• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 17
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 124
  • 124
  • 124
  • 118
  • 44
  • 35
  • 26
  • 20
  • 18
  • 17
  • 17
  • 16
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Feed efficiency traits in Santa Inês sheep under genomic approaches / Eficiência alimentar em ovinos da raça Santa Inês sob abordagem genômica

Alvarenga, Amanda Botelho 28 September 2017 (has links)
The selection on genetic values predicted from markers could substantially increase the rate of genetic gain in animals by increasing accuracy of prediction and reducing generation interval, especially for difficult to measure traits, such as feed efficiency. Feed efficiency is the most important trait in animal production due to its impacts on cost of production and environmental factors. Many metrics measure the feed efficiency, such as ratio of gain to feed (FER), the ratio of feed to gain (FCR) and residual feed intake (RFI). Nevertheless, in ovine, no study with the aim of understand the genetic variants or the accuracy of genomic estimated breeding value (GEBV) for feed efficiency traits was published yet. Moreover, before to apply the genomic information, it is necessary to understand and characterized the population structure, for instance, by linkage disequilibrium (LD). Both genome-wide association studies (GWAS) and genomic selection (GS) leverage LD between marker and causal mutation. Based on the above considerations, the aim of this study was to map LD in ovine, characterized by Brazilian Santa Inês sheep; to search genetic variants for feed efficiency traits (FER, FCR and RFI) through GWAS; and to verify the accuracy of GEBV for RFI. In total, 396 samples (animals) of Longissimus dorsi muscle were collect. A high-density panel of SNP (Illumina High-Density Ovine SNP BeadChip®) comprising 54,241 SNPs was used to obtain the genotyping data. The phenotype data was comprised of 387 animals. The average LD between adjacent markers for two LD metrics, r² and |D\'|, were 0.166 and 0.617, respectively. The degree of LD estimated was lower than reported in other species and it was characterized by short haplotype blocks. Consequently, for genomic analyses, high-density panels of marker are recommended. Many markers were associated to feed efficiency traits in GWAS, mainly to RFI trait. Few candidate genes were reported in this study, highlighting NRF-1 (nuclear respiratory factor 1), which controls mitochondrial biosynthesis, the most important process responsible by a great fraction of the produced energy. Finally, we verified the accuracy of GEBV for RFI using few Bayesian regression models, and we found low accuracy, ranging from 0.033 (BayesB with π=0.9912) to 0.036 (BayesA), which might be explained by the low relationship among animals and small training population. / A seleção com base nos valores genéticos genômicos preditos pode aumentar substancialmente a taxa de ganho genético em animais por meio do aumento da acurácia de predição e redução do intervalo de gerações, especialmente para características de difícil e/ou onerosa mensuração, como eficiência alimentar. A eficiência alimentar é uma das características mais importantes na produção animal devido principalmente aos seus impactos econômicos e ambientais. Muitas métricas representam a eficiência alimentar, por exemplo: a relação do ganho de peso e consumo alimentar (EA), a proporção do consumo alimentar e ganho de peso (CA) e o consumo alimentar residual (CAR). Em ovinos, nenhum estudo com o objetivo de buscar variantes genéticas ou verificar a acurácia do valor genético genômico estimado para eficiência alimentar foi publicado. Adicionalmente, antes de aplicar a informação genômica, é necessário compreender e caracterizar a estrutura da população, como por meio do desequilíbrio de ligação (LD). O estudo de associação genômica (GWAS) e seleção genômica (GS) consideram o LD entre marcador e a mutação causal. Com base nas considerações acima, o objetivo deste estudo foi mapear o LD em ovinos, caracterizado pela raça ovina Santa Inês; localizar variantes genéticas para as características de eficiência alimentar (EA, CA e CAR) utilizando a abordagem GWAS; e verificar a acurácia da estimação dos valores genéticos genômico para o CAR. No total, foram coletadas 396 amostras (animais) do músculo Longissimus dorsi, para posterior genotipagem utilizando o painel de alta densidade (Illumina High-Density Ovine SNP BeadChip®), compreendendo 54.241 SNPs. O banco fenotípico é composto por 387 animais. O LD médio entre marcadores adjacentes para duas métricas de LD, r² e |D\'|, foram 0,166 e 0,617, respectivamente. O grau de LD estimado foi menor que o relatado em outras espécies e foi caracterizado por blocos de haplótipos curtos. Consequentemente, para as análises genômicas são recomendados painéis de marcadores de alta densidade. No GWAS, foram encontrados muitos marcadores associados aos fenótipos, em especial, à característica CAR. Alguns genes candidatos foram relatados neste estudo, destacando-se o NRF-1 (fator respiratório nuclear 1), que controla a biossíntese mitocondrial, o processo mais importante responsável por grande parte da produção de energia. Finalmente, verificamos a acurácia do valor genético genômico estimado para o CAR usando modelos de regressão Bayesiana, e encontramos baixos valores para acurácia (0,033 a 0,036) o que pode ser explicado pelo baixo grau de relacionamento entre os indivíduos e tamanho reduzido da população de treinamento.
62

Potentiel évolutif et déterminisme génétique de caractères d’agressivité et morphologiques de l’agent de la rouille du peuplier, Melampsora larici-populina / Evolutionary potential and genetic underpinnings of aggressiveness and morphological traits in the poplar rust fungus, Melampsora larici-populina

Maupetit, Agathe 18 December 2018 (has links)
Pour lutter contre les agents phytopathogènes, la sélection de plantes résistantes est la stratégie la plus rentable et la plus écologique. Les résistances quantitatives, basées sur des mécanismes de résistances complexes, sont connues pour être sujettes à l’érosion, en cas d’évolution de l’agressivité des agents pathogènes. L’objectif de ce travail basé sur le pathosystème peuplier – rouille du peuplier (Melampsora larici-populina) est d’évaluer le potentiel évolutif des caractères d’agressivité et morphologiques du parasite par des approches de génétique quantitative et d'identifier les bases génétiques par génétique d'association. Pour estimer la plasticité, l’héritabilité et les compromis évolutifs d’un ensemble de caractères quantitatifs, nous avons précisément mesuré leurs variations dans quatre populations contrastées du champignon. Nous avons montré que le volume des spores est un caractère héritable qui évolue rapidement. La quantité de mycélium in planta est aussi héritable mais très conservée car sous sélection stabilisante dans les populations étudiées. Le temps de latence, la taille des lésions et le taux de sporulation présentent une héritabilité faible, ce qui explique l’absence d’évolution observées au cours du temps pour ces trois caractères. Les caractères liés à la fonction de sporulation semblent être les plus plastiques le long d’un gradient de maturité foliaire. Cependant, l’absence de mise en évidence de compromis évolutifs ne nous a pas permis d’identifier des caractères d’agressivité qui seraient les meilleures cibles pour les résistances quantitatives chez le peuplier. Si aucune base génétique de ces caractères quantitatifs n’a été mise en évidence, nous avons localisé un locus d’avirulence potentiel (Avr7) sur lequel une caractérisation fonctionnelle est envisagée / To control plant pathogens, breeding resistant plants is the most cost-effective and ecological strategy. Quantitative resistances, which are based on complex plant mechanisms, are known to be exposed to erosion through an increase of pathogens aggressiveness. Through the study the poplar – poplar rust (Melampsora larici-populina) pathosystem, this work aims to estimate the evolutionary potential of aggressiveness and morphological traits using quantitative genetic approaches and to identify molecular bases through genome-wide association study. To estimate plasticity, heritability, and trade-offs for a set of quantitative traits, we precisely measured their variation in four contrasted pathogen populations. It appeared that spore volume is highly heritable and evolved rapidly. In planta mycelium quantity is also heritable but constant because of stabilizing selection occurring in the studied populations. Latent period, lesion size and sporulation rate exhibit low heritability, which explains the absence of evolution during the studied time period. Traits involved in the sporulating function seem to be the most plastic ones along a leaf maturity gradient. However, the lack of evidence of trade-offs did not allow us to identify aggressiveness traits that would be the best targets for the construction of durable resistance in poplar. No genetic underpinning has been found for quantitative traits, but we have identified a potential avirulence locus (Avr7), opening the way for its functional characterization
63

Testing new genetic and genomic approaches for trait mapping and prediction in wheat (Triticum aestivum) and rice (Oryza spp)

Ladejobi, Olufunmilayo Olubukola January 2018 (has links)
Advances in molecular marker technologies have led to the development of high throughput genotyping techniques such as Genotyping by Sequencing (GBS), driving the application of genomics in crop research and breeding. They have also supported the use of novel mapping approaches, including Multi-parent Advanced Generation Inter-Cross (MAGIC) populations which have increased precision in identifying markers to inform plant breeding practices. In the first part of this thesis, a high density physical map derived from GBS was used to identify QTLs controlling key agronomic traits of wheat in a genome-wide association study (GWAS) and to demonstrate the practicability of genomic selection for predicting the trait values. The results from GBS were compared to a previous study conducted on the same association mapping panel using a less dense physical map derived from diversity arrays technology (DArT) markers. GBS detected more QTLs than DArT markers although some of the QTLs were detected by DArT markers alone. Prediction accuracies from the two marker platforms were mostly similar and largely dependent on trait genetic architecture. The second part of this thesis focused on MAGIC populations, which incorporate diversity and novel allelic combinations from several generations of recombination. Pedigrees representing a wild rice MAGIC population were used to model MAGIC populations by simulation to assess the level of recombination and creation of novel haplotypes. The wild rice species are an important reservoir of beneficial genes that have been variously introgressed into rice varieties using bi-parental population approaches. The level of recombination was found to be highly dependent on the number of crosses made and on the resulting population size. Creation of MAGIC populations require adequate planning in order to make sufficient number of crosses that capture optimal haplotype diversity. The third part of the thesis considers models that have been proposed for genomic prediction. The ridge regression best linear unbiased prediction (RR-BLUP) is based on the assumption that all genotyped molecular markers make equal contributions to the variations of a phenotype. Information from underlying candidate molecular markers are however of greater significance and can be used to improve the accuracy of prediction. Here, an existing Differentially Penalized Regression (DiPR) model which uses modifications to a standard RR-BLUP package and allows two or more marker sets from different platforms to be independently weighted was used. The DiPR model performed better than single or combined marker sets for predicting most of the traits both in a MAGIC population and an association mapping panel. Overall the work presented in this thesis shows that while these techniques have great promise, they should be carefully evaluated before introduction into breeding programmes.
64

Identify SNPs associated with type 2 diabetes using self-organizing maps and random forests.

January 2009 (has links)
Zhang, Ji. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 100-104). / Abstracts in English and Chinese. / Chapter CHAPTER 1. --- Introduction / Chapter 1.1. --- Introduction of genetic association studies --- p.1 / Chapter 1.1.1. --- Application of genetic association studies in complex diseases --- p.3 / Chapter 1.1.2. --- Application of genetic association studies in type-2 diabetes --- p.4 / Chapter 1.2. --- Study design of genetic association studies --- p.7 / Chapter 1.3. --- Overview of statistical approaches in association studies --- p.10 / Chapter 1.3.1. --- Preliminary analyses --- p.10 / Chapter 1.3.1.1. --- HardýؤWeinberg equilibrium testing --- p.10 / Chapter 1.3.1.2. --- Inference of missing genotype data --- p.12 / Chapter 1.3.1.3. --- SNP tagging --- p.14 / Chapter 1.3.2. --- Single-point and multipoint tests for association --- p.15 / Chapter 1.4. --- Other relevant methods employed in this study --- p.20 / Chapter 1.4.1. --- Self-Organizing Maps (SOM) with further classification by K-means clustering --- p.20 / Chapter 1.4.2. --- Random forests --- p.27 / Chapter 1.5. --- Main objectives of this study --- p.31 / Chapter CHAPTER 2. --- Materials and methods / Chapter 2.1. --- Study cohort --- p.32 / Chapter 2.2. --- Study design --- p.34 / Chapter 2.2.1. --- Construction of sample sets for each stage using SOM and K-means clustering --- p.34 / Chapter 2.2.2. --- Stage 1 analysis by random forests --- p.37 / Chapter 2.2.3. --- Stage 2 analysis by chi-square test --- p.42 / Chapter 2.2.4. --- Two-stage genetic association study by chi-square test --- p.43 / Chapter 2.2.5. --- Comparison of results: random forests plus chi-square test versus chi-square test --- p.43 / Chapter 2.2.6. --- Validation of results in the whole sample set by allelic chi-square test --- p.44 / Chapter 2.2.7. --- Extensions of the study: cumulative effects of candidate SNPs on risk of type-2 diabetes --- p.45 / Chapter CHAPTER 3. --- Results / Chapter 3.1. --- Effects of sample classification by SOM and K-means clustering --- p.50 / Chapter 3.2. --- Genetic associations in stage 1 --- p.64 / Chapter 3.3. --- Genetic associations in stage 2 and validation of results --- p.69 / Chapter 3.4. --- Cumulative effects of candidate SNPs on risk of type-2 diabetes --- p.76 / Chapter CHAPTER 4. --- Discussion / Chapter 4.1. --- Overall strategy --- p.81 / Chapter 4.1.1. --- Effects of SOM and K-means clustering --- p.82 / Chapter 4.1.2. --- Effects of random forests in the first stage of association study --- p.83 / Chapter 4.1.3. --- Comparison of our method with traditional chi-square test --- p.84 / Chapter 4.1.4. --- Joint effects of candidate SNPs selected by the hybrid method --- p.86 / Chapter 4.2. --- Biological significance of candidate SNPs --- p.88 / Chapter 4.2.1. --- Gene CDKAL1 --- p.89 / Chapter 4.2.2. --- Gene KIAA1305 --- p.90 / Chapter 4.2.3. --- Gene DACH1 --- p.91 / Chapter 4.2.4. --- Gene FUCA1 --- p.92 / Chapter 4.2.5. --- Gene KCNQ1 --- p.93 / Chapter 4.2.6. --- Gene SLC27A1 --- p.94 / Chapter 4.3. --- Limits and improvement of this study --- p.96 / Chapter 4.4. --- Conclusion --- p.99 / REFERENCES --- p.100
65

Caractérisation des déterminants génétiques et moléculaires liés à la résistance au dépérissement bactérien chez l'abricotier et analyse des risques associés / Caracterization of genetic and molecular determinants of resistance to bacterial canker in apricot and analysis of the associated risks

Omrani, Mariem 06 November 2018 (has links)
Parmi les Prunus, genre botanique d’intérêt économique important, l’abricotier (Prunusarmeniaca L.) est une culture emblématique du Bassin Méditerranéen. Il y est soumis à des contraintes biotiques importantes, parmi lesquelles le dépérissement bactérien, causé par Pseudomonas syringae (Psy), peut mener à des phénomènes de mortalité en verger au niveau des régions à hivers froids et humides. La mise en évidence de différences variétales en verger offre potentiellement des perspectives de contrôle de la maladie à travers le levier génétique. Aussi, ce travail de thèse avait pour principaux objectifs (i) d’identifier chez la plante des régions génomiques liées à la résistance partielle à la bactérie et (ii) d’étudier un plan factoriel d’interaction entre les diversités de la plante et de la bactérie (GxG) afin d’apprécier la généricité de la résistance et sa durabilité. Afin de répondre au premier objectif, deux approches complémentaires ont été mobilisées : une cartographie de QRLs (Quantitative Resistance Loci) sur quatre populations biparentales dont trois sont issues du croisement avec un géniteur commun ainsi qu’une analyse d’association sur une core-collection. Les données phénotypiques mobilisées correspondent à des symptômes issus d’inoculations contrôlées ainsi que des notes de mortalité obtenues suite à infection naturelle en verger. Ces deux approches (analyse de liaison et d’association) ont permis de mettre en évidence 22 QRLs de résistance, parmi lesquels seuls 2 QRLs sur les chromosomes 6 et 7 colocalisent entre les deux approches. Deux régions majeures détectées en étude d’association sur les chromosomes 5 et 6 se sont révélées être en déséquilibre de liaison et contrôlent près de 26 et 43% de la variation des symptômes. Deux mécanismes complémentaires reposant sur le blocage de l’infection de Psy et sur la limitation de la progression locale de la bactérie dans les tissus ont été mis en évidence à travers la détection de QRLs sur les chromosomes 3, 6, 8 d’une part et 1,4et 6 d’autre part. Le second objectif a été abordé grâce à une étude d’un plan factoriel d’interaction entre 20 accessions d’abricotier et 9 souches de Psy, échantillonnées d’après la connaissance de l’épidémiologie de la maladie en verger. L’analyse statistique de ce dispositif mis en œuvre à la fois en verger et en laboratoire a démontré la prédominance de l’effet du facteur souche dans la variabilité des symptômes étudiés et la très faible importance du facteur d’interaction GxG, indiquant une potentielle généricité des facteurs de résistance et des perspectives favorables à leur durabilité en verger.Les résultats issus de cette thèse contribuent à offrir une meilleure compréhension des mécanismes de résistance partielle au dépérissement bactérien de l’abricotier et fournissent des marqueurs et haplotypes, potentiellement mobilisables dans le cadre de programmes d’innovation variétale. / Within the genus Prunus, that contains highly valuable species, apricot (Prunusarmeniaca L.) is an emblematic Mediterranean crop. But apricot cultivation is constrainedby many biotic stresses, among which bacterial canker caused by Pseudomonas syringae(Psy) is particularly severe and can lead to the death of the trees in regions with humidand cold winters. Differences of susceptibilities have been observed between cultivars inorchards and create opportunities for disease management through genetic improvement.This thesis aimed to (i) identify genetic determinants linked to partial resistance to thebacterium and to (ii) study a factorial interaction design between both diversities of theplant and the pathogen (GxG interaction) in order to assess resistance genericity anddurability. With regard to the first objective, two complementary approaches were used :QRL (Quantitative Resistance Loci) mapping over four biparental progenies, amongwhich three were obtained with a cross involving a common genitor, and a genome-wideassociation study on a core-collection. The phenotypic data mobilized in this work rely onsymptoms issued from controlled inoculations and on mortality notations followingnatural infections in the orchard. These approaches led to the detection of 22 QRLs amongwhich only 2 QRLs, located on chromosomes 6 and 7, co-localized between the twomethods. Two main regions detected in the association study, over the chromosomes 5and 6, appeared to be in linkage disequilibrium and controlled 26 and 43% of the variationof the symptoms. A complementarity between two mechanisms, one that involves blockingthe infection of Psy and the other that limits bacterial mobility in the tissues has beenrevealed through the detection of QRLs over chromosomes 3, 6, 8 for one mechanism and1,4, 6 for the other, respectively. The second objective was fulfilled with a study of afactorial interaction design between 20 apricot accessions and 9 Psy strains, which weresampled according to the previous knowledge of the disease epidemiology in the orchard.Statistical analyses of phenotypic data obtained both from the orchard and a laboratorytest showed a clear predominance of the strain effect on symptom variability and a weakimportance of the GxG interaction factor. This last result highlighted a potentialgenericity of the resistance factors and favorable perspectives of durability in the orchard.The results issued from this thesis contribute to a better understanding of the mechanismsunderlying partial resistance of apricot to bacterial canker. Moreover, it provide markersand haplotypes of interest which could be mobilized in breeding programs.
66

Novel Statistical Methods in Quantitative Genetics : Modeling Genetic Variance for Quantitative Trait Loci Mapping and Genomic Evaluation

Shen, Xia January 2012 (has links)
This thesis develops and evaluates statistical methods for different types of genetic analyses, including quantitative trait loci (QTL) analysis, genome-wide association study (GWAS), and genomic evaluation. The main contribution of the thesis is to provide novel insights in modeling genetic variance, especially via random effects models. In variance component QTL analysis, a full likelihood model accounting for uncertainty in the identity-by-descent (IBD) matrix was developed. It was found to be able to correctly adjust the bias in genetic variance component estimation and gain power in QTL mapping in terms of precision.  Double hierarchical generalized linear models, and a non-iterative simplified version, were implemented and applied to fit data of an entire genome. These whole genome models were shown to have good performance in both QTL mapping and genomic prediction. A re-analysis of a publicly available GWAS data set identified significant loci in Arabidopsis that control phenotypic variance instead of mean, which validated the idea of variance-controlling genes.  The works in the thesis are accompanied by R packages available online, including a general statistical tool for fitting random effects models (hglm), an efficient generalized ridge regression for high-dimensional data (bigRR), a double-layer mixed model for genomic data analysis (iQTL), a stochastic IBD matrix calculator (MCIBD), a computational interface for QTL mapping (qtl.outbred), and a GWAS analysis tool for mapping variance-controlling loci (vGWAS).
67

Novel Statistical Methods in Quantitative Genetics : Modeling Genetic Variance for Quantitative Trait Loci Mapping and Genomic Evaluation

Shen, Xia January 2012 (has links)
This thesis develops and evaluates statistical methods for different types of genetic analyses, including quantitative trait loci (QTL) analysis, genome-wide association study (GWAS), and genomic evaluation. The main contribution of the thesis is to provide novel insights in modeling genetic variance, especially via random effects models. In variance component QTL analysis, a full likelihood model accounting for uncertainty in the identity-by-descent (IBD) matrix was developed. It was found to be able to correctly adjust the bias in genetic variance component estimation and gain power in QTL mapping in terms of precision.  Double hierarchical generalized linear models, and a non-iterative simplified version, were implemented and applied to fit data of an entire genome. These whole genome models were shown to have good performance in both QTL mapping and genomic prediction. A re-analysis of a publicly available GWAS data set identified significant loci in Arabidopsis that control phenotypic variance instead of mean, which validated the idea of variance-controlling genes.  The works in the thesis are accompanied by R packages available online, including a general statistical tool for fitting random effects models (hglm), an efficient generalized ridge regression for high-dimensional data (bigRR), a double-layer mixed model for genomic data analysis (iQTL), a stochastic IBD matrix calculator (MCIBD), a computational interface for QTL mapping (qtl.outbred), and a GWAS analysis tool for mapping variance-controlling loci (vGWAS).
68

The influence of common genetic variations in candidate genes on neuropsychiatric phenotypes

Kästner, Anne 11 July 2013 (has links)
No description available.
69

A Genome-Wide Association Study Suggests Novel Loci Associated with a Schizophrenia-Related Brain-Based Phenotype

Hass, Johanna, Walton, Esther, Kirsten, Holger, Liu, Jingyu, Priebe, Lutz, Wolf, Christiane, Karbalai, Nazanin, Gollub, Randy, White, Tonya, Rößner, Veit, Müller, Kathrin U., Paus, Tomas, Smolka, Michael N., Schumann, Gunter, Scholz, Markus, Cichon, Sven, Calhoun, Vince, Ehrlich, Stefan 22 January 2014 (has links) (PDF)
Patients with schizophrenia and their siblings typically show subtle changes of brain structures, such as a reduction of hippocampal volume. Hippocampal volume is heritable, may explain a variety of cognitive symptoms of schizophrenia and is thus considered an intermediate phenotype for this mental illness. The aim of our analyses was to identify single-nucleotide polymorphisms (SNP) related to hippocampal volume without making prior assumptions about possible candidate genes. In this study, we combined genetics, imaging and neuropsychological data obtained from the Mind Clinical Imaging Consortium study of schizophrenia (n = 328). A total of 743,591 SNPs were tested for association with hippocampal volume in a genome-wide association study. Gene expression profiles of human hippocampal tissue were investigated for gene regions of significantly associated SNPs. None of the genetic markers reached genome-wide significance. However, six highly correlated SNPs (rs4808611, rs35686037, rs12982178, rs1042178, rs10406920, rs8170) on chromosome 19p13.11, located within or in close proximity to the genes NR2F6, USHBP1, and BABAM1, as well as four SNPs in three other genomic regions (chromosome 1, 2 and 10) had p-values between 6.75×10−6 and 8.3×10−7. Using existing data of a very recently published GWAS of hippocampal volume and additional data of a multicentre study in a large cohort of adolescents of European ancestry, we found supporting evidence for our results. Furthermore, allelic differences in rs4808611 and rs8170 were highly associated with differential mRNA expression in the cis-acting region. Associations with memory functioning indicate a possible functional importance of the identified risk variants. Our findings provide new insights into the genetic architecture of a brain structure closely linked to schizophrenia. In silico replication, mRNA expression and cognitive data provide additional support for the relevance of our findings. Identification of causal variants and their functional effects may unveil yet unknown players in the neurodevelopment and the pathogenesis of neuropsychiatric disorders.
70

Predicting prognosis in Crohn's disease

Biasci, Daniele January 2017 (has links)
No description available.

Page generated in 0.1225 seconds