• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 371
  • 266
  • 73
  • 73
  • 38
  • 36
  • 22
  • 10
  • 10
  • 9
  • 8
  • 5
  • 5
  • 3
  • 2
  • Tagged with
  • 1105
  • 1105
  • 231
  • 218
  • 174
  • 164
  • 150
  • 132
  • 131
  • 102
  • 92
  • 91
  • 88
  • 84
  • 84
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
581

Trihalomethane Removal and Re-Formation in Spray Aeration Processes Treating Disinfected Groundwater

Smith, Cassandra 01 January 2015 (has links)
Historically, chlorination has been widely utilized as a primary and secondary disinfectant in municipal water supplies. Although chlorine disinfection is effective in inactivating pathogenic microbes, the use of chlorine creates the unintentional formation of regulated chemicals. On January 4, 2006, the United States Environmental Protection Agency (EPA) promulgated the Stage 2 Disinfectants/Disinfection by-product rule (DBPR) that focuses on public health protection by limiting exposure to four trihalomethanes (THM) and five haloacetic acids (HAA5), formed when chlorine is used for microbial pathogen control. This thesis examines post-aeration TTHM formation when employing spray-aeration processes to remove semi-volatile TTHMs from chlorinated potable water supplies. A bench scale air stripping unit was designed, constructed and operated to evaluate spray aeration for the removal of the four regulated trihalomethane (THM) species from potable drinking water including bromodichloromethane, bromoform, dibromochloromethane, chloroform. The study was conducted using finished bulk water samples collected from two different water treatment facilities (WTFs) located in Oviedo and Babson Park, Florida. Both treatment plants treat groundwater; however, Oviedo's Mitchell Hammock WTF (MHWTF) supply wells contain dissolved organic carbon and bromide DBP precursors whereas the Babson Park WTF #2 (BPWTF2) supply well contains dissolved organic carbon DBP precursors but is absent of bromide precursor. Three treatment scenarios were studied to monitor impacts on total trihalomethane (TTHM) removal and post-treatment (post-aeration) TTHM formation potential, including 1) no treatment (non-aerated control samples), 2) spray aeration via specially fabricated GridBee® nozzle for laboratory-scale applications, 3) spray aeration via a commercially available manufactured BETE® nozzle used for full-scale applications. Select water quality parameters, chlorine residual, and total trihalomethane concentrations were monitored throughout the study. The GridBee® spray nozzle resulted in TTHM removals ranging from 45.2 ± 3.3% for the BPWTF2 samples, and 37.7 ± 3.1% for the MHWTF samples. The BETE® spray nozzle removed 54.7±3.9% and 48.1±6.6% of total trihalomethanes for the Babson Park and Mitchell Hammock WTF samples, respectively. The lower percent removals at the MHWTF are attributed to the detectable presence of bromide and subsequent formation of hypobromous acid in the samples. Post spray aeration TTHM formation potentials were monitored and it was found that the MHWTF experienced significantly higher formation potentials, once again due to the presence of hypobromous acid which led to increases in overall TTHM formation over time in comparison with the Babson Park WTF #2 TTHM formation samples. In addition, chlorine residuals were maintained post spray aeration treatment, and initial chlorine residual and trihalomethane concentrations did not significantly impact overall spray nozzle performance. Among other findings, it was concluded that spray nozzle aeration is a feasible option for the Babson Park WTF #2 for TTHM compliance. For Oviedo's Mitchell Hammock WTF spray aeration was successful in removing TTHMs, however it was not effective in maintaining DBP rule compliance due to the excessive nature of DBP formation in the water samples. This study was not intended to serve as an assessment of varying nozzle technologies; rather, the focus was on the application of spray aerators for TTHM removal and post-formation in drinking water systems.
582

Challenges and opportunities with shared data for Water Treatment Plants / Utmaningar och möjligheter med delade data mellan vattenverk

Bredhe, Johanna, Hashi, Abdulahi Ismail January 2022 (has links)
The Swedish water sector faces many challenges in terms of climate change, worn out facilities and distribution systems as many of them were built in the 50-, 60- and 70s, but also increased cyber security concerns. Collaborations between different actors are therefore required to address these challenges. This thesis work's purpose is to examine the opportunities a collaboration between water treatment plants could bring for the water sector to achieve a more sustainable drinking water production. The purpose is also to examine the most efficient way to establish a collaboration between them through digital means. A workshop and several interviews with representatives from different water treatment plants were conducted to gather information on possibilities of data/information sharing between them, but also to make a security classification of data/information generated at the water treatment plants. The representatives included process engineers, process technicians, security associates and an associate at Svenskt vatten, an interest organization for the water sector. The result showed that data/information sharing is already taking place in the sector under limited conditions. Smaller VA organizations have more challenges due to lack of skilled workers, partners and time. It is difficult for many in the sector to know where to turn to when in need of help, particularly for smaller VA organizations who usually are the ones with fewer contact networks. It is not to say that only smaller VA organizations are affected but they are more likely to lack contact with other water organizations. The majority of water treatment plants agree on that data/information on treatment processes would be allowed to share under limited conditions. The information classification is a matter for each plant due to different security realities which determines the information classification. This makes it difficult to decide on what parameters could be shared by every water treatment plant. This needs to be investigated further in order to determine what data/information could be shared by most water treatment plants on a platform. Most participants thought that a platform of some kind would be the best solution to simplify data/information sharing between water treatment plants. The suggested platform is a good start for making contacts between water treatment plants and has the potential to enable storage and sharing of data/information in the future. / Den svenska VA sektorn står inför många utmaningar så som klimatförändringar, slitna anläggningar och distributionsnät då många av dem byggdes under 50-, 60- och 70-talet. Även oron kring cybersäkerheten ökar. Samarbeten mellan olika aktörer krävs för att lösa dessa utmaningar. Syftet med examensarbetet är att undersöka de möjligheter som samarbeten mellan vattenverk skulle medföra för att nå en mer hållbar dricksvattenproduktion. Syftet är också att undersöka det mest effektiva sättet att få till ett samarbete mellan vattenverken med digitala medel. En workshop och flertalet intervjuer genomfördes med olika representanter från vattenverk för att samla information om möjligheten med att dela data/information mellan dem. Men också för att göra en säkerhetsklassning av data/information som genereras på vattenverken. Representanterna inkluderade processingenjörer, processtekniker, säkerhetsansvariga samt en medarbetare från Svenskt vatten, en intresseorganisation för vattensektorn. Resultatet visade att delning av data/information redan sker inom sektorn, dock under begränsade former. Mindre VA organisationer har fler utmaningar på grund av brist på anställda med rätt kompetens, samarbetspartners och tid. Många inom sektorn har utmaningar när det kommer till att söka och få hjälp, särskilt för de mindre VA organisationerna som vanligtvis har färre kontakter. Men de är inte bara de små som är påverkade av detta problem, men det är vanligare att de inte har kontakter med andra VA organisationer. De flesta vattenverken ansåg att data/information från reningssteg skulle vara möjligt att dela under begränsade former. Informationssäkerhetsklassning är en enskild fråga för varje vattenverk som baseras på de hot som varje vattenverk står inför. Detta medför att det är svårt att bestämma vilken data/information som kan delas av varje vattenverk. Detta område behöver vidare utredas innan ett beslut kan fattas om vilken data/information alla vattenverk ska dela på en plattform. De flesta deltagarna tyckte att en plattform av något slag skulle vara lösningen för att förenkla delning av data/information mellan vattenverken. Den föreslagna plattformen är en bra start för vattenverk att skapa kontakter och har potentialen att möjliggöra lagring och delning av data/information i framtiden.
583

Comparative life cycles assessment on a drinking water treatment plant / Jämförande livscykelanalys av ett reningsverk för dricksvatten

Simsek, Muhammed-Enes January 2024 (has links)
Climate change and increasing population demands expansion of infrastructures in urban areas. Drinking water treatment plants are part of the critical infrastructure and must upgrade in the future. However, expansions and technological advancements often come with impacts on the environment. Therefore, this thesis compares two drinking water treatment technologies regarding its environmental impacts through a life cycle assessment. In specific, the thesis elaborates the impacts of membrane precipitation and conventional precipitation in the suspended solids removal stage at a treatment plant in Piteå, Sweden. The research addresses the environmental challenges posed by traditional and modern water treatment methods, providing insights and knowledge to more sustainable water practices. The research involves an attributional, comparative life cycle assessment. The findings from this thesis intend to guide decision-making for future drinking water treatment plant designs.  The research was conducted through an attributional and comparative LCA using SimaPro software based on ISO 14040-series standards. This approach allowed for a detailed analysis of both the operational and construction phases of the treatment technologies, considering various environmental impact categories.  The results indicate that membrane system presents for most impact categories, a lower  environmental impact in the combined configuration scenario. The combined configuration scenario includes for the membrane system calcium carbonate, aluminium sulfate and 95% reduced hypochlorite consumption. The conventional system considers in the combined configuration scenario aluminum sulfate and calcium carbonate This is primarily due to its efficiency in reducing chemical usage such as coagulants. However, if both systems use the same chemical composition (same coagulant, pH-controlling chemicals as in the base scenario), the conventional system becomes more environmentally friendly than the membrane system in most impact categories. This is mainly due to the additional CEB chemical consumption of the membrane system, which nullifies the advantage of lower consumed coagulants. Compared to the operational phase in both systems, the construction phase is insignificant over the lifetime of the treatment plants. The major hotspots are identified as operational chemicals and chemical enhanced backwash chemicals, which are used for the membrane system only. Scenario analysis shows that chlorine/aluminum-based chemicals such as polyaluminum chloride and hypochlorite have a high environmental impact and with reducing or even changing these chemicals major improvements can be achieved. Especially changing aluminum-based chemicals to iron-based chemicals show a significant decrease of impacts in all categories. Further, the scenario analysis shows that by changing lime to calcium carbonate, the environmental impacts can be reduced significantly. Therefore, the future focus should rely on reducing and changing chemicals, especially switching aluminum/chlorine based to iron-based chemicals. / Klimatförändringarna och den ökande befolkningen kräver utbyggnad av infrastrukturen i stadsområden. Reningsverk för dricksvatten är en del av den kritiska infrastrukturen och måste uppgraderas i framtiden. Expansioner och tekniska framsteg medför dock ofta påverkan på miljön. Detta examensarbete jämförs därför två tekniker för dricksvattenberedning med avseende på miljöpåverkan genom en grundlig livscykelanalys. Mer specifikt behandlar avhandlingen effekterna av membranfiltrering och konventionell fällning i steget för avlägsnande av suspenderade ämnen vid ett reningsverk i Piteå, Sverige. Forskningen tar upp de miljömässiga utmaningar som traditionella och moderna vattenbehandlingsmetoder innebär och ger insikter och kunskap om mer hållbara vattenmetoder. Resultaten från denna avhandling är avsedda att vägleda beslutsfattandet för framtida utformningar av dricksvattenreningsverk och erbjuder ett första verktyg för mer hållbara vattenbehandlingsmetoder.  Forskningen genomfördes genom en bokförande och jämförande LCA med hjälp av programvaran SimaPro baserat på ISO 14040-seriens standarder. Detta tillvägagångssätt möjliggjorde en detaljerad analys av både drifts- och konstruktionsfaserna för behandlingsteknikerna, med beaktande av olika miljöpåverkanskategorier.  Resultaten tydar på att membranfiltrering ger en lägre total miljöpåverkan vid vanliga förhållanden. Detta beror främst på dess effektivitet när det gäller att minska kemikalieanvändningen, t.ex. koaguleringsmedel. Men om båda systemen använder samma kemiska sammansättning (samma koaguleringsmedel) är det konventionella systemet mer miljövänligt än det konventionella systemet. Detta beror främst på den extra kemikalieförbrukningen för CEB i membransystemet, vilket upphäver fördelen med lägre förbrukning av koaguleringsmedel. Jämfört med driftsfasen i båda systemen är byggfasen obetydlig under reningsverkens livstid. De viktigaste aspekterna identifieras som driftskemikalier och kemikalier för kemiskt förstärkt backspolning, som endast används för membransystemet. Scenarioanalysen visar att klor-/aluminiumbaserade kemikalier som polyaluminiumklorid och hypoklorit har en hög miljöpåverkan och att stora förbättringar kan uppnås genom att minska eller till och med byta ut dessa kemikalier. Särskilt om aluminiumbaserade kemikalier byts ut mot järnbaserade kemikalier minskar påverkan betydligt i alla kategorier. Vidare visar scenarioanalysen att miljöpåverkan kan minskas betydligt genom att byta ut kalk mot kalciumkarbonat. Därför bör fokus i framtiden ligga på att minska och byta ut kemikalier, särskilt att byta ut aluminium/klorbaserade kemikalier mot järnbaserade kemikalier.
584

The applicability of advanced treatment processes in the management of deteriorating water quality in the Mid-Vaal river system / Zelda Hudson

Hudson, Zelda January 2015 (has links)
The main objective of this study was to determine the applicability of advanced water treatment processes namely granular activated carbon (GAC) adsorption, ultraviolet (UV) light disinfectant and ozone in the management of deteriorating water quality in the Mid-Vaal River system for drinking purposes. Both the scarcity and the deteriorating quality of water in South Africa can be addressed by investigating advanced water treatment processes such as GAC adsorption, UV light disinfectant and ozone. Previously disregarded water resources have the potential to be purified and advanced treatments can improve water quality where conventional water treatments have failed. In addition, advanced treatment processes can be applied to treat used water. The two sampling sites selected for the study, Rand Water Barrage (RWB) and Midvaal Water Company (MWC), are both located in the Middle Vaal Water Management Area with RWB upstream of MWC. RWB uses GAC adsorption and UV light disinfection and MWC uses ozone as pre- and intermediate treatment process steps for water purification. The quality of the source water at both sampling sites was determined by analysing the physical and chemical characteristics as well as the algal and invertebrate compositions of the source water. The physical and chemical water quality variables measured included pH, conductivity, turbidity, dissolved organic carbon (DOC), total organic carbon (TOC), total photosynthetic pigments (TPP), microcystin and geosmin. The source water of both sites was characterised as hypertrophic on account of high chlorophyll concentrations. The water quality of the two sites was distinctly different and a downstream change was observed. The source water of RWB was characterised by high microcystin, geosmin, DOC, TOC and conductivity measurements and dominated by Bacillariophyceae (diatoms) and Cyanophyceae (blue-green bacteria). Problematic species that were present in the source water of RWB included Aulacoseira sp., other unidentified centric diatoms, Pandorina sp., Anabaena sp., Microcystis sp., Oscillatoria sp., Cryptomonas sp., Ceratium sp. and Trachelomonas sp. The source water of MWC was characterised by high pH, turbidity and TPP measurements and was dominated by Chlorophyceae (green algae) and Bacillariophyceae (diatom) species. Problematic algal species that were present in the source water of MWC included Cyclotella sp., Coelastrum sp., Pediastrum sp. and Scenedesmus sp. The source water of MWC was deemed to be of a better quality due to the lower Cyanophyceae concentrations and lower microcystin levels. The invertebrate composition of both sites was similar with Rotatoria as the dominant invertebrate group. The efficacy of GAC adsorption/UV light disinfection/ozonation on restoring the physical and chemical characteristics of the source water at both sampling sites as well as the algal and invertebrate compositions was determined by ascertaining the nature of the change in or the percentage removal of a water quality variable. The potable water of both sites complied with the standards of water intended for domestic use except for the conductivity at RWB that was slightly elevated. The phytoplankton was removed effectively from the source water of both sites but the removal of invertebrates was unsatisfactory. GAC adsorption and filtration proved to be more effective in the removal of TPP, turbidity, DOC, microcystin and geosmin than ozone. Ozone effected an increase in DOC. UV light disinfection had no or little effect on restoring the water quality variables investigated in this study. / M (Environmental Sciences), North-West University, Potchefstroom Campus, 2015
585

The applicability of advanced treatment processes in the management of deteriorating water quality in the Mid-Vaal river system / Zelda Hudson

Hudson, Zelda January 2015 (has links)
The main objective of this study was to determine the applicability of advanced water treatment processes namely granular activated carbon (GAC) adsorption, ultraviolet (UV) light disinfectant and ozone in the management of deteriorating water quality in the Mid-Vaal River system for drinking purposes. Both the scarcity and the deteriorating quality of water in South Africa can be addressed by investigating advanced water treatment processes such as GAC adsorption, UV light disinfectant and ozone. Previously disregarded water resources have the potential to be purified and advanced treatments can improve water quality where conventional water treatments have failed. In addition, advanced treatment processes can be applied to treat used water. The two sampling sites selected for the study, Rand Water Barrage (RWB) and Midvaal Water Company (MWC), are both located in the Middle Vaal Water Management Area with RWB upstream of MWC. RWB uses GAC adsorption and UV light disinfection and MWC uses ozone as pre- and intermediate treatment process steps for water purification. The quality of the source water at both sampling sites was determined by analysing the physical and chemical characteristics as well as the algal and invertebrate compositions of the source water. The physical and chemical water quality variables measured included pH, conductivity, turbidity, dissolved organic carbon (DOC), total organic carbon (TOC), total photosynthetic pigments (TPP), microcystin and geosmin. The source water of both sites was characterised as hypertrophic on account of high chlorophyll concentrations. The water quality of the two sites was distinctly different and a downstream change was observed. The source water of RWB was characterised by high microcystin, geosmin, DOC, TOC and conductivity measurements and dominated by Bacillariophyceae (diatoms) and Cyanophyceae (blue-green bacteria). Problematic species that were present in the source water of RWB included Aulacoseira sp., other unidentified centric diatoms, Pandorina sp., Anabaena sp., Microcystis sp., Oscillatoria sp., Cryptomonas sp., Ceratium sp. and Trachelomonas sp. The source water of MWC was characterised by high pH, turbidity and TPP measurements and was dominated by Chlorophyceae (green algae) and Bacillariophyceae (diatom) species. Problematic algal species that were present in the source water of MWC included Cyclotella sp., Coelastrum sp., Pediastrum sp. and Scenedesmus sp. The source water of MWC was deemed to be of a better quality due to the lower Cyanophyceae concentrations and lower microcystin levels. The invertebrate composition of both sites was similar with Rotatoria as the dominant invertebrate group. The efficacy of GAC adsorption/UV light disinfection/ozonation on restoring the physical and chemical characteristics of the source water at both sampling sites as well as the algal and invertebrate compositions was determined by ascertaining the nature of the change in or the percentage removal of a water quality variable. The potable water of both sites complied with the standards of water intended for domestic use except for the conductivity at RWB that was slightly elevated. The phytoplankton was removed effectively from the source water of both sites but the removal of invertebrates was unsatisfactory. GAC adsorption and filtration proved to be more effective in the removal of TPP, turbidity, DOC, microcystin and geosmin than ozone. Ozone effected an increase in DOC. UV light disinfection had no or little effect on restoring the water quality variables investigated in this study. / M (Environmental Sciences), North-West University, Potchefstroom Campus, 2015
586

Determinants of key drivers for potable water treatment cost in uMngeni Basin

Rangeti, Innocent 04 March 2015 (has links)
Submitted in fulfilment of the requirements of the degree of Master of Technology: Environmental Health, Durban University of Technology, 2014. / The study entailed the determination of key water quality parameters significantly influencing treatment cost in uMngeni Basin. Chemical dosage was used as a substitute for treatment cost as the study indicated that cost, in its monetary value, is influenced by market forces, demand and supply, which are both not directly linked to water quality. Chemical dosage is however, determined by the quality of water and thus provides a clear illustration of the effect of pollution on treatment cost. Three specific objectives were set in an effort to determine key water quality parameters influencing treatment costs in uMngeni Basin. The fourth objective was to develop a model for predicting chemical dosages. The first approach was analysis of temporal and spatial variability of water quality in relation to chemical dosage during production of potable water. The trends were explained in relation to river health status. For this purpose, time-series, box-plot, and the Seasonal-Kendal test were employed. The results showed that the quality of water significantly deteriorated from upstream to downstream in relation to algae, turbidity and Escherichia coli (E. coli). High mean range of E. coli (126-1319 colony count/100mL) and turbidity (2.7-38.7 NTU) observed indicate that the quality of water along the basin is not fit for human consumption as these parameters exceeded the target range stipulated in South Africa’s guidelines for domestic use. For water intended for drinking purpose, turbidity should be below 5 NTU, while zero E. coli count is expect in 100 mL. Among the six sampling stations considered along the uMngeni Basin, three dam outflows (Midmar, Nagle and Inanda) showed an improved quality compared with their respective inflow stations. This was expected and could be attributed to the retention and dilution effects. These natural processes help by providing a self-purification process, which ultimately reduces the treatment cost. While considering the importance of disseminating water quality information to the general public and non-technical stakeholders, the second objective of the study was to develop two water quality indices. These were; (1) Treatability Water Quality Index and (2) River Health Water Quality Index. The Treatability Water Quality Index was developed based on the Canadian Council Minister of Environment Water Quality Index (CCME-WQI). The technique is used to determine fitness of water against a set of assigned water quality resource objectives (guidelines). The calculated Harmonised Water Quality Resource Objectives (HWQRO) were used to compare the qualities of the raw water being abstracted at Nagle and Inanda Dam for the purpose of treatment. The results showed that Nagle Dam, which supplies Durban Heights, is significantly affected by E. coli (42% non-compliance), turbidity (20% non-compliance) and nitrate (18% non-compliance) levels. Wiggins Water Treatment Plant which abstracts from Inanda Dam has a problem of high algae (mean 4499 cell/mL), conductivity (mean 26.21 mS/m) and alkalinity (mean 62.66 mg/L) levels. The River Health Water Quality Index (RHWQI) was developed using the Weighted Geometric Mean (WQM) method. Eight parameters, namely, E. coli, dissolved oxygen, nitrate, ammonia, turbidity, alkalinity, electrical conductivity and pH were selected for indexing. Rating curves were drawn based on the target ranges as stipulated in South Africa’s guidelines for freshwater ecosystems. Five classes were used to describe the overall river health status. The results showed that the water is still acceptable for survival of freshwater animals. A comparison of the RHWQI scores (out of 100) depicted that dam inflow station (MDI(61.6), NDI(74.6) and IDI(63.8)) showed a relatively deteriorated quality as compared with their outflows (MDO(77.8), NDO(74.4) and IDO(80)). The third objective was to employ statistical analysis to determine key water quality parameters influencing chemical dosage at Durban Heights and Wiggins Water Treatment Plants. For each of the two treatment plants, treated water quality data-sets were analysed together with their respective raw water data-set. The rationale was to determine parameters showing concentration change due to treatment. The t-test was used to determine the significance of concentration change on each of the 23 parameters considered. Thereafter, the correlations between water quality parameters and the three chemicals used during treatment (polymer, chlorine and lime) were analysed. The results showed that the concentrations of physical parameters namely, algae, turbidity and total organic carbon at both treatment showed a significant statistical (p<0.05) reduction in concentration (R/Ro<0.95). This results implies that such parameters were key drivers for chemical dosage. From the results of the first three objectives, it is recommended that implementing measures to control physical parameter pollution sources, specifically sewage discharges and rainfall run-off from agricultural lands along the uMngeni Basin should assist in reducing the chemical dosage and ultimately cost. The fourth objective was to develop chemical dosage models for prediction purposes. This was achieved by employing a polynomial non-linear regression function on the XLStat 2014 program. The resultant models showed prediction power (R2) ranging from 0.18 (18%) up to 0.75 (75%). However, the study recommends a comparative study of the developed models with other modelling techniques.
587

Development and evaluation of flux enhancement and cleaning strategies of woven fibre microfiltration membranes for raw water treatment in drinking water production

Pikwa, Kumnandi 08 1900 (has links)
Thesis submitted in fulfillment of the academic requirement for the degree of (M.Tech.: Chemical Engineering), Durban University of Technology, South Africa, Durban, 2015. / Woven Fibre Microfiltration (WFMF) membranes have several advantages over its competitors with respect to durability, making it a favourable alternative for the developing world and operation during rough conditions. Wide application of membrane technology has been limited by membrane fouling. The durability of the WFMF membrane allows more options for flux enhancement and cleaning methods that can be used with the membranes even if they are vigorous. Therefore, the purpose of this work was to develop and evaluate flux enhancement and cleaning strategies for WFMF membranes. Feed samples with high contents of organics and turbidity were required for the study. Based on this, two rivers which are Umkomaasi and Duzi River were identified to satisfy these criteria. A synthetic feed with similar fouling characteristics as the two river water was prepared and used for this study. The synthetic feed solution was made up of 2 g/ℓ of river clay in tap water and 0.5% domestic sewerage was added into the solution accounting for 2% of the total volume. A membrane filtration unit was used for this study. The unit consisted of a pack of five membrane modules which were fully immersed into a 100 litres filtration tank. The system was operated under gravity and the level in the filtration tank was kept constant by a level float. The study focused on evaluating the performance of the woven fibre membrane filtration unit with respect to its fouling propensity to different feed samples. It also evaluated and developed flux enhancement and cleaning strategies and flux restoration after fouling. The results were compared to a base case for flux enhancement and pure water fluxes for cleaning. The WFMF membrane was found to be prone to both internal and external fouling when used in the treatment of raw water (synthetic feed). Internal fouling was found to occur quickly in the first few minutes of filtration and it was the major contributor for the loss of flux from the WFMF membrane. The fouling mechanism responsible for internal fouling was found to be largely pore blocking and pore narrowing due to particle adsorption on/in the membrane pores. The structure (pore size, material and surface layout) of the WFMF membrane was found to be the main cause that made it prone to internal fouling. The IV major fouling of the WFMF membrane was due to internal fouling, a high aeration rate of 30 ℓ/min had minimal effect on the fouling reduction. An aeration rate of 30 ℓ/min improved the average flux by only 36%, where a combination of intermittent backwashing with brushing and intermittent backwashing with aeration (aeration during backwashing only) improved average flux by 187% and 135% respectively. Pre-coating the WFMF membrane with lime reduced the effects of pore plugging and particle adsorption on the membrane and improved the average flux by 66%. The cleaning strategies that were most successful in pure water flux (PWF) recovery were high pressure cleaning and a combination of soaking and brushing the membrane in a 0.1% NaOCl (desired) solution. PWF recovery by these two methods was 97% and 95% respectively. Based on these findings, it was concluded that the WFMF membrane is susceptible to pore plugging by colloidal material and adsorption/attachment by microbiological contaminants which took effect in the first hour of filtration. This led to a 50% loss in flux. Also, a single flux enhancement strategy proved insufficient to maintain a high flux successfully. Therefore, combined flux enhancement strategies yielded the best results.
588

Evaluation of micro-scaled TiO b2 s on degradation and recovery of mTiO b2 s from treated drinking water

Dlamini, Chazekile Precious January 2016 (has links)
Submitted in fulfillment of the requirements of the degree of Master of Engineering: Chemical Engineering, Durban University of Technology, Durban, South Africa, 2016. / River water is a life supporting watercourse to most communities in rural areas. It is used for both human and animal consumption, and is well becoming a collection channel for defecation and urination due to shortage or lack of access to running water and sanitation facilities. This has resulted to the contamination of water sources, which poses a great risk to human health. This has motivated researchers to study simple but yet robust systems to produce safe drinking water. Photocatalysis is one of such emerging disinfection technologies. Titanium dioxide (TiO2) which is one of the basic materials used for paint manufacturing has emerged as an excellent photocatalyst material for water purification. TiO2 was selected in this study because it is locally available with a potential to open a new market in water purification for the manufacturers. The setback in previous studies is the recovery of nano-scaled TiO2 (nTiO2) after purification when used as a suspension in treated water. Thus this study evaluates the performance of four grades of micro-scaled TiO2 (mTiO2) on the degradation of organic matters, Escherichia coli (E. coli) and total coliform in river water and to investigate the percentage recovery of the mTiO2 using a locally manufactured Polyester Woven Fabric Microfiltration (PWFMF) membrane. The PWFMF though uncharacterized has been used in a number of studies for treating domestic and industrial waste waters. The best-performing grade was used to optimize the degradation efficiency of E. coli in river water using the Design of Experiments (DOE) methodology. Grade 2 of the mTiO2, which is hydrated titanium dioxide with additions (ahTiO2) of particle size range of 0.2 – 53 µm at a concentration of 2.5 g/l displayed an advantageous photocatalytic activity. The results show that 80 % of the organics were removed in 3 hours and increased to 93% after 6 hours. Two particle size ranges of 0.2 – 53 µm and 54 – 75 µm at a concentration of 5 g/l degraded organic matters to 90 % and 77 % in 3 hours respectively. The particle size range of 0.2 – 53 µm at a concentration of 5 g/l was then filtered using a PWFMF and turbidities went below 1 NTU after 20 minutes from feed turbidity of 470 NTU for all three trials. The average percentage recovery in 2 hours was 98.91 %. The four grades of mTiO2 were analyzed for E. coli and total coliform for 4 hours at concentrations of 2, 5 and 7 g/l. Grade 2 achieved the E. coli specification of 0 count/ 100 mL at 5 g/l in 2 hours and at 7 g/l in 0.5 hours. Grade 4 E. coli specification was achieved with 7g/l in 4 hours. Grades 2 and 4 performed better since they both achieved the E. coli and total coliform specifications. Grade 2 was the best performing grade and was considered for statistical studies. Grade 2 was then used on a comparative study between the Central Composite Design (CCD) and Box-Behnken Design (BBD), which are two of the major Response Surface Methodologies (RSM). The CCD compared to BBD provides high quality predictions over the entire design space. The CCD obtained optimum results for concentration of mTiO2 (X1), temperature (X2), initial pH (X3) and aeration (X4) which were 6.94 g/l, 28.75 OC, pH = 6.04, and 13.35 L/min for the maximum degradation efficiency of 99.85 % which showed comparable optimum results to the BBD that were 6.45 g/l, 28.28 OC, pH = 6.02 and 12.21 L/min for the maximum degradation efficiency of 99.80%. These theoretical model results were validated by practical experiments that produced the maximum degradation efficiency for CCD and BBD of 99.67 and 99.26 % respectively. Grade 2 of the mTiO2 can be used as a photocatalyst for river water purification due to its strong ability for the removal of E. coli. The additions used in grades 2 and 4 during production improved the photocatalytic activity. The PWFMF membrane showed a great performance of above 98 % particle recovery of mTiO2 from treated water, although there was an indication that the smallest particles were passing through the membrane. The RSM results gave approximately the same optimum results that were well within the limits, which were experimentally validated and showed that the models were sustainable. It is recommended that the effect of additions be studied on the structures or the charge stability of the two grades. / M
589

On the application of detached eddy simulation turbulence modelling to hydrocyclonic separators for shipboard ballast water treatment

McCluskey, D. K. January 2009 (has links)
There is significant worldwide environmental concern related to the transportation of Invasive Aquatic Species (IAS) by ships ballast water into non-native environments. This has given rise to the development of a vast array of technological ballast water treatment systems. The complex environmental challenges and tight operational characteristics of marine vessels limits the scope of the technologies used for Ballast Water Treatment (BWT). As a result few technologies have progressed beyond the research and development stage; however one of the most promising technologies for ship board use is the cyclonic separator, or hydrocyclone. Despite the use of hydrocyclones in a wide variety of engineering applications they have yet to be successfully adapted towards the removal of suspended sediment and marine organisms from large volumes of ballast water. The following primary objectives of this study have been met: • Via critical review identify the technological solutions for treating ballast water best suited to onboard use. • Define the critical flow regimes evident within hydrocyclonic separators. • Establish a series of Computational Fluid Dynamics (CFD) simulations, evaluating standard turbulence models in order to determine the capacity for commercial CFD to model hydrocyclonic flow. This study has detailed the operational characteristics of ballast water hydrocyclones with the aim of enabling hydrocyclones to be optimised for individual ship configurations. Flow simulations have been conducted using CFD, and in particular the Detached Eddy Simulation (DES) turbulence model. Finally the DES model is shown to be a legitimate turbulence model for hydrocyclonic flow regimes, validated against empirical and experimental data.
590

Microbial treatment of textile wastewater applicable in developing countries

Forss, Jörgen January 2013 (has links)
No description available.

Page generated in 0.1391 seconds