Return to search

Revision of an artificial neural network enabling industrial sorting

Convolutional artificial neural networks can be applied for image-based object classification to inform automated actions, such as handling of objects on a production line. The present thesis describes theoretical background for creating a classifier and explores the effects of introducing a set of relatively recent techniques to an existing ensemble of classifiers in use for an industrial sorting system.The findings indicate that it's important to use spatial variety dropout regularization for high resolution image inputs, and use an optimizer configuration with good convergence properties. The findings also demonstrate examples of ensemble classifiers being effectively consolidated into unified models using the distillation technique. An analogue arrangement with optimization against multiple output targets, incorporating additional information, showed accuracy gains comparable to ensembling. For use of the classifier on test data with statistics different than those of the dataset, results indicate that augmentation of the input data during classifier creation helps performance, but would, in the current case, likely need to be guided by information about the distribution shift to have sufficiently positive impact to enable a practical application. I suggest, for future development, updated architectures, automated hyperparameter search and leveraging the bountiful unlabeled data potentially available from production lines.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-392690
Date January 2019
CreatorsMalmgren, Henrik
PublisherUppsala universitet, Institutionen för teknikvetenskaper
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTVE ; 19001

Page generated in 0.0031 seconds