• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 56
  • 56
  • 13
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Three-dimensional coupled-wave theory for photonic-crystal surface-emitting lasers / フォトニック結晶面発光レーザの3次元結合波理論の構築

Liang, Yong 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18283号 / 工博第3875号 / 新制||工||1594(附属図書館) / 31141 / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 野田 進, 教授 川上 養一, 教授 藤田 静雄 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
32

Thomas Young, Quaker Scientist

Mathieson, Genevieve January 2008 (has links)
No description available.
33

Electromagnetic analysis of ground multipath for satellite-based positioning systems

Aloi, Daniel N. January 1996 (has links)
No description available.
34

An Investigation on Acoustic Metamaterial Physics to Inspire the Design of Novel Aircraft Engine Liners

Hubinger, Benjamin Evan 02 April 2024 (has links)
Attenuation of low frequency turbofan engine noise has been a challenging task in an industry that requires low weight and tightly-packed solutions. Without innovative advancements, the technology currently used will not be able to keep up with the increasingly stringent requirements on aircraft noise reduction. A need exists for novel technologies that will pave the way for the future of quiet aircraft. This thesis investigates acoustic metamaterials and their ability to achieve superior transmission loss characteristics not found in traditional honeycomb liners. The acoustic metamaterials investigated are an array of Helmholtz resonators with and without coupled cavities periodically-spaced along a duct wall. Analytical, numerical, and experimental developments of these acoustic metamaterial systems are used herein to study the effects of this technology on the transmission loss. Particularly focusing on analytical modeling will aid in understanding the underlying physics that governs their interesting transmission loss behavior. A deeper understanding of the physics will be used to aid in future acoustic metamaterial liner design. A parameter study is performed to understand the effects of the geometry, spacing, and number of resonators, as well as resonator cavity coupling on performance. Increased broadband transmission loss, particularly in low frequencies, is achieved through intelligent manipulation of these parameters. Acoustic metamaterials are shown to have appealing noise cancellation characteristics that prove to be effective for aircraft engine liner applications. / Master of Science / Aircraft noise reduction is an ongoing challenge for the aerospace industry. Without innovative advancements, the next generation of aircraft will not be able to keep up with increasingly stringent noise regulations; novel acoustic technology is needed to pave the way for a future of quieter aircraft. This thesis investigates acoustic metamaterials and their ability to achieve superior noise reduction over traditional methods. Modeling techniques were developed, and experimental tests were conducted to quantitatively evaluate the effectiveness of a new acoustic metamaterial system. The acoustic metamaterial design explored herein was proven to reduce noise effectively and shows promise for a world of quieter aircraft.
35

A wave-kinetic numerical method for the propagation of optical waves

Pack, Jeong-Ki January 1985 (has links)
A new wave-kinetic numerical method for the propagation of optical waves in weakly inhomogeneous media is discussed, and it is applied to several canonical problems: the propagation of beam and plane waves through a weak 3-D ( or 2-D ) Gaussian eddy. The numerical results are also compared to those from a Monte-Carlo simulation and the first Born approximation. Within the validity of the Liouville approximation, the Wigner distribution function ( WDF ) is conserved along the conventional ray trajectories, and, thus, by discretizing the input WDF with Gaussian beamlets, we can represent the output WDF as a sum of Gaussians, from which irradiance can be obtained by analytical integration of each Gaussian with respect to wavevector. Although each Gaussian beamlet propagates along a geometrical optics ray trajectory, it can correctly describe diffraction effects, and the propagation of optical waves through caustics or ray crossings. The numerical results agree well with either the Monte-Carlo method or the first Born approximation in regions where one or both of these are expected to be valid. / M.S.
36

Resonances of scattering in non-uniform and anisotropic periodic gratings at extreme angles

Goodman, Steven John January 2006 (has links)
Bragg scattering of optical waves in thick gratings at extreme angles, where the scattered wave propagates parallel (extremely asymmetric scattering - EAS) or nearly parallel (grazing angle scattering - GAS) to the grating boundaries, is associated with many unique and practically important resonant phenomena. It has been demonstrated that one of the main physical mechanisms for these resonant phenomena is the diffractional divergence of the scattered wave inside and outside the grating region. This thesis fills the gaps in the theoretical and experimental understanding of Bragg scattering in gratings at extreme angles by investigating EAS and GAS in structures where diffractional divergence of waves is significantly affected by anisotropy and/or non-uniformities of the dielectric permittivity. Unusually high sensitivity of wave scattering in thick periodic gratings to small step-like variations of mean structural parameters at the grating boundaries is predicted and described for the case when the scattered wave (the +1 diffracted order) propagates almost parallel to the front grating boundary (the geometry of GAS). A unusual pattern of strong multiple resonances for bulk electromagnetic waves is predicted and analysed numerically in thick periodic holographic gratings in a guiding slab with mean permittivity that is greater than that of the surrounding media. It is demonstrated that these resonances are related to resonant generation of a new type of eigenmodes in a thick slab with a periodic grating. These eigenmodes are generically related to the grating -- they do exist not if the grating amplitude is zero. A new type of resonant coupling of bulk radiation into the conventional guided modes of a slab with a thick holographic grating is predicted and explained theoretically. It occurs in the presence of strong frequency detunings of the Bragg condition by means of interaction of the strongly non-eigen +1 diffracted order with the slab-grating boundaries. Therefore, it is only in the presence of step-like variations of the mean permittivity at the grating boundaries that this type of resonant coupling can occur. A new method for the analysis of EAS and GAS in anisotropic gratings is developed. This method is based on the consideration of the diffractional divergence of the scattered wave and the two-wave approximation in anisotropic gratings. Special efforts are focused on the analysis of EAS and GAS of extraordinary waves in uniaxial gratings. In particular, it is demonstrated that increasing curvature of the normal surface in the direction of propagation of the scattered wave results in increase of its diffraction divergence and the resonant amplitude. A theoretical model is developed for comparison of the theoretical predictions with data obtained from experimental observations of EAS in a holographic grating written in a photorefractive medium. The developed model is applied for the interpretation of experimental observations of EAS in BaTiO3 photorefractive crystals. Good agreement with the theoretical predictions is demonstrated.
37

The Politics of Selection: Towards a Transformative Model of Environmental Innovation

Hausknost, Daniel, Haas, Willi January 2019 (has links) (PDF)
As a purposive sustainability transition requires environmental innovation and innovation policy, we discuss potentials and limitations of three dominant strands of literature in this field, namely the multi-level perspective on socio-technical transitions (MLP), the innovation systems approach (IS), and the long-wave theory of techno-economic paradigm shifts (LWT). All three are epistemologically rooted in an evolutionary understanding of socio-technical change. While these approaches are appropriate to understand market-driven processes of change, they may be deficient as analytical tools for exploring and designing processes of purposive societal transformation. In particular, we argue that the evolutionary mechanism of selection is the key to introducing the strong directionality required for purposive transformative change. In all three innovation theories, we find that the prime selection environment is constituted by the market and, thus, normative societal goals like sustainability are sidelined. Consequently, selection is depoliticised and neither strong directionality nor incumbent regime destabilisation are societally steered. Finally, we offer an analytical framework that builds upon a more political conception of selection and retention and calls for new political institutions to make normatively guided selections. Institutions for transformative innovation need to improve the capacities of complex societies to make binding decisions in politically contested fields.
38

DEVELOPMENT OF A MUFFLER INSERTION LOSS FLOW RIG

Chen, Jonathan 01 January 2019 (has links)
Mufflers and silencers are commonly used to attenuate noise sources such as internal combustion engines and HVAC systems. Typically, these environments contain mean flow that can affect the acoustic properties of the muffler components and may produce flow generated noise. To characterize the muffler performance, common metrics such as insertion and transmission loss and noise reduction are used in industry. Though transmission loss without flow is often measured and is a relatively simple bench top experiment and useful for model validation purposes, mean flow can significantly affect the muffler performance. There are a few existing and commercial transmission loss rigs that incorporate flow into the measurement procedure. These rigs are useful for model verification including flow but do not predict how the muffler will perform in the system since the source, termination, and pipe lengths significantly impact performance. In this research, the development of an insertion loss test rig is detailed. This testing strategy has the advantage of being simpler, quantifying the self-generated noise due to flow, and taking into account the effect of tailpipe length and a realistic termination. However, the test does not include the actual source and is not as useful for model validation. An electric blower produces the flow and a silencer quiets the flow. Loudspeakers are positioned just downstream of the flow silencer and they are used as the sound source. The low frequency source is a subwoofer installed in a cylindrical enclosure that includes a conical transition from speaker to pipe. Special care is taken to reduce any flow generated noise. Qualification of the system is detailed by comparing the measured transmission loss, noise reduction, and insertion loss to one-dimensional plane wave models. The results demonstrate that the developed rig should be useful as a muffler evaluation tool after a prototype has been constructed. The rig can also be used for transmission loss and noise reduction determination which will prove beneficial for laboratory testing.
39

Implementing Technology for Science Classrooms in São Tomé and Príncipe

Jardim, Maria Dolores Rodrigues 01 January 2015 (has links)
This qualitative bounded case study was designed to understand how technology integration in schools could be addressed in a first-wave country. The integration of educational technology in São Tomé and Príncipe (STP), a first-wave agricultural civilization, can narrow the divide between STP and third-wave information age societies. The conceptual framework was based on theories of change, learning, and context. Toffler’s wave theory described how societies changed while Fullan’s change theory examined how the people might change. Roger’s diffusion of innovations addressed how processes change. Bandura, Vygotsky, and Siemen provided the framework for the learning within the model of change. Finally, the context theories of Tessmer and Richey’s instructional design, Lave and Wenger’s situated learning, and Sticht’s functional context theory were applied. Twenty five individuals from 5 schools, including teachers, school directors, key educational stakeholders, and the minister of education were involved in a pilot project to integrate technology into the science curriculum. The data were collected via interviews, reflective summaries, and confidential narratives. The resulting data were analyzed to find emerging patterns. The results of this analysis showed that a first-wave civilization can adopt a third-wave civilization’s features in terms of technology integration, when there is the support of opinion leaders and most of the necessary contextual requirements are in place. The study contributes to social change by providing access to knowledge through technology integration, which empowers both teachers and students.
40

On Traveling Wave Solutions of Linear and Nonlinear Wave Models (Seeking Solitary Waves)

Moussa, Mounira 02 June 2023 (has links)
No description available.

Page generated in 0.0695 seconds