Spelling suggestions: "subject:"vast"" "subject:"vas""
21 |
Optimization of Ionic Conductivity in Doped Ceria Using Density Functional Theory and Kinetic Lattice Monte CarloJanuary 2011 (has links)
abstract: Fuel cells, particularly solid oxide fuel cells (SOFC), are important for the future of greener and more efficient energy sources. Although SOFCs have been in existence for over fifty years, they have not been deployed extensively because they need to be operated at a high temperature (∼1000 °C), are expensive, and have slow response to changes in energy demands. One important need for commercialization of SOFCs is a lowering of their operating temperature, which requires an electrolyte that can operate at lower temperatures. Doped ceria is one such candidate. For this dissertation work I have studied different types of doped ceria to understand the mechanism of oxygen vacancy diffusion through the bulk. Doped ceria is important because they have high ionic conductivities thus making them attractive candidates for the electrolytes of solid oxide fuel cells. In particular, I have studied how the ionic conductivities are improved in these doped materials by studying the oxygen-vacancy formations and migrations. In this dissertation I describe the application of density functional theory (DFT) and Kinetic Lattice Monte Carlo (KLMC) simulations to calculate the vacancy diffusion and ionic conductivities in doped ceria. The dopants used are praseodymium (Pr), gadolinium (Gd), and neodymium (Nd), all belonging to the lanthanide series. The activation energies for vacancy migration between different nearest neighbor (relative to the dopant) positions were calculated using the commercial DFT code VASP (Vienna Ab-initio Simulation Package). These activation energies were then used as inputs to the KLMC code that I co-developed. The KLMC code was run for different temperatures (673 K to 1073 K) and for different dopant concentrations (0 to 40%). These simulations have resulted in the prediction of dopant concentrations for maximum ionic conductivity at a given temperature. / Dissertation/Thesis / Ph.D. Materials Science and Engineering 2011
|
22 |
Carbon Nanotube Raman Spectra Calculations using Density Functional TheoryJirlén, Johan, Kauppi, Emil January 2017 (has links)
Utilizing density functional theory (DFT) the Vienna Ab initio Simulation Package (VASP) was used to calculate the Raman spectra for five single-walled carbon nanotubes (SWCNTs) with chiralities (4,4), (6,6), (8,0), (12,0) and (7,1). The radial breathing mode (RBM), when compared with experimental frequencies, shows good correlation. When compared to RBM:s calculated with tight binding the frequencies calculated with DFT displayed higher accuracy. The precision of G-band frequencies were inconclusive due to lack of experimental data. The frequencies did not agree well with the results from tight-binding theory. The correctness of the Raman activity estimations using results from DFT calculations was found to be questionable. An unknown mode, which was found to be highly Raman active in the calculated spectra of (4,4), (6,6), and possibly (8,0), and (12,0), is also discussed. It was concluded that further calculations on larger tubes, especially armchair tubes are relevant for future studies. Further verification of the determination of Raman activity is also needed. / F7042T - Project in Engineering Physics
|
23 |
Defects in ceriaGidby, Marcus January 2009 (has links)
<p>The solid oxide fuel cell (SOFC) technology has been under research since thelate 1950s, and most of the research has been on designs utilizing yttria stabilized zirconia (YSZ) as the electrolyte of choice. However, the SOFC technology has the major drawback of requiring high operation temperatures (up to 1000 degrees Celcius), so research of alternative materials have come into interest that would possibly require a lower working temperature without any significant loss of conductivity.One such material of interest for the electrolyte is compounds of ceriumdioxide (ceria). Ceria is well known for its ability to release oxygen by formingoxygen vacancies under oxygen-poor conditions, which increases its oxygen ionconductivity, and works at a lower temperature than the YSZ compounds whenproperly doped. Conversely, ceria is also able to absorb oxygen under oxygen-rich conditions, and those two abilities make it a very good material to use in catalytic converters for reduction of carbon monoxide and nitrogen oxide emission. The ability for the oxygen ions to easily relocate inbetween the different lattice sites is likely the key property of oxygen ion transportation in ceria. Also, in oxygen-rich conditions, the absorbed oxygen atom is assumed to join the structure at either the roomy octrahedral sites, or the vacant tetrahedral sites. Following that, the oxygen atom may relocate to other vacant locations, given it can overcome a possible potential barrier.</p><p>This thesis studies how those interstitial oxygen vacancies (defects) affect theenergy profile of ceria-based supercells by first principles calculations. The system is modeled within the density functional theory (DFT) with aid of (extended) local density approximation (LDA+U) using the software VASP. Furthermore, it is studied how those vacancies affect neighbouring oxygen atoms, and wether or not it is energetically benificial for the neighbouring atoms to readjust their positions closer or further away from the vacancy. The purpose of this thesis is to analyze wether or not it is theoretically possible that interstitial oxygen vacancies may cause neighbouring oxygen atoms to naturally relocate to the octahedral site in ceria, and how this affects the overall energy profile of the material.</p>
|
24 |
Defects in ceriaGidby, Marcus January 2009 (has links)
The solid oxide fuel cell (SOFC) technology has been under research since thelate 1950s, and most of the research has been on designs utilizing yttria stabilized zirconia (YSZ) as the electrolyte of choice. However, the SOFC technology has the major drawback of requiring high operation temperatures (up to 1000 degrees Celcius), so research of alternative materials have come into interest that would possibly require a lower working temperature without any significant loss of conductivity.One such material of interest for the electrolyte is compounds of ceriumdioxide (ceria). Ceria is well known for its ability to release oxygen by formingoxygen vacancies under oxygen-poor conditions, which increases its oxygen ionconductivity, and works at a lower temperature than the YSZ compounds whenproperly doped. Conversely, ceria is also able to absorb oxygen under oxygen-rich conditions, and those two abilities make it a very good material to use in catalytic converters for reduction of carbon monoxide and nitrogen oxide emission. The ability for the oxygen ions to easily relocate inbetween the different lattice sites is likely the key property of oxygen ion transportation in ceria. Also, in oxygen-rich conditions, the absorbed oxygen atom is assumed to join the structure at either the roomy octrahedral sites, or the vacant tetrahedral sites. Following that, the oxygen atom may relocate to other vacant locations, given it can overcome a possible potential barrier. This thesis studies how those interstitial oxygen vacancies (defects) affect theenergy profile of ceria-based supercells by first principles calculations. The system is modeled within the density functional theory (DFT) with aid of (extended) local density approximation (LDA+U) using the software VASP. Furthermore, it is studied how those vacancies affect neighbouring oxygen atoms, and wether or not it is energetically benificial for the neighbouring atoms to readjust their positions closer or further away from the vacancy. The purpose of this thesis is to analyze wether or not it is theoretically possible that interstitial oxygen vacancies may cause neighbouring oxygen atoms to naturally relocate to the octahedral site in ceria, and how this affects the overall energy profile of the material.
|
25 |
Approche théorique et expérimentale combinée dans l’exploration de LiFeV2O7 et son application comme matériau d’électrode positive pour batterie aux ions lithiumBenabed, Yasmine 10 1900 (has links)
No description available.
|
26 |
Etude théorique de la transition de spin dans la molécule Fe(phen)2(NCS)2 adsorbée sur des surfaces métalliques / Theoretical study of the spin crossover in a single Fe(phen)2(NCS)2 molecule adsorbed onto metallic substratesGueddida, Saber 24 September 2014 (has links)
L’objectif principal de cette thèse est d’utiliser le calcul ab initio fondé sur la théorie de la densité fonctionnelle (DFT) pour calculer et comprendre la transition HS-BS de la molécule FePhen adsorbée sur un substrat métallique. Il s’agit d’abord de décrire les interactions entre FePhen et un substrat métallique ferromagnétique, comme le Co, ou un substrat paramagnétique comme l’or ou le cuivre. Nous avons calculé la barrière de potentiel nécessaire pour basculer la molécule de l’état BS à l’état HS en utilisant la méthode ’Nudged Elastic Band’ (NEB) et développé une méthode basée sur les principes de la méthode NEB, pour déterminer la trajectoire d’énergie minimale (TEM) de la molécule adsorbée sur un substrat métallique. Nous avons calculé le couplage ferromagnétique entre la molécule et le cobalt en fonction du nombre de couches intermédiaires de cuivre. Nous avons étudié en particulier (1) le rôle joué par les interactions van der Waals, (2) la modélisation de la microscopie à effet tunnel (STM) et (3) les propriétés de transport. Nous avons calculé les images STM en utilisant l’approximation de Tersoff et Hamann, qui montrent un bon accord avec les résultats expérimentaux. Nous vons étudié les propriétés de transport de la molécule FePhen adsorbée sur une surface métallique, en utilisant le code Smeagol basé sur la méthode des fonctions de Green hors-équilibre, et le formalisme de Landauer. / The main objective of this PhD thesis is to use ab initio methods based on DFT to calculate and understand the mechanism of spin crossover phenomena in FePhen molecule adsorbed on a metallic substrate. We studied the structural, electronic and magnetic properties of the free and adsorbed FePhen molecule on a ferromagnetic metal substrate, such as cobalt, or a paramagnetic substrate such as gold or copper. We calculated the energy barrier required for the molecule to switch from low-spin to high-spin states using the ’Nudged Elastic Band’ (NEB) method. We also computed the ferromagnetic coupling between two magnetic layers, the magnetic FePhen molecule and the cobalt substrate according to the number of non-magnetic intermediate layer of copper. The focus is mainly on (1) the role played by van der Waals interactions, (2) the modeling of scanning tunneling microscopy (STM) and (3) the transport properties. We calculated the STM images using the Tersoff-Hamann approximation, which showed a good agreement with recent experimental STM images. We studied the transport properties of the adsorbed molecule FePhen on a metallic surface, using the Smeagol code which is based on the non-equilibrium Green’s function and Landauer formalism.
|
27 |
Theoretical investigation of α-iron chromium carbide (α-Fe/Cr7C3) interfaces / Teoretisk undersökning av gränssnittet mellan α-järn och kromkarbid (α-Fe/Cr7C3)Al-Hussein, Hussein January 2023 (has links)
This master thesis presents a theoretical investigation of the energy and stability of interfaces in iron-carbide compounds, specifically focusing on the α-Fe/Cr7C3 system. The study aims to fill the gap in knowledge regarding the surface energetics of these interfaces using Density Functional Theory (DFT). Six different α-Fe/Cr7C3 interfaceswere constructed α-Fe(001)/Cr7C3(024), α-Fe(001)/Cr7C3(202), α-Fe(001)/Cr7C3(040),α-Fe(110)/Cr7C3(024), α-Fe(110)/Cr7C3(202) and α-Fe(110)/Cr7C3(040). Due to limited computational resources, only one of them was computationally analyzed to determine its interfacial energy value. The results revealed that the interfacial energy of the α-Fe(001)/Cr7C3(040) interface falls within the range of incoherent interfaces, indicating its stability. The computed interfacial energy values ranged from 0.94 to 3.39 J/m2, consistent with similar studies on other iron interfaces. The simulations also identified minimum and local minimum points in the interface energy curve, representing stable configurations at specific interface separation distances. The presence of a minimum point at an interface separation value of d = 1.3551 Å with an interfacial energy of 0.94 J/m2 indicates the most stable configuration, while a local minimum point at d = 2.27 Å with an interfacial energy of 2.12 J/m2 suggests another stable configuration for the interface. The conclusion that the computations were correctly performed with an interfacial energy value of 0.94 J/m2 for the most stable configuration at a supercell length (aSupercell ) of 22.23 Å is drawn. The findings of this research have significant implications for future investigations and applications. Firstly, this study fills the gap of the unresearched ferrite-carbide interfaces with theoretical data. Secondly, the knowledge gained from studying these interfaces contributes to understanding hydrogen interactions, which is fundamental for the transition towards a hydrogen economy. Additionally, the incoherent nature of the interface introduces challenges in understanding material behavior and properties, necessitating further investigations for designing efficient systems. Future work includes experimental validation of the α-Fe/Cr7C3 interface to compare the theoretical and experimental energies and stability. Investigating the remaining interfaces and examining the effects of introducing hydrogen atoms in these interfaces, along with calculating the corresponding hydrogen trapping energies, are important research areas. Further advancements in understanding these interfaces can be achieved through interface engineering, multiscale modeling, and studying other iron-carbide systems. / Detta examensarbete presenterar en teoretisk undersökning av energin och stabiliteten hos gränssnitt i järnkarbidföreningar och fokuserar specifikt på α-Fe/Cr7C3-systemet. Studien syftar till att fylla kunskaps tomrummet gällande ytegenskaperna hos dessa gränssnitt genom användning av densitetsfunktionalteori (DFT). Sex olika α-Fe/Cr7C3-gränssnitt konstruerades α-Fe(001)/Cr7C3(024), α-Fe(001)/Cr7C3(202), α-Fe(001)/Cr7C3(040), α-Fe(110)/Cr7C3(024), α-Fe(110)/Cr7C3(202) och α-Fe(110)/Cr7C3(040). På grund av begränsade beräkningsresurser analyserades endast ett av dem för att bestämma dess gränssnittsenergivärde. Resultaten visade att gränssnittsenergin för α-Fe(001)/Cr7C3(040)- gränssnittet ligger inom intervallet för inkoherenta gränssnitt, vilket indikerar dess stabilitet. De beräknade gränssnittsenergivärdena varierade mellan 0,94 och 3,39 J/m2 , vilket är i linje med liknande studier där järngränssnitt studeras. Minimi och lokala minimipunkter i gränssnittets energikurva, vilket representerar stabila konfigurationer vid specifika avstånd mellan gränssnittet. Förekomsten av en minimipunkt vid ett gränssnittsavstånd på d = 1,35 Å med en gränssnittsenergi på 0,94 J/m2 indikerar den mest stabila konfigurationen, medan en lokal minimipunkt vid d = 2,27 Å med en gränssnittsenergi på 2,12 J/m2 antyder en annan stabil konfiguration för gränssnittet. Slutsatsen dras att beräkningarna utfördes korrekt med ett gränssnittsenergivärde på 0,94 J/m2 för den mest stabila konfigurationen vid en supercellslängd (aSupercell) på 22,23 Å. Fynden från denna forskning har betydande implikationer för framtida undersökningar och tillämpningar. För det första fyller denna studie kunskapsgapet gällande de otillräckligt utforskade ferrit-karbidgränssnitten med teoretisk data. För det andra bidrar den erhållna kunskapen från studiet av dessa gränssnitt till förståelsen av väteinteraktioner, vilket är grundläggande för övergången till en väteekonomi. Dessutom innebär gränssnittets inkoherenta natur utmaningar när det gäller att förstå materialbeteende och egenskaper, vilket kräver ytterligare undersökningar för att utforma effektiva system. Framtida arbete inkluderar experimentell validering av gränssnittet mellan α-Fe/Cr7C3 för att jämföra teoretiska och experimentella energier och stabilitet. Att undersöka återstående gränssnitt och undersöka effekterna av att introducera väteatomer i dessa gränssnitt och beräkna motsvarande vätefällningsenergier är viktiga forskningsområden. Gränssnittsdesign, flerskalig modellering och studier av andra järnkarbid-system kan ytterligare främja förståelsen av dessa gränssnitt.
|
28 |
Theoretical modeling of molar volume and thermal expansionLu, Xiao-Gang January 2005 (has links)
<p>Combination of the Calphad method and theoretical calculations provides new possibilities for the study of materials science. This work is a part of the efforts within the CCT project (Centre of Computational Thermodynamics) to combine these methods to facilitate modeling and to extend the thermodynamic databases with critically assessed volume data. In this work, the theoretical calculations refer to first-principles and Debye-Grüneisen calculations. The first-principles (i.e. ab initio) electronic structure calculations, based on the Density- Functional Theory (DFT), are capable of predicting various physical properties at 0 K, such as formation energy, volume and bulk modulus. The ab initio simulation software, VASP, was used to calculate the binding curves (i.e. equation of state at 0 K) of metallic elements, cubic carbides and nitrides. From the binding curves, the equilibrium volumes at 0 K were calculated for several metastable structures as well as stable structures. The vibrational contribution to the free energy was calculated using the Debye-Grüneisen model combined with first-principles calculations. Two different approximations for the Grüneisen parameter, γ, were used in the Debye-Grüneisen model, i.e. Slater’s and Dugdale-MacDonald’s expressions. The thermal electronic contribution was evaluated from the calculated electronic density of states. The calculated thermal expansivities for metallic elements, cubic carbides and nitrides were compared with Calphad assessments. It was found that the experimental data are within the limits of the calculations using the two approximations for γ. By fitting experimental heat capacity and thermal expansivity around Debye temperatures, we obtained optimal Poisson’s ratio values and used them to evaluate Young’s and Shear moduli. In order to reach a reasonable agreement with the experiments, it is necessary to use the logarithmic averaged mass of the constitutional atoms. The agreements between the calculations and experiments are generally better for bulk modulus and Young’s modulus than that for shear modulus. A new model describing thermodynamic properties at high pressures was implemented in Thermo-Calc. The model is based on an empirical relation between volume and isothermal bulk modulus. Pure Fe and solid MgO were assessed using this model. Solution phases will be considered in a future work to check the model for compositional dependence.</p>
|
29 |
Theoretical modeling of molar volume and thermal expansionLu, Xiao-Gang January 2005 (has links)
Combination of the Calphad method and theoretical calculations provides new possibilities for the study of materials science. This work is a part of the efforts within the CCT project (Centre of Computational Thermodynamics) to combine these methods to facilitate modeling and to extend the thermodynamic databases with critically assessed volume data. In this work, the theoretical calculations refer to first-principles and Debye-Grüneisen calculations. The first-principles (i.e. ab initio) electronic structure calculations, based on the Density- Functional Theory (DFT), are capable of predicting various physical properties at 0 K, such as formation energy, volume and bulk modulus. The ab initio simulation software, VASP, was used to calculate the binding curves (i.e. equation of state at 0 K) of metallic elements, cubic carbides and nitrides. From the binding curves, the equilibrium volumes at 0 K were calculated for several metastable structures as well as stable structures. The vibrational contribution to the free energy was calculated using the Debye-Grüneisen model combined with first-principles calculations. Two different approximations for the Grüneisen parameter, γ, were used in the Debye-Grüneisen model, i.e. Slater’s and Dugdale-MacDonald’s expressions. The thermal electronic contribution was evaluated from the calculated electronic density of states. The calculated thermal expansivities for metallic elements, cubic carbides and nitrides were compared with Calphad assessments. It was found that the experimental data are within the limits of the calculations using the two approximations for γ. By fitting experimental heat capacity and thermal expansivity around Debye temperatures, we obtained optimal Poisson’s ratio values and used them to evaluate Young’s and Shear moduli. In order to reach a reasonable agreement with the experiments, it is necessary to use the logarithmic averaged mass of the constitutional atoms. The agreements between the calculations and experiments are generally better for bulk modulus and Young’s modulus than that for shear modulus. A new model describing thermodynamic properties at high pressures was implemented in Thermo-Calc. The model is based on an empirical relation between volume and isothermal bulk modulus. Pure Fe and solid MgO were assessed using this model. Solution phases will be considered in a future work to check the model for compositional dependence.
|
30 |
Geometries and stabilities of Ag-doped Sin (n=1-16) clusters: a first-principles studyHsieh, Yun-Yi 01 July 2008 (has links)
The structures of AgSin (n = 1 ¡V 16) clusters are investigated using first-principles calculations.
Our studies suggest that AgSin clusters with n = 7, 10, and 15 are relatively
stable isomers and that these clusters prefer to be exohedral rather than endohedral.
Moreover, doping leaves the inner core structure of the clusters largely intact. Additionally,
the plot of fragmentation energies as a function of silicon atoms shows
that the AgSin are favored to dissociate into one Ag atom and Sin clusters. Alternative
pathways exist for n > 7 (except n = 11 and 16) in which the AgSin cluster dissociates
into a stable Si7 and a smaller fragment AgSin7. The AgSi11 and AgSi16 cluster dissociates
into a stable Si10 and a small fragment AgSi. Lastly, our analysis indicates that
doping of Ag atom significantly decreases the gaps between the highest occupied
molecular orbital and the lowest unoccupied molecular orbital for n > 7.
|
Page generated in 0.0813 seconds