricci à courbure positive et aux solitons gradients de Ricci expansifs (points fixes de Type III) présentant une décroissance quadratique de la courbure. On montre l'existence et l'unicité des cônes asymptotiques de tels points fixes. On donne également des conditions suffisantes de nature algébrique et géométrique pour garantir une géométrie de révolution de tels solitons. Dans une troisième partie, on caractérise la géométrie des solitons gradients de Ricci stables à courbure positive et à croissance volumique linéaire. Puis, on s'intéresse au non effondrement des variétés riemanniennes de dimension trois à courbure de Ricci positive ayant un rapport asymptotique de courbure fini. / We study the global and asymptotic geometry of non-compact Riemannian manifolds. First, we study the topology and geometry at infinity of Riemannian manifolds with nonnegative (Ricci) curvature and finite asymptotic curvature ratio. We focus on the non-collapsed case with the help of asymptotic cones and we give sufficient conditions on the fundamental group to guarantee non-collapsing. The second part is dedicated to the study of (non-negatively curved) Type III Ricci flow solutions. We mainly analyze the asymptotic geometry of Type III self-similar solutions (expanding gradient Ricci soliton) with finite asymptotic curvature ratio. We prove the existence and uniqueness of their asymptotic cones. We also give algebraic and geometric sufficient conditions to guarantee rotational symmetry of such metrics. In the last part, we characterize the geometry of steady gradient Ricci solitons with nonnegative sectional curvature and linear volume growth. Finally, we study the non-collapsing of three dimensional Riemannian manifold with nonnegative Ricci curvature and finite asymptotic curvature ratio.
6

Cubulations de variétés hyperboliques compactes / Cubulations of closed hyperbolic manifolds

Dufour, Guillaume 23 March 2012 (has links)
Cette thèse est une contribution au domaine des cubulations de groupes hyperboliques au sens de Gromov. Nous nous intéressons au cas particulier des groupes fondamentaux de variétés hyperboliques réelles compactes. La philosophie inspirée dans ce domaine par les travaux de M. Sageev est que si un groupe hyperbolique possède suffisamment de sous-groupes de codimension 1 quasi-convexes, alors il agit géométriquement sur un complexe cubique CAT(0) de dimension finie. Nous démontrons un critère précis de cubulation pour les groupes fondamentaux de variétés hyperboliques compactes, à l'aide de constructions d'espaces à murs quasi-isométriques à l'espace hyperbolique réel. Nous nous restreignons par la suite au cas particulier de la dimension 3 et plus particulièrement aux 3-variétés hyperboliques compactes virtuellement fibrées sur le cercle. Nous exploitons alors une construction de surfaces immergées incompressibles dites coupées-croisées due à D. Cooper, D. Long et A. Reid dans une telle 3-variété M pour fabriquer des sous-groupes de surface de son groupe fondamental~G. En raffinant des arguments de J. Masters et en exploitant la structure de l'application de Cannon-Thurston, nous parvenons à construire des sous-groupes de surfaces quasi-convexes de G en quantité suffisante pour que leurs ensembles limites permettent de séparer toutes les paires de points distincts du bord du revêtement universel de M. En conséquence de cette construction, G agit géométriquement sur un complexe cubique CAT(0) de dimension finie. D. Wise soulève alors la question de savoir si ce groupe G peut agir géométriquement et également virtuellement co-spécialement (au sens de F. Haglund et D. Wise) sur un complexe cubique CAT(0). Une réponse positive résoudrait les conjectures selon lesquelles G est large et le premier nombre de Betti virtuel de M est infini. Nous faisons remarquer que pour obtenir une réponse positive à cette question, il suffit de trouver une surface coupée-croisée virtuellement plongée dans un revêtement fini fibré sur le cercle de M. Nous concluons en présentant des conditions algébriques, puis géométriques et cohomologiques suffisantes pour qu'une surface coupée-croisée donnée soit virtuellement plongée. / This thesis contributes to the study of geometric actions of word-hyperbolic groups on finite dimensional CAT(0) cube complexes. We are mainly interested in the case of fundamental groups of closed hyperbolic manifolds. The philosophy coming from pioneer work of M. Sageev is that a hyperbolic group with sufficiently many quasi-convex codimension one subgroups acts geometrically on a finite dimensional CAT(0) cube complex. We prove a precise criterion for cubulation in the case of closed hyperbolic manifolds, by constructing spaces with walls quasi-isometric to real hyperbolic space. We next focus on the case of three dimensional closed hyperbolic manifolds which are virtually fibered over the circle. In this setting, we use a construction of incompressibly immersed cut-and-cross-join surfaces due to D. Cooper, D. Long and A. Reid that yields surface subgroups of the fundamental group G of the 3-manifold M. By expanding on work of J. Masters and using the structure of the Cannon-Thurston map, we are able to build many quasi-convex surface subgroups of G whose limits sets may be used to separate any pair of distinct points in the boundary of the universal cover of M. As a consequence, G acts geometrically on a finite dimensional CAT(0) cube complex. D. Wise then asks if it is possible that G acts both geometrically and virtually co-specially (in the sense of F. Haglund and D. Wise) on a CAT(0) cube complex. A positive answer would solve the long-standing conjectures that G is large and M has infinite virtual first Betti number. We then explain why finding a virtually embedded cut-and-cross-join surface in a finite cover of M would be enough to solve this problem. Finally, we give some algebraic and then geometric and cohomological sufficient conditions for a given cut-and-cross-join surface to virtually embed.
7

Théorèmes d'annulation et théorèmes de structure sur les variétés kähleriennes compactes

Cao, Junyan 18 September 2013 (has links) (PDF)
L'objet principal de cette thèse est de généraliser un certain nombre de résultats bien connus de la géométrie algébrique au cas kählerien non nécessairement projectif. On généralise d'abord le théorème d'annulation de Nadel au cas kählerien arbitraire. On obtient aussi un cas particulier du théorème d'annulation de Kawamata-Viehweg pour les variétés qui admettent une fibration vers un tore dont la fibre générique est projective. En utilisant ce résultat, on étudie le problème de déformation pour les variétés kählériennes compactes sous une hypothèse portant sur leurs fibrés canoniques. On étudie enfin les variétés à fibré anticonique nef. On montre que si le fibré anticanonique est nef, alors le fibré tangent est à pentes semi-positif relative à la filtration de Harder-Narasimhan pour la polarization $\omega_X ^{n-1}$. Comme application, on donne une preuve simple de la surjectivité de l'application d'Albanese, et on étudie aussi la trivialité locale de l'application d'Albanese.
8

Equations aux dérivées partielles elliptiques du quatrième ordre avec exposants critiques de Sobolev sur les variétés riemanniennes avec et sans bord

CARAFFA BERNARD, Daniela 23 April 2003 (has links) (PDF)
L'objet de cette thèse est l'étude, sur les variétés riemanniennes compactes $(V_n,g)$ de dimension $n>4$, de l'équation aux dérivées partielles elliptique de quatrième ordre $$(E)\; \Delta^2u+\nabla [a(x)\nabla u] +h(x)u= f(x)|u|^(N-2)u$$ où $a$, $h$, $f$ sont fonction $C^\infty $, avec $f(x)$ fonction constante ou partout positive et $N=(2n\over((n-4)))$ est l'exposant critique. En utilisant la méthode variationnelle on prouve dans le théorème principal que l'équation $(E)$ admet une solution $C^((5,\alpha))(V)$ $0<\alpha<1$ non nulle si une certaine condition qui dépend de la meilleure constante dans les inclusion de Sobolev ($H_2\subset L_(2n\over(n-4))$) est satisfaite. De plus on montre que si $a$ et $h$ sont des fonctions constantes bien précisées la solution de l'équation est positive et $C^\infty(V)$. Lorsque $n\geq 6$, on donne aussi des applications du théorème principal. Dans la dernière partie de cette thèse sur une variété riemannienne compacte à bord de dimension $n$, $(\overline(W)_n,g )$ nous nous intéressons au problème : $$ (P_N) \; \left\lbrace \begin(array)(c) \Delta^2 v+\nabla [a(x)\nabla u] +h(x) v= f(x)|v |^(N-2)v \; \hbox(sur)\; W \\ \Delta v =\delta \, , \, v = \eta \;\hbox(sur) \;\partial W \end(array)\right.$$ avec $\delta$,$\eta$,$f$ fonctions $C^\infty (\overline (W))$ avec $f(x)$ fonction partout positive et on démontre l'existence d'une solution non triviale pour le problème $(P_N)$.
9

Equations hessiennes complexes sur des variétés kählériennes compactes

Jbilou, Asma 19 February 2010 (has links) (PDF)
Sur une variété kählérienne compacte connexe de dimension $2m$, $\omega $ étant la forme de Kähler, $\Omega $ une forme volume donnée dans $[\omega ]^m$ et $k$ un entier $1

Page generated in 0.1052 seconds