• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stokastiska modellers framtida roll för investeringsbeslut i fastigheter / The Future Role of Stochastic Models in Real Estate Investing

Karlsson, Hampus, Teimert, Emil January 2021 (has links)
Digitalisering, datainsamling och de kraftigt utökade databaser som idag finns tillgängliga är något som resulterat i stora förändringar i hur man arbetar, detta gäller många branscher och inte minst fastighetsbranschen. Den ökade mängden tillgängliga data är ett stort hjälpmedel när det kommet till att ta beslut. För att på bästa sätt ta vara på all denna data krävs det dock att nya metoder och verktyg utvecklas eller gamla anpassas. Oavsett hur mycket data som finns tillgänglig kommer det dock alltid finnas osäkerheter att ta hänsyn till. Stokastiska modeller har tagits fram just för att hantera både stora mängder data och som hjälpmedel för att uppskatta osäkerhet. Idag används stokastiska modeller inom många olika branscher såsom finans, medicin samt inom forskning i fysik, matematik och statistik. Än idag har de dock en mycket liten roll när det kommer till investeringsbeslut inom fastighetsbranschen Syftet med detta arbete är att undersöka om stokastiska modeller i framtiden kommer att ha en större roll när det kommer till investeringsbeslut inom fastighetsbranschen, samt vad den idag begränsade användningen beror på. Dessutom syftar arbetet på att belysa de skillnader, samt för- och nackdelar som finns hos och mellan deterministiska och stokastiska modeller tillämpade för att assistera beslutsprocessen kring investeringar i fastigheter. Det kommer göras dels genom en intervjustudie med verksamma inom branschen med erfarenhet av arbete med investeringsbeslut. Detta för att höra deras syn på huruvida det idag finns ett motstånd mot stokastiska modeller och om de tror att stokastiska modeller kommer ha en större roll i framtiden. Men också genom en litteraturstudie av tidigare arbeten. Slutsatsen från arbetet är det tydligt att det finns skillnader mellan deterministiska och stokastiska modeller, något som även gör att det till viss del ger olika resultat, även om avvikelserna som betraktades under detta arbete inte var speciellt omfattande. Detta kan stöttas av Jensen`s Inequality samt The Flaw of Averages, vilket tyder på att det kan var så att både risk och möjlighet idag under- eller överskattas. När det kommer till stokastiska modellers framtid inom investeringsbeslut i fastigheter var respondenterna relativt eniga i att de inte skulle bli någon större skillnad mot idag. Detta skulle dock kunna förändras om några skulle börja använda modellerna då detta skulle kunna leda till att fler följer efter. Effekten skulle också kunna accelereras om digitalisering, förbättrade databaser och AI skulle ge modellerna möjlighet att uppskatta mjuka parameter och ta med dessa i sina beräkningar. / Digitalization, data collection and the significantly increased databases that today are accessible have resulted in new work methods in several different industries, one of them being the real estate industry. The increased amount of data accessible can assist in a lot of different situations, for example being a great basis for decision making. To be able to utilize the data in the best way possible, however, either new methods and tools or a change in current methods to adapt to the new conditions that exist is needed. These methods also must be able to handle uncertainty since it will always exist, no matter the amount of data. Stochastic models are previously developed to do just that, handle large amounts of data and at the same time work as a tool for working with uncertainty. Stochastic models are today used in a lot of different industries including finance, medicine, and computer science but also to assist research in mathematics, physics, and statistics. Still today, however, the use is very limited when it comes to real estate investments. The aim of this thesis is to research the possibility of an increased use of stochastic models in real estate investments in the future and the reason for it being very limited today. The thesis also aims to illustrate the differences between deterministic and stochastic models and the pros and cons that follows. To achieve this several interviews with real estate professionals with experience in investment decisions were conducted. In addition to this a literature review was made to analyze previous work on the topic and to collect information considering the differences between deterministic and stochastic models. To summarize the results from this study there are some clear differences between deterministic and stochastic models which in this case also lead to different results, even if it in this study is a minor difference. This finding is supported by Jensen’s Inequality and The Flaw of averages which shows that models used today may both under- and overestimate both the risk and opportunity of an investment. When it comes to the future of stochastic models in real estate investments the respondents were quite united in their believe that not much will change from today. This could change however, if some started to use the models many thought other would follow. This effect might also be accelerated if digitalization, increased databases, and AI could result in better estimates of soft parameters and use it in its calculations.
2

Revision of an artificial neural network enabling industrial sorting

Malmgren, Henrik January 2019 (has links)
Convolutional artificial neural networks can be applied for image-based object classification to inform automated actions, such as handling of objects on a production line. The present thesis describes theoretical background for creating a classifier and explores the effects of introducing a set of relatively recent techniques to an existing ensemble of classifiers in use for an industrial sorting system.The findings indicate that it's important to use spatial variety dropout regularization for high resolution image inputs, and use an optimizer configuration with good convergence properties. The findings also demonstrate examples of ensemble classifiers being effectively consolidated into unified models using the distillation technique. An analogue arrangement with optimization against multiple output targets, incorporating additional information, showed accuracy gains comparable to ensembling. For use of the classifier on test data with statistics different than those of the dataset, results indicate that augmentation of the input data during classifier creation helps performance, but would, in the current case, likely need to be guided by information about the distribution shift to have sufficiently positive impact to enable a practical application. I suggest, for future development, updated architectures, automated hyperparameter search and leveraging the bountiful unlabeled data potentially available from production lines.

Page generated in 0.0604 seconds