• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 264
  • 41
  • 31
  • 26
  • 20
  • 17
  • 12
  • 9
  • 6
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 488
  • 218
  • 171
  • 170
  • 76
  • 67
  • 56
  • 48
  • 47
  • 46
  • 43
  • 42
  • 42
  • 40
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Circuit-tunable subwavelength terahertz devices / Dispositifs terahertz sub-longueur d'onde accordables par des composants discrets

Paulillo, Bruno 21 June 2016 (has links)
La demande croissante en composants optoélectroniques de taille réduite, rapides, de faible puissance et à faible coût oriente la recherche vers des sources et détecteurs de radiation ayant une dimension inférieure à la longueur d'onde émise/détectée. Cette dernière est entravée par la limite de diffraction qui fixe la dimension minimale des dispositifs optiques à la moitié de la longueur d'onde de fonctionnement. A l'inverse, les dispositifs électroniques, tels que les antennes et les oscillateurs, ne sont pas limitée en taille et leur fréquence peut être accordée par des composants discrets. Par conséquent, unifier les mondes de la photonique et de l'électronique permettrait de concevoir de nouveaux dispositifs optoélectroniques sans limitation de taille imposée par la longueur d'onde et ayant des fonctionnalités empruntées aux circuits électroniques. La région spectrale idéale pour développer ce paradigme est la gamme térahertz (THz), à mi-chemin entre les domaines de l'électronique et de l'optique. Dans la première partie de ces travaux, nous présentons de nouveaux micro-résonateurs sub-longueur d’onde en 3D qui fonctionnent comme des circuits LC microscopiques et où la fréquence de résonance peut être accordée en agissant séparément sur la région capacitive et/ou inductive. Dans la deuxième partie, nous illustrons la puissance de cette approche en réalisant de nouveaux méta-dispositifs THz passifs (polaritoniques, commutables optiquement, optiquement actifs) basés sur des composants discrets. La dernière partie de cette thèse est consacrée aux méta-dispositifs actifs. Des photodétecteurs THz à puits quantiques ayant une dimension ≈λ eff /10, en configuration objet unique et réseau sont démontrées, grâce à un schéma de contact efficace et originale pour extraire (injecter) un courant depuis (dans) le cœur semi-conducteur intégré dans chaque résonateur. Enfin, une étude de faisabilité d'un laser sub-longueur d’onde aux fréquences THz est présentée. / The need for small, fast, low-power and low-cost optoelectronic components is driving the research towards radiation sources and detectors having a dimension that is smaller than the emitted/detected wavelength. This is hampered by the optical diffraction limit which constrains the minimum dimension of optical devices at half the operating wavelength. Conversely, electronic devices, such as antennas and oscillating circuits, are not diffraction-limited in size and can be frequency tuned with lumped components. Hence, blending the worlds of photonics and electronics has the potential to enable novel optoelectronic devices with no lower size limit imposed by the wavelength, and with novel functionalities borrowed from electronic circuits. The ideal spectral region to develop this paradigm is the terahertz (THz) range, halfway between the electronics and optics realms. In the first part of this work, we present novel subwavelength 3D micro-resonators that behave as microscopic LC circuits, where the resonant frequency can be tuned acting separately on the capacitive and/or inductive regions. In the second part we illustrate the power of this concept by implementing novel lumped-elements-based passive THz meta-devices (polaritonic, optically switchable, optically active). The last part of this thesis is devoted to active meta-devices. Single-pixel and arrays of THz quantum well photodetectors featuring a ≈λeff/10 dimension are demonstrated, thanks also to an effective and original contact scheme to extract (inject) current from (into) the semiconductor core embedded by each resonator. Finally, a feasibility study of a subwavelength laser at THz frequencies is reported.
382

Semiconductor quantum dots entangled photon sources: from wavelength tunability to high brightness

Chen, Yan 09 July 2018 (has links)
In this thesis, we focus on the generation of entangled photon pair from III-V quantum dots. The achievements mainly consists of two aspects: one is the wavelength tunability of these entangled photon pairs, which is enabled by on-chip strain engineering; the other is the brightness enhancement with an optical-broadband antenna to boost the extraction of entangled photons from the material matrix where quantum dots are embedded in.
383

Povrchové plasmony v optických mikrostrukturách a jejich senzorové aplikace / Surface plasmons in optical microstructures and their sensor applications

Adam, Pavel January 2013 (has links)
Title: Surface plasmons in optical microstructures and their sensor applications Author: Pavel Adam Institute: Institute of Photonics and Electronics AS CR, v.v.i., Department of Optical Sensors Supervisor of the doctoral thesis: doc. Ing. Jiří Homola, CSc., DSc. Abstract: This work is focused on the study of surface plasmon resonance (SPR) sensor platforms based on wavelength division multiplexing (WDM) of multiple surface plasmons (SPs). These sensors are based on advanced diffraction gratings supporting either conventional or Bragg-scattered SPs, which are simultaneously excited at different wavelengths. These SPs are studied both analytically and numerically using rigorous coupled-wave analysis and an integral approach. WDM of two and three SPs is presented and followed by the method for the analysis of the resolution, noise and cross-sensitivity. This method is employed to analyze the ability of different SPR sensor platforms (supporting WDM of two SPs) to discriminate refractive index (RI) changes in a thin layer at the sensor surface from background RI changes. The WDM SPR sensors based on advanced diffraction gratings prepared by interferometric holography are developed and tested in a model biosensing experiment consisting of the layer-by-layer growth of protein multilayers. The linear WDM of two...
384

Macular pigment optical density measurements by one-wavelength reflection photometry – Influence of cataract surgery on the measurement results

Komar, Bogdana 18 June 2015 (has links)
Purpose: The main objective of the present study was the investigation of possible influence of lens opacification on macular pigment optical density (MPOD) measurements. Methods: 86 eyes of 64 patients (mean age 73.4(±8.3)years) were included in the study. MPOD was prospectively measured using one-wavelength reflection method (Visucam500, Carl Zeiss Meditec AG) before and after cataract extraction with implantation of a blue-light filtering intraocular lens (AlconSN60WF). The median of the maximum optical density (MaxOD) and the median of the mean optical density (MeanOD) measurements of macular pigment across the subject group were evaluated. Results: Statistically significant differences were noticed between pre-operative and post-operative measurements, the absolute values were generally lower after cataract extraction. The following median(lower/upper quartile) differences across the group were determined: MaxOD -33.8%(-46.2%/-19.1%), MeanOD -44.0%(-54.6%/-26.6%). Larger changes were observed in elderly patients (<70years of age: (n=25eyes) MaxOD -13.4%(-20.5%/3.6%), MeanOD -23.6%(-30.5%/-15.3%) versus patients ≥70years: (n=61eyes) MaxOD -40.5%(-53.2%/-30.1%), MeanOD -47.2%(-57.8%/-40.1%)) and in patients with progressed stage of cataract. MaxOD for lens opacification grade 1:(n=9eyes) -27.4%(-42.1%/-19.6%), 2:(n=26eyes) -35.0%(-44.2%/-25.3%), 3:(n=21eyes) -34.4%(-45.4%/-11.4%), 4:(n=25eyes) -32.6%(-53.2%/-6.4%) and 5:(n=5eyes) -53.5%(-61.7%/-38.7%) and MeanOD for cataract stage 1:(n=9eyes) -42.6%(-46.0%/-26.0%), 2:(n=26eyes) -44.1%(-51.8%/26.2%), 3:(n=21eyes) -45.7%(-54.7%/-24.7%), 4:(n=25eyes) -39.5%(-59.4%/-26.1%), 5:(n=5eyes) -57.0%(-66.1%/-51.4%). Conclusions: As established by comparison of pre- to post-operative measurements, cataract presented a strong effect on MPOD measured by one-wavelength reflection method. Particular care should therefore be taken when evaluating MPOD using this method in elderly patients with progressed stage of cataract. Future optimization of correcting parameters of scattered light and consideration of cataract influence may allow more precise evaluation of MPOD.
385

Large volume multicolor nonlinear microscopy of neural tissues / Microscopie non linéaire multicolore de grands volumes de tissu cérébral

Abdeladim, Lamiae 27 September 2018 (has links)
La microscopie non linéaire a transformé le domaine de la neurobiologie depuis les années 1990, en permettant d'acquérir des images tridimensionnelles de tissus épais avec une résolution subcellulaire. Cependant, les profondeurs d'imagerie accessibles sont limitées à quelques centaines de micromètres dans des tissus diffusants tels que le tissu cérébral. Au cours des dernières années, plusieurs stratégies ont été développées pour dépasser cette limitation de profondeur et accéder à de plus grands volumes de tissu. Ces avancées récentes ont jusqu'à présent été limitées en terme de modes de contrastes accessibles, et ont souvent été réduites à des approches monochromes. Ce travail de thèse vise à développer des techniques d'imagerie non linéaires de grands volumes et de grande profondeur dotées de diverses possibilités de contrastes, indispensables pour l'étude de tissus complexes tels que le tissu cérébral. Dans un premier chapitre, nous présentons les difficultés associées à l'imagerie de grand volume de tissu cérébral, avec une emphase particulière sur les puissantes stratégies de marquages génétiques dont l'usage à jusqu'à présent été limité à des faibles étendues. Ensuite, nous introduisons la microscopie Chrom-SMP (chromatic serial multiphoton), une méthode développée au cours de cette thèse et consistant à combiner l’excitation deux-photon multicouleurs par mélange de fréquences avec une technique d'histologie automatisée (i.e découpe sériée) pour accéder à plusieurs contrastes non linéaires à travers de grands volumes de tissus ex vivo, allant de plusieurs mm3 à des cerveaux entiers, avec une résolution micrométrique et un coalignement intrinsèque des canaux spectraux. Dans un troisième chapitre, nous explorons le potentiel de cette nouvelle approche pour la neurobiologie. En particulier, nous démontrons l'histologie multicouleur de plusieurs mm3 de tissu "Brainbow" avec une résolution constante dans l’ensemble du volume imagé. Nous illustrons le potentiel de notre approche à travers l'analyse de la morphologie, des interactions et du lignage des astrocytes du cortex cérébral de souris. Nous explorons également l’apport du Chrom-SMP pour le suivi multiplexé de projections neuronales marquées par des traceurs de couleurs distinctes sur de grandes distances. Enfin, nous présentons dans un quatrième chapitre le développement de la microscopie à trois photons multimodale, approche permettant d’augmenter la profondeur d’imagerie sur tissus vivants. / Multiphoton microscopy has transformed neurobiology since the 1990s by enabling 3D imaging of thick tissues at subcellular resolution. However the depths provided by multiphoton microscopy are limited to a few hundreds of micrometers inside scattering tissues such as the brain. In the recent years, several strategies have emerged to overcome this depth limitation and to access larger volumes of tissue. Although these novel approaches are transforming brain imaging, they currently lack efficient multicolor and multicontrast modalities. This work aims at developing large-scale and deep-tissue multiphoton imaging modalities with augmented contrast capabilities. In a first chapter, we present the challenges of high-content large-volume brain imaging, with a particular emphasis on powerful multicolor labeling strategies which have so far been restricted to limited scales. We then introduce chromatic serial multiphoton (Chrom-SMP) microscopy, a method which combines automated histology with multicolor two-photon excitation through wavelength-mixing to access multiple nonlinear contrasts across large volumes, from several mm3 to whole brains, with submicron resolution and intrinsic channel registration. In a third chapter, we explore the potential of this novel approach to open novel experimental paradigms in neurobiological studies. In particular, we demonstrate multicolor volumetric histology of several mm3 of Brainbow-labeled tissues with preserved diffraction-limited resolution and illustrate the strengths of this method through color-based tridimensional analysis of astrocyte morphology, interactions and lineage in the mouse cerebral cortex. We further illustrate the potential of the method through multiplexed whole-brain mapping of axonal projections labeled with distinct tracers. Finally, we develop multimodal three-photon microscopy as a method to access larger depths in live settings.
386

Parametry sítí FTTx - kvalita služeb / Parameters of FTTx networks - Quality of services

Winkler, Aleš January 2012 (has links)
The main subject of this diploma thesis is to make a proposal to improve the optical access network for the transmission of Triple play services. I would here to the reader clarify method of proposal of optical network. There are described the kinds of optical access networks with parameters, for which we must look by their construction. There are described the modern methods of construction optical network too. In the theoretical part are discussed used architecture of networks too. I met here known standards, which I compared for big importance by their choice. A reason of construction of optical network are services known like Triple play. These services together with their problems and parameters are here discussed too. At the end of theoretical part I listed here measuring method for getting negative attribute distorting the led signal. In practical part the locality witch use the optical signal as the source of information is ordered. These network use unfit connections and has less possibilities than usual and this is the reason, why is the network not able to supply Triple play in requested quality. At first the analysis of ordered network was needed. Situation was complicated by the fact, that it has been prohibited entrance to me. The structure of network and network parts was known and documented by me. I made the proposals to improve this network in practical part. By the first proposal remained original kind of access network FTTB, but used new parts with higher performance. By the second proposal I made the network FTTH, by which it was possible to use the last haul optical cables with treatment and using new elements. It was needed to create solution by flat units. The resulting proposals are here evaluated, compared and cost evaluated. For rejection of access to optical network I did not make measuring, so I made simulation for variant FTTH for getting some parameters negative acting transmission.
387

Tailoring the Spectral Transmission of Optofluidic Waveguides

Phillips, Brian S. 09 August 2011 (has links) (PDF)
Optofluidics is a relatively new and exciting field that includes the integration of optical waveguides into microfluidic platforms. The purpose of this field of study is to miniaturize previously developed optical systems used for biological and chemical analysis with the end goal of placing bench-top optics into microscopic packages. Mundane optical alignment and sample manipulation procedures would then be intrinsic to the platform and allow measurements to be completed quickly and with reduced human interaction. Biosensors based on AntiResonant Reflecting Optical Waveguides (ARROWs) consist of hollow-core waveguides used for fluid sample manipulation and analysis, as well as solid-core waveguides used in interfacing external components located at the chip edges. Hollow-core ARROWs are particularly useful for their ability to provide specifically tailored analyte volumes that are easily configurable depending upon the target experiment. Adaptations of standard planar microfabrication methods allow for complex integrated ARROW designs. Integrated spectral filtering with high rejection can be implemented on-chip, removing the need for additional off-chip components and increasing device sensitivity. Additional techniques to increase device sensitivity and utility, such as hybrid ARROW platforms and optical manipulation of samples, are also explored.
388

CHARACTERIZATION OF THE FLAME STRUCTURE OF COMPOSITE ROCKET PROPELLANTS USING LASER DIAGNOSTICS

Morgan D Ruesch (11209263) 30 July 2021 (has links)
<p>This work presents the development and/or application of several laser diagnostics for studying the flame structure of composite propellant flames. These studies include examining the flame structure of novel energetic materials with potential as propellant ingredients, the near-surface flame structure of basic composite propellants, and the global flame structure of propellants containing metal additives.<br></p><p><br></p><p>First, the characterization of the deflagration of various novel energetic cocrystals is presented. The synthesis and development of novel energetic materials is a costly and challenging process. Rather than synthesizing new materials, cocrystallization provides the potential opportunity to achieve improved properties of existing energetic materials. This work presents the characterization of the effect of cocrystallization on the deflagration of a 2:1 molar cocrystal of CL-20 and HMX as well as a 1:1 molar cocrystal of CL-20 and TNT. A hydrogen peroxide (HP) solvate of CL-20 as well as a polycrystalline composite of HMX and ammonium perchlorate (AP) were also studied. A physical mixture of each material was also tested for comparison. The burning rate of each material was measured as a function of pressure. Flame structure during self-deflagration was examined using planar laser-induced fluorescence (PLIF) of CN and OH. The burning rate of the HMX/CL-20 cocrystal and the CL-20/HP solvate closely matched that of CL-20, but the burning rate of the TNT/CL-20 cocrystal was between the burning rate of its coformers. All HMX/AP materials had a higher burning rate than either HMX or AP individually and the burning rate of a physical mixture was found to be a function of particle size. The differences in the burning rate of the physical mixtures and composite crystal of HMX/AP can be explained by changes in the flame structure observed using PLIF. Burning rates and flame structure of the cocrystals were found to closely match those of their respective physical mixtures when smaller particle sizes were used (approx. less than 100 um). The results obtained demonstrate that the deflagration behavior of the coformers is not indicative of the deflagration behavior of the resulting physical mixture or cocrystal. However, changes in the resulting flame structure greatly affect the burning rate.</p><p><br></p><p>Next, PLIF of nitric oxide (NO) was utilized to characterize the near surface flame structure of composite propellants of AP and hydroxyl-terminated polybutadiene (HTPB) containing varying particle sizes of AP burning at 1 atm in air. In all propellants, the NO PLIF signal was strongest close to the burning propellant surface and fell to a non-zero constant value within ~1 mm of the surface where it remained throughout the remainder of the flame. Distinct diffusion-flame-like structure was observed above large individual burning AP particles in the propellant containing a bimodal distribution of 400 and 40 um AP. In contrast, the flame of a propellant containing only fine AP (40 um) behaved like a homogeneous, premixed flame. The flame of the propellant containing a bimodal distribution of 200 and 40 um AP also showed similar behavior to a premixed flame with some heterogeneous structure indicating that, at this pressure, the propellant is approaching a limit where the particle sizing is small enough that the flame behaves like a homogeneous, premixed flame. Additionally, propellants containing aluminum were tested. No significant differences were observed in the NO PLIF behavior between the propellants with and without aluminum suggesting that, at these conditions, the aluminum does not have a significant effect on the AP/HTPB flame structure near the burning surface.</p><p><br></p><p>The effect of aluminum particle size on the temperature of aluminized-composite-propellant flames burning at 1 atm is also presented. In this work, measurements of 1) the temperature of CO (within the flame bath gas) and 2) the temperature of AlO (located primarily within regions surrounding the burning aluminum particles) within aluminized, AP-HTPB-propellant flames were performed as a function of height above the burning propellant surface. Three aluminized propellants with varying aluminum particle size (nominally 31 um, 4.5 um, or 80 nm) and one non-aluminized AP-HTPB propellant were studied while burning in air at 1 atm. A wavelength-modulation-spectroscopy (WMS) diagnostic was utilized to measure temperature and mole fraction of CO via mid-infrared wavelengths and a conventional AlO emission-spectroscopy technique was utilized to measure the temperature of AlO. The bath-gas temperature varied significantly between propellants, particularly within 2 cm of the burning surface. The propellant with the smallest particles (nano-scale aluminum) had the highest average temperatures and far less variation with measurement location. At all measurement locations, the average bath-gas temperature increased as the initial particle size of aluminum in the propellant decreased, likely due to increased aluminum combustion. The results support arguments that larger aluminum particles can act as a heat sink near the propellant surface and require more time and space to ignite and burn completely. On a time-averaged basis, the temperatures measured from AlO and CO agreed within uncertainty at near 2650 K in the nano-aluminum propellant flame, however, AlO temperatures often exceeded CO temperatures by ~250 to 800 K in the micron-aluminum propellant flames. This result suggests that in the flames studied here, and on a time-averaged basis, the micron-aluminum particles burn in the diffusion-controlled combustion regime, whereas the nano-aluminum particles burn within or very close to the kinetically controlled combustion regime.</p><p><br></p><p>The study of the effect of aluminum particle size on the temperature of aluminized, composite-propellant flames was then extended to characterize the same propellants burning at elevated pressures ranging from 1 to 10 atm. A novel mid-infrared scanned-wavelength direct absorption technique was developed to acquire measurements of temperature and CO in particle-laden propellant flames burning at up to 10 atm. The results from the application of this diagnostic are among the very first measurements of gas properties in aluminized composite propellant flames burning at pressures above atmospheric pressure. In all propellants, the flame temperature and combustion efficiency of the propellant flames increased with an increase in pressure. In addition, the propellants with smaller aluminum particle sizes achieved higher flame temperatures as the particles were able to ignite and react faster. However, the propellants containing nano-scale and the smallest micron-scale aluminum powders had similar global flame temperatures suggesting that at some point a decrease in particle size results in minimal gains in the overall flame temperature. The results demonstrate how well measurements of gas properties can be used to understand the behavior of the aluminum particle combustion in the flame.</p><p><br></p><p>Last, the design, development, and application of a laser-absorption-spectroscopy diagnostic capable of providing quantitative, time-resolved measurements of gas temperature and HCl concentration in flames of aluminized, composite propellant flames is presented. This diagnostic utilizes a quantum-well distributed-feedback tunable diode laser emitting near 3.27 um to measure the absorbance spectra of one or two adjacent HCl lines using a scanned-WMS technique which is insensitive to non-absorbing transmission losses caused by metal particulates in the flame. This diagnostic was applied to characterize the spatial and temporal evolution of temperature and/or HCl mole fraction in small-scale flames of AP-HTPB composite propellants containing either an aluminum-lithium alloy or micron-scale aluminum. Experiments were conducted at 1 and 10 atm. At both pressures, the flame temperature of the aluminum-lithium propellant, on a time-averaged basis, was 80 to 200 K higher than that of the aluminum-propellant (depending on location in the flame) indicating more complete combustion. In addition, the mole fraction of HCl in the aluminum-lithium propellant flame reached values 65-70% lower than the conventional aluminum-propellant flame at the highest measurement location in the flame. The measurements at both pressures showed similar trends in the reduction of HCl in the aluminum-lithium propellant flame but at 10 atm this occurred on a length scale an order of magnitude smaller than the flame at atmospheric pressure. The results presented further support that the use of an aluminum-lithium alloy is effective at reducing HCl produced by the propellant flame without compromising performance, thereby making it an attractive additive for solid rocket propellants.</p>
389

Hardware-Efficient WDM/SDM Network : Smart Resource Allocation with SDN Controller / Maskinvarueffektivt WDM / SDM-nätverk : Smart resursallokering med SDN-controller

Liu, Lida January 2019 (has links)
Optical networking has been developing for decades and wavelength-division multiplexing (WDM) is the main technology used to carry signals in fiber-optical communication systems. However, its development has slowed because it is approaching the Shannon limit of nonlinear fiber transmission. Researchers are looking for multi dimensional multiplexing. Space-division multiplexing (SDM) is an ideal way to scale network capacities. The capacity of WDM/SDM network could be expanded to several times the capacity of WDM network but the active hardware devices may also increase by several times. This project aims to answer a practical question: How to construct a WDM/SDM network with less hardware resource? There is no mature research about WDM/SDM network yet. Therefore, the problem can be divided into two parts: (1) how to build a WDM/SDM network and (2) how to allocate resource and compute routes in such a network to minimize hardware resources. First, this thesis proposes a WDM/SDM node which has bypass connections between different fibers and architecture on demand (AoD) to effectively decrease the number of active hardware devices within the node. Then, two types of networks were constructed: one with bypass connections in each node and another one without any bypass connections. These networks were under the control of a software defined network (SDN) controller. The controller knew the wavelength resources within the networks. Several algorithms were applied to these networks to evaluate the effect of a bypass network and to identify the desired characteristics (to find short length path and decrease the probability of spectrum fragmentation) of an algorithm suitable for a network with bypass connections. The results of applying the proposed algorithms in two networks proved that the bypass connections increased the blocking probability in small topology but did not affect the results in large topology. The results in a large-scale network with bypass network were almost the same as the results in a network without bypass connections. Thus, bypass connections are suitable for large-scale network. / Optiskt nätverk har utvecklats i årtionden och våglängdsdelningsmultiplexering (WDM) är den viktigaste tekniken som används för att bära signaler i fiberoptiska kommunikationssystem. Utvecklingen har dock minskat eftersom den närmar sig Shannon-gränsen för olinjär fiberöverföring. Forskare letar efter flerdimensionell multiplexering. Space-division multiplexing (SDM) är ett idealiskt sätt att skala nätverkskapacitet. Kapaciteten för WDM / SDM-nätverk kan utökas till flera gånger WDM-nätverkets kapacitet, men de aktiva hårdvaraenheterna kan också öka med flera gånger. Projektet syftar till att svara på en praktisk fråga: Hur konstruerar jag ett WDM / SDM-nätverk med mindre hårdvara? Det finns ingen mogen forskning om WDM / SDM-nätverk än. Därför kan problemet delas in i två delar: (1) hur man bygger ett WDM / SDM-nätverk och (2) hur man fördelar resurser och beräknar rutter i ett sådant nätverk för att minimera hårdvaruressurser. Först föreslår denna avhandling en WDM / SDM-nod som har förbikopplingsanslutningar mellan olika fibrer och arkitektur på begäran (AoD) för att effektivt minska antalet aktiva hårdvaraenheter inom noden. Sedan konstruerades två typer av nätverk: en med bypass-anslutningar i varje nod och en annan utan några bypass-anslutningar. Dessa nätverk kontrollerades av en mjukvarudefinierad nätverkskontroller (SDN). Styrenheten visste våglängdsresurserna i nätverket. Flera algoritmer applicerades på dessa nätverk för att utvärdera effekten av ett förbikopplingsnätverk och för att identifiera de önskade egenskaperna (för att hitta en kort längdväg och minska sannolikheten för spektrumfragmentering) av en algoritm som är lämplig för ett nätverk med bypass-anslutningar. Resultaten av att tillämpa de föreslagna algoritmerna i två nät visade att förbikopplingsförbindelserna ökade blockeringssannolikheten i liten topologi men inte påverkade resultaten i stor topologi. Resultaten i ett storskaligt nätverk med bypass-nätverk var nästan samma som resultaten i ett nätverk utan bypass-anslutningar. Bypassanslutningar är således lämpliga för storskaliga nätverk.
390

Reliability versus Cost in Next Generation Optical Access Networks

Mahloo, Mozhgan January 2013 (has links)
The ever increasing demands of Internet users caused by the introduction of new high bandwidth applications and online services as well as the growing number of users and devices connected to the Internet, bring many challenges for the operators, especially in the last mile section of the network. Next generation access architectures are expected to offer high sustainable bandwidth per user. They also need to support a much larger service areas to decrease number of current central offices and hence potentially save the network expenditures in the future. Obviously, it requires high capacity and low loss transmission and optical fiber technology is the only future proof candidates for broadband access. Although this technology has already been widely deployed in the core networks, it is hard to use the same expensive devices made for core segment to solve the last mile bottlenecks, due to the low number of users sharing the network resources (and deployment cost). Therefore, the next generation optical access (NGOA) networks need to be designed with consideration of cost efficiency in the first place.   Network reliability is also turning to be an important aspect for the NGOA networks as a consequence of long reach, high client count and new services requiring uninterrupted access. Consequently, new architectures not only need to be cost efficient but also they should fulfill the increasing reliability requirements.   Although several NGOA alternatives have been proposed in the literatures, there is not yet an agreement on a single architecture. As described earlier, network expenditure and reliability performance are the two main factors to be considered. Therefore, this thesis concentrates on finding a suitable alternative for future broadband access by evaluating the reliability performance and total cost of ownership for several NGOA candidates. In particular, in this thesis we analyze the tradeoff between the cost needed to deploy backup resources and the reliability performance improvement obtained by the provided survivability mechanism.   First, we identified the suitable NGOA candidates by comparing two main groups of optical access networks, namely passive optical networks (PONs) and active optical networks (AONs), in terms of cost, reliability performance and power consumption. The initial results have shown that wavelength division multiplexing PON (WDM PON) is the most promising alternative for the NGOA networks because of its high potential capacity, low cost and power consumption. So we continued our studies by investigating two WDM-based PON architectures regarding their cost and reliability performance. The study has also included a proposed fiber layout compatible with these two candidates aiming to minimize the required investment needed to offer protection. Our primary results confirmed that hybrid PON (HPON) is the best alternative for the NGOA networks. Therefore we further analyzed this candidate considering several variants of HPON. The most important components and sections of the HPON, which need to be protected to decrease the impact of each failure in the network have been identified. Based on these outcomes, two resilience architectures protecting the shared part of the HPON were proposed and their reliability performance parameters as well as cost of protection were evaluated. According to the results, using our proposed protection schemes a considerable improvement in reliability performance of the HPON variants can be provided at minor extra investment. We also introduced a cost efficient HPON architecture with different levels of protection for users with various reliability requirements, i.e. the protection of shared parts of the access network for all the connected users and end-to-end resilience scheme for some selected ones (e.g., business users). To gain an overall view on the cost efficiency of the proposed architecture, we evaluated the investment required for deploying these schemes considering several network upgrading paths towards a protected network. Moreover, a sensitivity analysis investigating the influence of network deployments time and the density of the users with higher availability requirements was presented.   In summary, we have shown that HPON is able to fulfill the main NGOA requirements such as high bandwidth per-user, large coverage and client count. The work carried out in the thesis has proved that HPON can also offer high reliability performance while keeping the network expenditures at an acceptable level. Moreover, low power consumption and high flexibility in resource allocation of this architecture, makes it a winning candidate for the NGOA networks. Therefore, HPON is a promising architecture to be deployed as NGOA network in the near future considering the fact that components are soon to be available in the market. / <p>QC 20130530</p> / FP7 EU project, Optical Access Seamless Evolution(OASE)

Page generated in 0.129 seconds