• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 20
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 168
  • 168
  • 122
  • 118
  • 59
  • 27
  • 26
  • 21
  • 15
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Differentiation of the vegetation-soil system through the interactions of soil N and P availabilities along an elevational gradient on Yakushima Island, Japan / 屋久島における標高傾度に沿った土壌窒素・リン可給性の相互作用を介した土壌-植生系の分化

Mukai, Mana 23 May 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第21968号 / 農博第2358号 / 新制||農||1070(附属図書館) / 学位論文||R1||N5219(農学部図書室) / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 北山 兼弘, 教授 小杉 緑子, 教授 舟川 晋也 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
122

Development of geochemical identification and discrimination by Raman spectroscopy. The development of Raman spectroscopic methods for application to whole soil analysis and the separation of volcanic ashes for tephrachronology

Surtees, Alexander P.H. January 2015 (has links)
Geochemistry plays a vital role in our understanding mechanisms behind major geological systems such as the Earth's crust and its oceans (Albarède, F. 2003). More recently, geo-chemistry has played a vital role in the field of forensic investigation and in period dating. Forensic soil samples have been traditionally analysed via examinations of colour, texture and mineral content by physical or chemical methods. However, these methods leave any organic or water-soluble fractions unexamined. Tephrochronology (the dating of sedimentary sequences using volcanic ash layers) is an important tool for the dating and correlation of sedimentary sequences containing archives and proxies of past environmental change. Its importance in this area has increased since the increased free carbon in out atmosphere has made radio-carbon dating unreliable. Tephrochronology requires successful geo-chemical identification of the tephras, a method reliant on electron probe micro-analysis (EPMA) to analyse major element composition. However, it is often impossible to differentiate key tephra layers using EPMA alone. Raman spectroscopy is commonly used in chemistry, since vibrational information is specific to the chemical bonds and symmetry of molecules, and can provide a fingerprint by which these can be identified. Here, we demonstrate how Raman spectroscopy can be used for the successful discrimination of mineral species in tephra through the analysis of individual glass shards. We further demonstrate how, with the use of oxidative preparation methods, Raman spectroscopy can be used to successfully discriminate between soil types using mineralogy as well as the organic and water-soluble fractions of soils.
123

VOLCANIC ASH AS A CAUSE FOR MASS KILLS OF DECAPOD CRUSTACEANS DURING THE MIOCENE IN NORTHERN PATAGONIA

Maguire, Evin P. 06 October 2015 (has links)
No description available.
124

The Effect of Volcanic Ash Deposition on Marine Environments, Invertebrate Ecosystems and Fossil Preservation: Integrating Field Observations and Laboratory Experiments

MAGUIRE, EVIN P. 21 July 2022 (has links)
No description available.
125

STRATIGRAPHIC REEVALUATION OF MOLLIES NIPPLE, KANE COUNTY, UTAH, USA TO BETTER UNDERSTAND THE ORIGIN OF ALUNITE AND JAROSITE CEMENTS

Walker, Jordan Thomas 01 August 2022 (has links)
Mollies Nipple is a butte located in Kane County, Utah and is part of Grand Staircase-Escalante National Monument (GSENM). Mollies Nipple is now of particular interest to the Mars research community because of the presence of unusual diagenetic alunite and jarosite minerals. These minerals are present in sedimentary environments on Mars and have been used to interpret the diagenetic and depositional environments as acidic and/or arid. On Earth, these minerals are present in modern acid saline lakes, fumaroles, or acid mine drainage, but not commonly as diagenetic cements. The butte was mapped as Navajo Sandstone via photogeologic mapping, but the apex is 200 m higher than the surrounding upper extent of that unit in adjacent areas and there are some lithological inconsistencies that suggest the caprock may be a different overlying formation. Correctly understanding the diagenetic and depositional history of Mollies Nipple will inform future studies on Mars and has the potential to change the paradigm of these interpreted jarosite-bearing Martian environments. Stratigraphic sections were measured in the field and samples were collected for laboratory analysis. The dominant lithofacies is a cross-bedded quartz arenite. Structureless quartz arenite to wacke with lenticular green-gray quartz wacke (ash) is also present. Jarosite cement is common in upper sections of Mollies Nipple and is present, but sparse, in lower section of Mollies Nipple. Alunite is present in the upper section of Mollies Nipple. ANOVA conducted on point count data from samples collected from Nipple and representative samples of potential formations at Mollies Nipple do not differentiate between the possible formation candidate and Navajo Sandstone. Based on distribution of lithofacies, comparison with adjacent outcrops of Temple Cap Formation, Page Sandstone, and Carmel Formation, we conclude that the caprock at Mollies Nipple is most likely the Temple Cap Formation.
126

Electrical resistivity changes in tuffs

Morrow, Carolyn Alexandria January 1979 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Science, 1979. / Microfiche copy available in Archives and Science. / Bibliography: leaf 93. / by Carolyn Alexandria Morrow. / M.S.
127

Dispersion modelling of volcanic emissions / Spridningsmodellering av utsläpp från vulkaner

Dingwell, Adam January 2016 (has links)
Gases and particles released by volcanoes pose a serious hazard to humans and society. Emissions can be transported over long distances before being reduced to harmless concentrations. Knowing which areas are, or will be, exposed to volcanic emissions is an important part inreducing the impact on human health and society. In this thesis, the dispersion of volcanic emissions is studied using a set of atmospheric models. The work includes contribution to the development of the Lagrangian Particle Dispersion Model FLEXPART-WRF. Three case studies have been performed, one studying potential ash emissions from potential future eruptions on Iceland, a second covering SO2 emissions from Mt. Nyiragongo in D.R. Congo, and a third studying the SO2 emission rate of the Holuhraun eruption (Iceland) in 2014–2015. The first study covers volcanic ash hazard for air traffic over Europe. Three years of meteorological data are used to repeatedly simulate dispersion from different eruption scenarios. The simulations are used to study the probability of hazardous concentrations in ash in European airspace. The ash hazard shows a seasonal variation with a higher probability of efficient eastward transport in winter, while summer eruptions pose a more persistent hazard. In the second study, regional gas exposure around Mt. Nyiragongo is modelled using flux measurements to improve the description of the emission source. Gases are generally transported to the north-west in June–August and to the south-west in December–January. A diurnal variation due to land breeze around lake Kivu contributes to high concentrations of SO2 along the northern shore during the night. Potentially hazardous concentrations are occasionally reached in populated areas in the region, but mainly during the nights. The third study uses inverse dispersion modelling to determine the height and emission rates based on traverse measurements of the plume at 80–240 km from the source. The calculated source term yields better agreement with satellite observations compared to commonly used column sources. The work in this thesis presents improvements in dispersion modelling of volcanic emissions through improved models, more accurate representation of the source terms, and through incorporating new types of measurements into the modelling systems. / Gas- och partikelutsläpp från vulkaner utgör en fara för människor och för vårt samhälle. Utsläppen kan transporteras över långa avstånd innan de reduceras till oskadliga halter. Att känna till vilka områden som utsätts för, eller kommer utsättas för, utsläppen är ett viktigt verktyg föratt minska påverkan på folkhälsa och samhälle. I avhandlingen studeras spridningen av utsläpp från vulkanutbrott med hjälp av en uppsättning numeriska atmosfärsmodeller. Den Lagrangiska Partikelspridningsmodellen FLEXPART-WRF har förbättrats och applicerats för spridningsmodellering av vulkanutbrott. Tre studier har utförts, en fokuserar på vulkanaska från potentiella framtida utbrott på Island, den andra studerar SO2-ustläpp från vulkanen Nyiragongo i Demokratiska Republiken Kongo, och den tredje studerar SO2-ustläpp från utbrottet i Holuhraun (Island) 2014–2015. Den första studien uppskattar sannolikheten för att vulkanaska från framtida vulkanutbrott på Island ska överskrida de gränsvärden som tillämpas för flygtrafik. Tre år av meteorologisk data används för att simulera spridningen från olika utbrottsscenarier. Sannolikheten för skadliga halter aska varierar med årstid, med en högre sannolikhet för effektiv transport österut under vintermånaderna, sommarutbrott är istället mer benägna att orsaka långvariga problem överspecifika områden. In den andra studien undersöks spridningen av SO2 från Nyiragongo över en ettårsperiod. Flödesmätningar av plymen används för att förbättra källtermen i modellen. Gaserna transporteras i regel mot nordväst i juni–augusti och mot sydväst i december–februari En dygnsvariation, kopplad till mesoskaliga processer runt Kivusjön, bidrar till förhöjda halter av SO2 nattetid längs Kivusjöns norra kust. Potentiellt skadliga halter av SO2 uppnås av och till i befolkade områden men huvudsakligen nattetid. Den tredje studien utnyttjar inversmodellering för att avgöra plymhöjd och gasutsläpp baserat på traversmätningar av plymen runt 80–240 km från utsläppskällan. Den beräknade källtermen resulterar i bättre överensstämmelse mellan modell- och satellitdata jämfört med enklare källtermer. Arbetet i den här avhandlingen presenterar flertalet förbättringar för spridningsmodellering av vulkanutbrott genom bättre modeller, nogrannare beskrivning av källtermer, och genom nya metoder för tillämpning av olika typer av mätdata.
128

Field Mapping Investigation and Geochemical Analysis of Volcanic Units within the Dinner Creek Tuff Eruptive Center, Malheur County, Eastern Oregon

Cruz, Matthew 05 September 2017 (has links)
The Dinner Creek Tuff is a mid-Miocene rhyolitic to dacitic ignimbrite, consisting of four cooling units with 40Ar/39Ar ages 16--15 Ma. Previous geologists have suspected that the source of the tuff is located in northwestern Malheur County, eastern Oregon. This broad area is called the Dinner Creek Tuff Eruptive Center. This thesis summarizes field work, XRF/ICP-MS geochemistry, thin section petrography, and SEM feldspar analysis from the summers of 2015 and 2016. The main purpose of this study is to identify sources for the Dinner Creek Tuff units within the Dinner Creek Tuff Eruptive Center. The secondary purpose is to map lava flows that pre-date and post-date the Dinner Creek Tuff, and correlate them with regionally extensive volcanic units. Two volcanic centers related to the Dinner Creek Tuff were identified. The southern volcanic center, centered at Castle Rock, is a caldera and source of the Dinner Creek Tuff unit 1 (DIT1). Rheomorphic, densely welded DIT1 is over 300 m thick along the east side of Castle Rock. The northwestern margin of the caldera has been uplifted along faults, showing vertically foliated tuff dikes and associated mega-breccia deposits. Up to 200 m of incipiently welded tuffs, and fluvial volcanoclastic sediments were deposited on the caldera floor, which has been uplifted due to resurgence and regional extension, creating the complex structural relationships between the volcanic units. The northern volcanic center is located at Ironside Mountain, where densely welded rheomorphic Dinner Creek Tuff unit 2 (DIT2) is exposed in outcrops over 600 m thick. The top of the DIT2 consists of glassy, moderately welded tuff. Sources for the DIT2 are tuff dikes along the south and western flanks of Ironside Mountain. The thick deposits of DIT2 at Ironside Mountain indicate that the mountain is an uplifted caldera, herein named the Ironside Mountain caldera. Uplift may have been due to resurgence, but it is most likely due to normal faulting along the Border Fault, a major regional normal fault that strikes across the northern margin of the caldera. Pre-Dinner Creek Tuff lava flows occur throughout the study area, and can be correlated with the Strawberry Volcanics and the Basalt of Malheur Gorge. A distinct lava flow, herein called the Ring Butte trachy-basalt occurs within the center of the study area, and is distinct from regional lava flows. Following the eruptions of the Dinner Creek Tuff units 1 & 2, aphyric basaltic-andesite and icelandite intrude into, and overlie the intra-caldera tuffs and caldera floor sediments at both calderas. These aphyric lavas are similar in appearance and stratigraphic position with the regionally extensive Hunter Creek basalt. Porphyritic olivine basalt overlies the aphyric Hunter Creek basalt at the Castle Rock caldera. This porphyritic lava is similar in appearance and major/trace element geochemistry to the regional Tim's Peak basalt.
129

Compositional and Physical Gradients in the Magmas of the Devine Canyon Tuff, Eastern Oregon: Constraints for Evolution Models of Voluminous High-silica Rhyolites

Isom, Shelby Lee 08 September 2017 (has links)
Large-volume silicic ignimbrites erupt from reservoirs that vary in composition, temperature, volatile content and crystallinity. The 9.7 Ma Devine Canyon Tuff (DCT) of eastern Oregon is a large-volume (>250 km3), compositionally zoned and variably welded ignimbrite. The ignimbrite exhibits heterogeneous trace element compositions, variable volatile content and crystallinity. These observations were utilized in the investigation into the generation, accumulation and evolution of the magmas composing the DCT. Building off previous research, pumices were selected from the range of trace element compositions and analyzed with respect to crystallinity, mineral abundances and assemblages. The DCT displays a gradational trace element enrichment and decrease in crystallinity from least evolved, dacite, at ~22% crystals to most evolved high-silica rhyolite at 3% crystals. Two distinct mineral populations of feldspar and clinopyroxene were identified in previous work, one belonging to the rhyolitic magma and the other to the dacitic magma. Volatile content derived from melt inclusion Fourier Transform Infrared (FTIR) spectrometer analysis revealed an increase in water content from 1.2 to 3.7 wt.% in the most evolved rhyolite. The DCT exhibits low and variable δ18O signatures, 4.52‰ to 5.76‰ , based on δ18O values measured on quartz and sanidine. Low δ18O signatures of all DCT rhyolites suggest the incorporation of hydrothermally altered crust into the melt. Furthermore, quartz phenocrysts from all high-silica rhyolite groups display dark oscillatory zoned cores and Ti-rich bright rims. These data provide insight into how these magmas were generated and subsequently stored in the crust. Commonalities of petrographic and compositional features among rhyolites, especially the zoning characteristics of quartz phenocrysts, exclude the possibility of storage and evolution in multiple reservoirs. Envisioning a scenario where all magmas are stored within a single reservoir prior to eruption and assuming rhyolites A and D are the product of partial melting. The mixing of A and D rhyolites produced rhyolite B, and subsequent mixing of intermediate rhyolite B and end-member rhyolite D generated rhyolite C. However, some trace element inconsistencies, between mixing model and observed intermediate rhyolites suggest a secondary process. Post mixing, rhyolites B and C require some modification by fractional crystallization to account for LREE and other inconsistencies between mixed models and observed rhyolites. Finally, the origin of the dacite is likely through mixing of group D rhyolite and an intrusive fractionated basalt, which could have led to the eruption of the Devine Canyon Tuff.
130

Characterization of unsaturated zone hydrologic properties and their influence on lateral diversion in a volcanic tuff at Yucca Mountain, Nevada

Flint, Lorraine E. 19 February 2002 (has links)
The study of the subsurface flow and distribution of water is critical to the evaluation of the unsaturated zone for a potential geologic high-level radioactive waste repository. This site is located at Yucca Mountain, Nevada in the northern Mojave Desert. and was chosen on the basis of its low precipitation, deep unsaturated zone, and layered volcanic rocks providing the potential for natural hydraulic barriers to reduce the downward percolation of water through the waste storage area. The detailed characterization of hydrologic properties is necessary to evaluate the mechanisms responsible for the distribution and flow of water in the unsaturated zone. Analyses in this study have provided detailed hydrogeologic units with unique hydrologic properties and hydraulic parameters. Porosity was determined to be a useful physical property for predicting hydraulic parameters, as it relates to the largescale deterministic processes that created the volcanic rocks. The detailed property dataset, along with field measurements of moisture status, temperature, and chemistry, were used to evaluate the potential for lateral diversion in the rocks above the potential repository. It was determined that lateral diversion is a small-scale process in this natural system. On the basis of analyses performed in this study, it is suggested that large-scale diversion is not likely to occur at this site. This mechanism should not, therefore, be relied upon to perform as a natural hydraulic barrier to flow reducing percolation through the unsaturated zone. / Graduation date: 2002

Page generated in 0.0797 seconds