• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 350
  • 243
  • 92
  • 34
  • 24
  • 15
  • 14
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 868
  • 204
  • 190
  • 173
  • 149
  • 129
  • 125
  • 117
  • 113
  • 82
  • 74
  • 72
  • 69
  • 63
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
541

Band gap control in hybrid titania photocatalysts

Rico Santacruz, Marisa 18 September 2014 (has links)
No description available.
542

Inactivation of Microorganisms by Photocatalysis

Sontakke Sharad, M January 2012 (has links) (PDF)
Photocatalysis is an advanced oxidation process, which has shown to possess an enhanced capability to remove a wide range of contaminants. It involves the use of a semiconductor photocatalyst and a photon source. Photocatalysis has several advantages such as mild reaction conditions like ambient temperature and pressure, good control over the reaction and faster reaction kinetics. Semiconductor photocatalysts such as TiO2, ZnO, Fe2O3, CdS, ZnS, etc. absorbs light of energy greater than or equal to its band gap and the electron in the valence band gets excited to conduction band leaving behind the hole in valence band. These charge carrier pair results in the formation of various reactive oxygen species such as hydroxyl and superoxide radicals which results in the degradation of chemical contaminants and inactivation of microorganisms. TiO2 is the most widely used catalyst in photocatalytic studies because of its high photocatalytic activity, non-toxicity and wide availability. Anatase phase TiO2 has been reported to possess higher photocatalytic activity than the rutile phase. Although there are several methods to synthesize TiO2, solution combustion synthesis is a single step process to produce pure anatase phase TiO2. The catalyst produced by this method has been shown to be superior to the commercially available Degussa P-25 catalyst for the degradation of various chemical contaminants. The present investigation focuses on the use of combustion synthesized catalyst for the inactivation of microorganisms. The photocatalytic activity was compared with commercial Degussa P-25 catalyst. The various aspects of photocatalytic inactivation reactions studied in this dissertation are: i) photocatalytic inactivation of microorganisms in presence of UV light, ii) effect of various parameters on the inactivation, iii) photocatalytic inactivation in presence of visible light, iv) use of immobilized catalyst for the photocatalytic inactivation, v) understanding of mechanism and kinetics of inactivation. Combustion synthesized TiO2 (CS-TiO2), combustion synthesized 1% Ag substituted TiO2 (Ag/TiO2 (Sub)) and 1% Ag impregnated CS-TiO2 (Ag/TiO2 (Imp)) were used as photocatalysts. The catalysts were characterized by powder XRD, TEM, BET surface area, UV-Vis spectroscopy, TGA and photoluminescence spectroscopy. The photocatalytic inactivation experiments were carried out using E. coli (K-12 MG 1655), a bacterial strain and P. pastoris (X-33), a yeast strain, as model microorganisms. The results demonstrate higher photocatalytic activity of all the combustion synthesized catalysts than commercial Degussa P-25 catalyst. The optimum catalyst concentration was 0.25 g/L and the maximum inactivation was observed in the presence of Ag/TiO2 (Imp) catalyst. Rapid and complete inactivation of the microorganisms was observed at lower initial cell concentrations. A reduced photocatalytic inactivation was observed in presence of various anions (HCO3¯ , SO4 2¯ , Cl¯ and NO3¯ ) and cations (Na, K, Caand Mg). Even a small addition of H2O2 was observed to improve the photocatalytic inactivation. At higher dosage of H2O2, a 2 min exposure was sufficient to result in a complete inactivation. Changing the initial pH of the solution was observed to have no significant effect on the photocatalytic inactivation. All the combustion synthesized catalysts showed higher activity as compared to those obtained with commercial Degussa P-25 TiO2 in presence of visible light. The higher photocatalytic activity of combustion synthesized TiO2 can be attributed to the lesser crystallite size, higher surface area, large amount of hydroxyl groups and decreased band-gap energy of the catalyst. The present study demonstrates the potential use of catalyst immobilized thin films for the photocatalytic inactivation of E. coli in the presence of UV light. The CS-TiO2 catalyst was immobilized on glass substrate by LbL deposition technique. The performance of immobilized CS-TiO2 was compared to commercial Degussa Aeroxide TiO2 P-25 (Aeroxide) catalyst. The effect of various operating parameters like catalyst loading, surface area and number of bilayers on inactivation has been investigated. It was observed that increasing the number of bilayers and the concentration did not influence the inactivation but increased surface area led to an increase in inactivation. It was observed that the catalyst immobilized on glass slides can be used for repeated experimental cycles with the same efficiency. It was observed that the inactivation process can be studied in continuous mode by using catalyst immobilized on glass beads. The work also focused attention towards understanding the microorganism inactivation mechanism and kinetic aspects. Various microscopy techniques such as optical microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to study the inactivation mechanism. From the images obtained, it was suggested that the inactivation is caused due to rupture of cell wall. The mechanism was also examined by carrying out degradation experiments on cell component such as protein and media component such as dextrose. UV alone was observed to degrade protein and the presence of catalyst showed no additional effect. On the other hand, dextrose does not respond to photocatalytic degradation even at a lower concentration. The photocatalytic degradation of Orange G dye was reduced by addition of dextrose sugar or protein which shows a possibility of competitive degradation. The kinetics of inactivation was studied by various models available in literature such as the power-law model, Chick-Watson model, modified Hom model, GInaFIT tool and a Langmuir-Hinshelwood type model. It was observed that power-law based kinetic model showed good agreement with the experimental data. A mechanistic Langmuir-Hinshelwood type model was also observed to model the inactivation reactions with certain assumptions.
543

The rational design of photocatalytic semiconductor nanocrystals

Eley, Clive William January 2014 (has links)
This thesis reports the successful rational design of three highly active photocatalytic semiconductor nanocrystal (SNC) systems by exploiting morphology effects and the electronic properties of type II semiconductor heterojunctions. Novel architectures of colloidal SNCs are produced with the aim of suppressing exciton recombination and improving charge extraction for the successful initiation of desirable redox chemistry. Rod-shaped niobium pentoxide Nb<sub>2</sub>O<sub>5</sub> nanocrystals (NCs) are shown to exhibit significantly enhanced activity (10-fold increase in rate constant) relative to spherical-shaped NCs of the same material. The increase is attributed to Nb5<sup>+</sup> Lewis acid site rich (001) surfaces, present in higher proportions in the rod morphology, which bind organic substrates from solution resulting in direct interaction with photogenerated charges on the surface of the NC. Building on the insights into morphology-activity dependence, type II semiconductor heterojunctions are exploited for their ability to increase exciton lifetimes and spatially separate charges. Two novel II-VI heterostructured semiconductor nanocrystals (HSNCs) systems are investigated: a series of CdX/ZnO (X = S, Se, Te) HSNCs and ZnS/ZnO HSNCs capped with two different surface ligands. In the first case, substantial photocatalytic activity improvement is observed for HSNCs (relative to pure ZnO analogues) according to the following trend: CdTe/ZnO > CdS/ZnO > CdSe/ZnO. The observed trend is explained in terms of heterojunction structure and fundamental chalcogenide chemistry. In the second case, both ZnS/ZnO HSNCs exhibit activity enhancement over analogous pure ZnO, but the degree of enhancement is found to be a function of surface ligand chemistry. Photocatalytic activity testing of all the materials investigated in this work is performed via the photodecomposition of methylene blue dye in aerated aqueous conditions under UVA (350 nm) irradiation. The synthetic techniques employed for the synthesis of colloidal SNCs investigated in this thesis range from chemical precipitation and solvothermal techniques to several different organometallic approaches. A wide variety of analytical techniques are employed for the chemical, structural and optical characterisation of SNC photocatalysts including: XRD, XPS, TEM, UV-vis absorption, PL spectroscopy and FTIR. Atom Probe Tomography (APT) is employed for the first time in the structural characterisation of II-VI heterojunctions in colloidal HSNCs. Overall, this thesis provides a useful contribution to the growing body of knowledge pertaining to the enhancement of photocatalytic SNCs for useful applications including: solar energy conversion to chemical fuels, the photodecomposition of pollutants and light-driven synthetic chemistry.
544

Bismuth oxybromide-based photocatalysts for solar energy utilisation and environmental remediation

Kong, Liang January 2013 (has links)
This thesis reports the investigation of Bismuth oxybromide (BiOBr) semiconductor material as an efficient photocatalyst for the sunlight harvesting as well as environmental cleanup. I have utilised different synthetic methodologies to obtain BiOBr and its derivatives, such as co-precipitation, ultrasonification, and photo-deposition; and have studied their structural and optical properties by X-ray diffraction and surface analysis techniques. I report the synthesis and characterisation of two new p-n heterojunction systems, AgBr-BiOBr and BiOBr-ZnFe<sub>2</sub>O<sub>4</sub>, and have performed initial studies on photocatalytic reaction and their catalytic decomposition mechanisms. I have also reported the surface modification method including the deposition of noble metal on BiOBr to investigate the role played by the noble metal and the interactions between semiconductor and metal using various characterisation measurements. Furthermore, a continuous series of BiOBr-BiOI solid solutions were synthesised, characterised and the photocatalytic degradation was performed on the as-obtained semiconductors, to study the band structure properties of the solid solutions.
545

Photocatalytic destruction of volatile organic compounds from the oil and gas industry

Tokode, Oluwatosin January 2014 (has links)
Heterogeneous photocatalysis is an advanced oxidation technology widely applied in environmental remediation processes. It is a relatively safe and affordable technology with a low impact on the environment and has found applications in a number of fields from chemical engineering, construction and microbiology to medicine. It is not catalysis in the real sense of the word as the photons which initiate the desired photocatalytic reaction are consumed in the process. The cost of these photons is by far the limiting economic factor in its application. From a technical standpoint, the inefficient use of the aforementioned photons during the photocatalytic reaction is responsible for the limited adoption of its application in industry. This inefficiency is characterised by low quantum yields or photonic efficiencies during its application. The mechanism of the technique of controlled periodic illumination which was previously proposed as a way of enhancing the low photonic efficiency of TiO2 photocatalysis has been investigated using a novel controlled experimental approach; the results showed no advantage of periodic illumination over continuous illumination at equivalent photon flux. When the technique of controlled periodic illumination is applied in a photocatalytic reaction where attraction between substrate molecules and catalyst surface is maximum and photo-oxidation by surface-trapped holes, {TiIVOH•}+ ads is predominant, photonic efficiency is significantly improved. For immobilized reactors which usually have a lower illuminated surface area per unit volume compared to suspended catalyst and mass transfer limitations, the photonic efficiency is even lower. A novel photocatalytic impeller reactor was designed to investigate photonic efficiency in gas–solid photocatalysis of aromatic volatile organic compounds. The results indicate photonic efficiency is a function of mass transfer and catalyst deactivation rate. The development of future reactors which can optimise the use of photons and maximize photonic efficiency is important for the widespread adoption of heterogeneous photocatalysis by industry.
546

Ruthenium(II)- and Copper(I)-Catalyzed C–H Functionalizations

Yang, Fanzhi 14 December 2015 (has links)
No description available.
547

Detection, analysis, and photocatalytic destruction of the freshwater taint compound geosmin

Bellu, Edmund January 2007 (has links)
A significant issue affecting the aquaculture and water industries is the presence of off-flavour compounds in water, which cause problems by imparting an undesirable earthy/musty flavour and smell to water and fish. Two predominant off-flavour compounds are geosmin (GSM) and 2-methylisoborneol (MIB). These compounds are produced by several varieties of cyanobacteria and actinomycetes as metabolic products and can be detected by humans at concentrations as low as 0.015 mg L-1. Removal of GSM and MIB from potable waters has proven to be inefficient using standard water treatment such as filtration, coagulation, flocculation, sedimentation and chlorination. Activated carbon and membrane processes can physically remove GSM and MIB, but do not destroy them, and ozone treatment can be expensive. Titanium dioxide (TiO2) photocatalysis has recently been demonstrated to rapidly degrade GSM and MIB. When the semiconductor catalyst is illuminated with ultraviolet light simultaneous oxidation and reduction reactions occur. Pollutants are broken down into mineral acids, carbon dioxide and water. This study was conducted to determine if TiO2 photocatalysis, using a pelleted form of TiO2 called Hombikat K01/C, was a suitable method for the treatment of potable water. Additionally an analytical method was developed to rapidily analyse the large number of samples generated. Two reactors, a bench scale batch reactor and pilot scale flow reactor, were developed and used to evaluate the efficacy of Hombikat K01/C TiO2 photocatalysis in degrading GSM. The batch reactor, containing Hombikat K01/C, was used to investigate the effect of numerous experimental variables on the photocatalysis of GSM, including initial substrate concentration, pH, light intensity, aeration rate, the presence of additional reactants, and catalysis conducted in deuterated water. GSM was rapidly degraded using the TiO2 batch reactor, with the rate of GSM degradation most affected by light intensity and additional reactants, though pH also had a notable effect. A kinetic isotope effect of 1.61 was observed for the destruction of GSM using Hombikat K01/C TiO2. The flow reactor was also found to efficiently degrade GSM in raw waters. The rate of GSM destruction was found to be significantly lowered by UV shielding of the catalyst, caused by constituents of raw the water used, and the presence of additional reactants. The pilot scale flow reactor was also successfully evaluated in Denmark using gesomin contaminated water from an eel farm
548

Electronic structure of TiO2-based photocatalysts active under visible light

Oropeza Palacio, Freddy Enrique January 2011 (has links)
This thesis is concerned with furthering our understanding of the basis of visible region photocatalytic activity exhibited by doped TiO2-based materials. A range of experimental techniques including high resolution X-ray photoemission spectroscopy and diffuse reflectance spectroscopy are used to investigate electronic structure and an attempt is made to link these results to the observed photocatalytic activity. Both anionic (N) and cationic (Rh and Sn) dopants are investigated. [See pdf file for full abstract].
549

Relation between structure and properties of TiO2 coatings on metallic substrates / Relation entre la structure et les propriétés fonctionnelles des revêtements de TiO2 sur les substrats métalliques

Varghese, Aneesha Mary 19 April 2012 (has links)
L'objectif de cette étude était de réaliser des revêtements de TiO2 présentant une large variété de morphologies et d'établir des corrélations entre la structure de ces couches et leurs propriétés fonctionnelles, notamment la photocatalyse. Deux voies de synthèse employant le même précurseur, le tétra-isopropropoxide (TTIP) de titane, ont été utilisées, le procédé sol-gel et le dépôt chimique en phase vapeur (MOCVD). L'emploi de ces deux techniques permet de produire TiO2 sous une large gamme de morphologies mais avec des variétés polymorphiques similaires. Les revêtements synthétisés ont été caractérises afin de déterminer leur composition polymorphique, la taille des cristallites, la surface spécifique, la rugosité et l'épaisseur. Puis leur activité photocalytique pour la dégradation du bleu de méthylène a été déterminée. Par voie sol-gel, des dispersions de nano-cristallites de TiO2 dans l'eau, stables sur une longue durée (plus d'un an) en termes de composition polymorphique, taille d'agglomérats et de cristallites ont été synthétisées. Les revêtements ont été réalisés par tape-casting et dip-coating. Pour la synthèse en MOCVD, un plan d'expérience (PeX) a été utilisé, à notre connaissance pour la première fois. Il a permis de déterminer, d'une manière efficace et économique (avec un nombre minimum de tests expérimentaux), les paramètres les plus importants du procédé contrôlant les diverses propriétés quantifiables du revêtement. Il a aussi permis de mettre en évidence les interactions entre les paramètres de synthèse et leur effet sur la structure du revêtement. Les conclusions tirées du PeX sont en accord avec les résultats obtenus lors des études précédentes. L'analyse en composantes principales (ACP) a été réalisée pour avoir une vue globale de la façon dont les diverses propriétés des revêtements sont reliées entre elles / The overall objectives of this study was to find an environmental-friendly and simple procedure to synthesize titanium-dioxide, as well as, to determine the relation between the structural and functional properties of titanium dioxide coatings. Both of these objective have been attained in this study. By the sol-gel technique, titanium dioxide sols were synthesized by the hydrolysis of titanium(IV)isopropoxide. Nanocrystalline dispersions of TiO2 in water were prepared that were suitable for coatings and having long-term stability (more than 1 year) in terms of polymorphic composition, crystallite and agglomerate size. A design of experiments (DoE) was utilised, to our knowledge, for the first time in MOCVD for the synthesis of TiO2 coatings. It was employed to determine, in a timely and economical manner, the most significant process parameters for any quantifiable property of the coating and to highlight the interaction between these operating parameters, as well as, the correlation between the structure of the coating and the process. The conclusions drawn from the DoE were compared to results obtained by previous studies and were found to concur. Therefore, the DoE was successful in screening the most important process parameters, with a minimum number of experimental trials. For most of the properties that were under investigation, the DoE showed that, the deposition temperature and reactor pressure were, often-times, the most significant. Therefore, to change the microstructure and composition of MOCVD coatings, changing these process parameters will ensure the highest impact. It has to be stressed that the conclusions drawn from the DoE are restricted to the experimental range that was under investigation. Principal Component Analysis (PCA) was conducted to have an overall view of how the different properties of the coatings related with one another. The interpretations made from this analysis were that the photocatalytic (PC) activity of the coatings produced did not relate strongly to the polymorphic composition, which is contrary to literature review and is explained to be a result of the different morphologies that lead to different porosities and specific surface area. The PC activity did not depend on the mass over a critical mass. With this analysis it appeared to be clear that the porosity and specific surface area played a larger role than polymorphic composition. This hypothesis has to be verified because we did not succeed in determining the specific surface area of our coatings during this study. However, some preliminary tests have been conducted showing that cyclic voltametry could be used to evaluate the surface area of our films
550

Influence des caractéristiques structurelles et morphologiques sur l'activité photocatalytique de films nanostructurés d'oxyde de titane obtenus par anodisation électrochimique : application à la photodégradation de la 4-nitroaniline

Alshibeh alwattar, Nisreen 26 March 2012 (has links)
Cette étude avait pour objectif de développer un nouveau support photocatalytique pour des applications potentielles dans le domaine du traitement des eaux. Le choix s'est porté sur les nanotubes d'oxyde de titane (TiO2) et l'étude a plus particulièrement porté sur l'optimisation de leurs propriétés photocatalytiques vis-à-vis de la l'oxydation de solution aqueuse de composés azotés. Les nanotubes de TiO2 ont été préparés par anodisation électrochimique en faisant varier le potentiel appliqué, la durée d'anodisation, le pH et la viscosité du milieu électrolytique (milieu aqueux ou milieu glycérol), ainsi que la nature du substrat sur lequel étaient déposés ces nanotubes. Une fois anodisés, ces nanotubes amorphes et se présentant sous forme sous-stœchiométrique (O/Ti <2) ont été recuits à différentes températures afin d'obtenir des phases de TiO2 variées (anatase, anatase/rutile). Au cours de ces différentes étapes, les différents nanotubes obtenus ont été caractérisés morphologiquement et structurellement par analyses par diffraction des rayons X (DRX) et par microscopie électronique à balayage (MEB).L'activité photocatalytique de ces différents matériaux a été déterminée à partir des rendements de photodégradation d'un composé modèle, la 4-nitroaniline. Là aussi, différents facteurs ont été étudiés, à savoir le pH du milieu réactionnel, le type de lampe UV et les durées d'irradiation.Les résultats montrent que les performances photocatalytiques des nanotubes de TiO2 les meilleures sont obtenues lorsqu'ils sont déposés sur substrat de Ti massif, anodisés en solution aqueuse à 20 V et pendant 20 minutes, et recuits à 450 °C (structure anatase). / This study aimed to design a new photocatalytic support for potential uses in the field of water treatment. Titanium dioxide (TiO2) nanotubes were chosen and studied as a function of their photocatalytic properties towards nitrogenous compounds.TiO2 nanotubes were prepared by electrochemical anodization by varying the applied potential, anodization duration, pH and viscosity of the electrolytic medium (aqueous or glycerol medium), and by the nature of substrates where these nanotubes were deposited (titanium foil (Ti) or deposited on silicon (Ti / Si)). Once anodized, these amorphous and under-stoechiometric (O/Ti <2) were calcined at various temperatures in order to obtain different TiO2 phases (anatase or anatase/rutile). During these different steps, the whole nanotubes obtained were morphologically and structurally characterized par X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic activity of the different materials was determined from the photodegradation yields of a model compound, namely 4-nitroaniline. Here again, different factors were studied, such as pH of reaction medium, kind of UV lamps and irradiation durations. The results show that the best photocatalytic performances of TiO2 nanotubes were obtained when deposited on Ti foils, anodized in aqueous medium at 20 V and for 20 minutes, and calcined at 450 °C (anatase phase).

Page generated in 0.0397 seconds