• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 3
  • 2
  • Tagged with
  • 21
  • 21
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Chromium and Titanium based Stannum Nanocomposites materials as electron acceptors for next generation bulk Heterojunction photovoltaic cells

Raleie, Naledi January 2018 (has links)
Philosophiae Doctor - PhD (Chemistry) / Renewable energy has become the centrepiece of research in resolving the energy crisis. One of the forms of renewable energy is solar energy. This form of energy is costly to develop. Organic molecules are promising materials for the construction of next generation photovoltaic cells considering their advantage of lower cost compared to crystalline silicon that is currently used in solar cells. This forms the basis of this research, which focused on the synthesis and characterisation of poly(3- hexylthiophene) P3HT, stannum (Sn) nanoparticles and stannum-based bimetallic stannum-titanium (SnTi), stannum-chromium (SnCr) and stannum-vanadium (SnV) nanoparticles for the application in the construction of heterojunction photovoltaic cells (PVCs).
12

Synthèse et caractérisation de nanostructures induites par radiolyse en mésophases hexagonales / Synthesis and characterization of nanostructures induced by radiolysis in hexagonal mesophases

Lehoux, Anaïs 28 September 2012 (has links)
Les propriétés (catalytiques, électriques, optiques ou magnétiques) des métaux ultra-divisés sont différentes du métal massif et sont influencées par la forme et la morphologie des nanomatériaux. Parmi les techniques de synthèses des nanomatériaux, la radiolyse est une méthode de choix pour réduire de façon contrôlée des ions métalliques et pour induire la polymérisation de monomères. Une matrice souple auto-assemblée, à partir de molécules de surfactants, a été employée comme nanoréacteur pour synthétiser des nanostructures (bi-)métalliques ou polymères de morphologie contrôlée. Les surfactants forment dans des conditions particulières des mésophases hexagonales quaternaires qui peuvent être gonflées, de façon continue, sur une large gamme. Le dopage des mésophases en sels métalliques ou en monomères peut être réalisé aussi bien en phase aqueuse qu’en phase organique, permettant d’obtenir des nanostructures de morphologie différentes. En phase aqueuse, la synthèse conduit à la formation de matériaux mésoporeux. Ceux-ci sont d’un intérêt tout particulier pour la catalyse en raison de leur très grande surface spécifique. Le contrôle du gonflement de la mésophase permet un ajustement fin de la porosité dans la structure métallique finale. Nous avons également mis en évidence que la composition de ces nanostructures métalliques Pd/Pt poreuses peut être contrôlée. Nous avons également synthétisé des nanostructures 1D dans la phase organique, comme des nanofils de palladium ou des nanofils de polymères. / The properties (catalytic, electrical, optical or magnetic) of ultra-divided metals are different from those from bulk and are influenced by the shape and morphology of the nanomaterials. Among the techniques of nanomaterials synthesis, radiolysis is a preferred method to reduce metal ions and to induce the polymerization of monomers. A soft template made of self-assembled surfactant molecules, has been used as nanoreactor to synthesize (bi-)metallic or polymer nanostructures of controlled morphology. Surfactants can form, under certain conditions, quaternary hexagonal mesophases, which can be inflated continuously over a wide range. Mesophases can be doped with metal salts or monomers, in aqueous phase or in organic phase, to obtain different nanostructures morphology. In aqueous phase, the synthesis leads to the formation of mesoporous materials. These are of particular interest for catalysis due to their large surface area. The control of the mesophase swelling allows a fine adjustment of the porosity in the final metal structure. We also demonstrated that the composition of porous bimetallic nanostructures Pd / Pt can be controlled. We also synthesized 1D nanostructures in the organic phase, such as metal (palladium) or polymer nanowires.
13

Nanopartículas bimetálicas e biocatalisadores: um estudo sobre sua interação e atividade catalítica / Bimetallic nanoparticles and biocatalysts: a study about your interaction and catalytic activity

Camila de Menezes Kisukuri 06 April 2018 (has links)
Apostando na versatilidade de nanopartículas bimetálicas como catalisadores em reações orgânicas, nós desenvolvemos um estudo onde nanopartículas bimetálicas de AgAu, AgPd e AgPt, foram utilizadas como catalisadores em reações de oxidação de compostos de silício (1a-j) ao respectivo silanol (2a-j). Empregando a água como agente oxidante, para estas reações, conversões de 43->99% foram alcançadas. Visando formar catalisadores metalo-enzimáticos (CME), nanopartículas bimetálicas de AgAu, AgPd e AgPt foram utilizadas como suporte da CAL-B (CMEs: CALB-AgAu; CALB-AgPd; CALB-AdPt). Esses catalisadores apresentaram dupla atividade catalítica. Foram alcançadas a oxidação do dimetil(fenil)silano (1a), com uma conversão de até 85% e acetilação enantiosseletiva do (R,S)-1-(fenil)etanol (4a) com acetato de vinila, com uma conversão de até 26% e seletividade >99% para formação do (R)-1- fenil(etil)acetato. Nanopartículas bimetálicas de AgPd (NSsAgPd), também foram aplicadas como catalisadores para a hidrogenação de compostos orgânicos utilizando como fonte de hidrogênio compostos de silício. Neste caso treze diferentes substratos foram empregados (5a-5o) (cetonas &#945,¨β-insaturadas, acrilatos, azidas, compostos nitro e iminas) e conversões >99% foram alcançadas para alguns dos produtos reduzidos. Utilizando este mesmo sistema, a incorporação de átomos de deutério em compostos orgânicos foi realizada pela substituição da água por D2O, o que levou à formação de HD/D2. Com esta metodologia conseguimos encorporar o átomo de deutério numa taxa >60% nos compostos 5a e 5m. As NSsAgPd também foram imobilizadas em partículas de sílica para a formação de SiO2-AgPd. Estes catalisadores foram confinados em um reator e utilizados em reações de hidrogenação, sob7 condições de fluxo contínuo, de compostos orgânicos utilizando como fonte de hidrogênio compostos de silício. Sob estas condições conversões de até 92% foram alcançadas para o produto reduzido / We have developed a study where bimetallic nanoparticles of AgAu, AgPd and AgPt were used as catalysts in the oxidation reactions of silicon compounds (1a-j) to the respective silanol (2a-j). Using the water as the oxidizing agent, for these reactions, conversions of 43-> 99% were achieved. In order to form metallo-enzymatic catalysts (MEC), bimetallic nanoparticles of AgAu, AgPd and AgPt were used as support of CALB (CMEs: CALB-AgAu; CALB-AgPd; CALB-AdPt). These catalysts had dual catalytic activity. Oxidation of dimethyl (phenyl) silane (1a) with a conversion of up to 85% and enantioselective acetylation of (R,S)-1-(phenyl)ethanol (4a) with vinyl acetate was achieved with a conversion of up to 26% and selectivity >99% for (R)-1-phenyl (ethyl) acetate formation. AgPd bimetallic nanoparticles (NSsAgPd) were also applied as catalysts for the hydrogenation of organic compounds using silicon compounds as the Hydrogen source. In this case thirteen different substrates (5a-5o) were employed (α,β-unsaturated ketones, acrylates, azides, nitro compounds and imines) and conversions >99% were achieved for several reduced products. Using this same system, the incorporation of deuterium atoms into organic compounds was performed by replacing the water with D2O, which led to the formation of HD/D2. With this methodology we were able to incorporate the deuterium atom in a rate >60% in compounds 5a and 5m. NSsAgPd were also immobilized on silica particles to form SiO2-AgPd. These catalysts were confined in a reactor and used in the hydrogenation reactions under continuous flow conditions of organic compounds using silicon compounds as the hydrogen source. Under these conditions conversions of up to 92% were achieved for the reduced product.
14

Spectroscopie optique et microscopie électronique environnementale de nanoparticules Ag-In et Ag-Fe en présence de gaz réactifs / Optical spectroscopy and electronic microscopy of Ag-In and Ag-Fe nanoparticles under controlled environment, in the presence of reactive gases

Ramade, Julien 16 November 2016 (has links)
Les nanoparticules (NPs) bimétalliques présentent des propriétés catalytiques très intéressantes qui justifient leur utilisation dans des procédés industriels de catalyse hétérogène. Leur structure (chimique, géométrique, électronique) est néanmoins susceptible d’évoluer dans des conditions environnementales réelles et modifier leurs propriétés. L’objectif de cette thèse pluridisciplinaire est de suivre la réactivité de ces NPs en atmosphère réactive contrôlée. Pour cela, on a développé un dispositif de spectroscopie in situ à modulation spatiale afin de suivre l’évolution de la structure sur une grande population de NPs via l’étude de leur résonance du plasmon de surface (RPS) localisée. Ces observations ont été couplées avec une approche locale (NPs individuelles) par microscopie électronique à transmission environnemental (MET-E). La MET-E a permis de révéler des effets de composition et d’environnement sur la structure chimique de NPs Ag-In. Des alliages stables pauvres en indium se forment, puis une coquille d’oxyde d’indium dont l’épaisseur augmente avec la concentration atomique d’indium. D’autre part, des domaines de structures stables (coeur@coquille, Janus, système réduit) ont été mis en évidence selon les conditions locales de température et de pression d’hydrogène. Enfin, l’oxydo-réduction de NPs Ag-Fe a été suivie in situ via l’étude de leur RPS. La MET, la plasmonique environnementale et les nombreuses simulations (réponse optique, simulations Monte-Carlo) suggèrent une ségrégation du fer et de l’argent avec une surface enrichie en argent. L’oxydation semble induire la diffusion du fer en surface, directement suivie de la formation de magnétite (Fe3O4) / Bimetallic nanoparticles (NPs) are known to present interesting catalytic properties justifying their use in several industrial processes in the domain of heterogeneous catalysis. However, their (chemical, geometrical, electronical) structure may evolve under realistic reactive atmosphere, involving a modification of their properties. In this multidisciplinary work, the aim is focused on the surface reactivity monitoring of these NPs under controlled gaseous environment. For this purpose, we developed an in situ spectrophotometer based on spatial modulation to monitor the structure evolution of a large assembly of NPs through the study of their localized surface plasmon resonance (LSPR). This global approach has been coupled with a more local approach by environmental transmission electronic microscopy (E-TEM). E-TEM observations have shown both composition and environmental effects on the chemical structure of Ag-In NPs. This structure evolves from a stable low-enriched indium alloy to a core@shell configuration with a shell composed of indium oxide as the indium atomic concentration increases. Furthermore, stable structure (core@shell, Janus, reduced system) domains were evidenced under reducing atmosphere, depending on the temperature and hydrogen pressure. Lastly, Ag-Fe NP oxido-reduction was monitored on the new setup through LSPR modifications. MET observations, environmental plasmonics and simulations (optical response, Monte-Carlo simulations) suggest that these metals are initially segregated, with an enriched-silver surface. The exposure to an oxidative atmosphere seems to induce the diffusion of iron onto the surface, followed by the formation of magnetite (Fe3O4)
15

Synthesis and Transformation of AuCu Intermetallic Nanoparticles

Sinha, Shyam Kanta January 2013 (has links) (PDF)
Investigations on size dependent phase stability and transformations in isolated nanoparticles have gained momentum in recent times. Size dependent phase stability generates size specific particle microstructure which consequently yields size specific functionality. One important prerequisite for conducting studies on nanoparticles is their synthesis. A substantial amount of research effort has therefore been focused on devising methodologies for synthesizing nanoparticles with controlled shapes and sizes. The present thesis deals with both these two aspects: (a) synthesis of nanoparticles and (b) phase transformations in nanoparticles. The system chosen in this study is AuCu intermetallic nanoparticles. The choice of AuCu nanoparticle was due to the fact that the literature contains abundance of structural and thermodynamic data on Au–Cu system which makes it a model system for investigating size dependence of phase transformations. With respect to synthesis, the present thesis provides methodologies for synthesizing alloyed Au–Cu nanoparticles of different sizes, Au–Cu nano-chain network structures and uniform Au–Cu2S hybrid nanoparticles. For every type, results are obtained from a detailed investigation of their formation mechanisms which are also presented in the thesis. With respect to phase transformation, the thesis presents results on the size dependence of fcc to L10 transformation onset in Au–Cu nanoparticles under isothermal annealing conditions. The present thesis is divided into eight chapters. A summary of results and key conclusions of work presented in each chapter are as follows. The ‘introduction’ chapter (chapter I) describes the organization of the thesis. Chapter II (literature study) presents a review of the research work reported in the literature on the various methodologies used for synthesizing Au–Cu based nanoparticles of different shapes and sizes and on ordering transformation in AuCu nanoparticles. The chapter also presents a brief discussion on the reaction variables that control the process of nucleation and growth of the nanoparticles in solution. Chapter III titled ‘experimental details and instrumentation’ describes the synthesis procedures that were used for producing various nanoparticles in the present work. The chapter also briefly describes the various characterization techniques that were used to investigate the nanoparticles. The fourth chapter titled ‘synthesis and mechanistic study of different sizes of AuCu nanoparticles’ provides two different methodologies for synthesis, referred as ‘two-stage process’ and ‘two-step process’ that have been used for producing alloyed AuCu nanoparticles of different sizes (5, 7, 10, 14, 17, 25 nm). The ‘two-stage’ process involved sequential reduction of Au and Cu precursors in a one pot synthesis process. Whereas, the ‘two-step’ process involved a two-pot synthesis in which separately synthesized Au nanoparticles were coated with Cu to generate alloyed AuCu nanoparticles. In the two-stage synthesis process it was observed that by changing the total surfactant-to-metal precursor molar ratio, sizes of the alloyed AuCu nanoparticles can be varied. ‘Total surfactants’ here include equal molar amounts of oleic acid and oleylamine surfactants. Interestingly, it was observed that there exists a limitation with respect to the minimum nanoparticle size that can be achieved by using the two-stage process. The minimum AuCu nanoparticle size achieved using the two-stage synthesis process was 14 nm. Mechanism of formation of AuCu nanoparticles in the two-stage synthesis process was investigated to find out the reason for this size limitation and also to determine how the synthesis process can be engineered to synthesize alloyed AuCu nanoparticles with smaller (<14nm) sizes. Studies to evaluate mechanism of synthesis were conducted by investigating phase and size of nanoparticles present in the reaction mixture extracted at various stages of the synthesis process. Their studies revealed that (a) the nanoparticle formation mechanism in the two-stage synthesis process involves initial formation of Au nanoparticles followed by a heterogeneous nucleation and diffusion of Cu atoms into these Au rich seeds to form Au–Cu intermetallic nanoparticles and (b) by increasing the relative molar amount of the oleylamine surfactant, size of the initial Au seed nanoparticles can be further reduced from the minimum size that can be achieved in the case when equal molar amounts of oleylamine and oleic acid surfactants are used. The information obtained from the mechanistic study was then utilized to design the two-step synthesis process. In the two-step process, Au nanoparticles were synthesized in a reaction mixture containing only the oleylamine surfactant. Use of only oleylamine resulted in production of pure Au nanoparticles with sizes that were well below 10 nm. These Au nanoparticles were washed and dispersed in a solution containing Cu precursor. Introduction of a reducing agent into this reaction mixture led to the heterogeneous nucleation of Cu onto the Au seed particles and their subsequent diffusion into them to form alloyed AuCu nanoparticles with sizes of ~5, 7 and 10 nm. The study present in this chapter essentially signified that the surfactants used in the reaction mixture not only prevent nanoparticles from agglomerating in the final dispersion but also control their nucleation and growth and therefore can be used as a tool to tune nanoparticle sizes. The fifth chapter titled ‘size dependent onset of FCC-to-L10 transformations in AuCu alloy nanoparticles’ illustrates the effect of AuCu nanoparticle size on the onset of ordering under isothermal annealing conditions. Nanoparticles in this study were annealed in-situ in a transmission electron microscope. Samples were prepared by drop drying a highly dilute dispersion of as-synthesized nanoparticles onto an electron transparent TEM grid. Nanoparticles sitting on the TEM grid were well separated from each other to minimize particle sintering during the annealing operation. It was however observed that during the isothermal annealing, particle coarsening due to atomic diffusion was appreciable for 5 nm particles but negligible for 7 and 10 nm particles. Therefore for this study only 7 nm and 10 nm sized particles were considered. Onset of ordering was determined from the time when first sign of the diffraction spot, corresponding to the ordered phase, appears in the selected area electron diffraction pattern from a region containing large number of AuCu nanoparticles. Through a series of isothermal experiments it was observed that the time for onset of ordering increased with decrease in size of the nanoparticles. It is speculated that the delay in onset of ordering may be due to the fact that with a decrease in nanoparticle size the probability of a nanoparticle containing a fluctuation that shall generate a thermodynamically stable nuclei of the ordered phase decreases. A sharp interface between the ordered and the disordered phase inside the particle was also observed which suggested that the ordering transformation in as-synthesized fcc AuCu nanoparticles is a first order transformation. The sixth chapter titled ‘synthesis and characterization of Au1-xCux–Cu2S hybrid nanostructures: morphology control by reaction engineering’ provides a modified polyol method based synthesis strategy for producing uniform Au–Cu2S hybrid nanoparticles. Detailed compositional and structural characterization revealed that the hybrid nanoparticles are composed of cube shaped Au-rich, Au–Cu solid solution phase and hemispherical shaped Cu2S phase. Interestingly, the hemispherical Cu2S phase was attached to only one facet of the cube shaped phase. A study on the formation mechanism of hybrid nanoparticles was also conducted by characterizing specimens extracted from the reaction mixture at different stages of the synthesis process. The study revealed that the mechanism of formation of hybrid nanoparticles involved initial formation of isolated cube shaped pure Au nanoparticles and Cu–thiolate complex with a sheet morphology. With increase in time at 180°C, the Cu–thiolate complex decomposed and one part of the Cu atoms that were produced from the decomposition were utilized in forming the spherical Cu2S and other part diffused into the Au nanoparticles to form Au–Cu solid solution phase. The chapter also presents a study on the effect of dodecanethiol (DDT) on achieving the hemisphere-on-cube hybrid morphology. In this study it is illustrated that an optimum concentration of dodecanethiol is required both for achieving size and morphological uniformity of the participating phases and for their attachment to form a hybrid nanoparticle. The seventh chapter titled ‘synthesis of Au–Cu nano-chains network and effect of temperature on morphological evolution’ provides methodology for synthesizing fcc Au– Cu nano-chain network structures using polyvinylprrolidone (PVP) surfactant. It was observed that with increase in the molar amount of PVP in the reaction mixture, morphology of the as-synthesized product gradually changed from isolated nanoparticles to branched nano-chain like. The nano-chains contained twins which indicated an absence of continuous growth and possibility of growth by oriented attachment of initially formed Au–Cu nanoparticles. Both in-situ and ex-situ annealing of the nano-chains led to their decomposition into isolated nanoparticles of varying sizes. Annealing also caused fcc-to¬L10 phase transformation. Investigation of the wave length of perturbation leading to breaking of a nano-chain into particles indicated that the surface energy anisotropy affects the splitting of nano-chain network structure into nano-sized particles. The thesis ends with a last chapter where we have presented possible future extension of current work.
16

Development of electrochemical sensors containing bimerallic silver and gold nanoparticles

Mailu, Stephen Nzioki January 2010 (has links)
<p>In this work, a simple, less time consuming electrochemical method in the form of an electrochemical sensor has been developed for the detection of PAHs. The sensor was fabricated by the deposition of silver-gold (1:3) alloy nanoparticles (Ag-AuNPs) on ultrathin overoxidized polypyrrole (PPyox) film which formed a PPyox/Ag-AuNPs composite on glassy carbon electrode (PPyox/Ag-AuNPs/GCE). The silver-gold alloy nanoparticles deposited to form the composite were chemically prepared by simultaneous reduction of silver nitrate (AgNO3) and chloroauric acid (HAuCl4) using sodium citrate and characterized by UV-visible spectroscopy technique which confirmed the homogeneous formation of the alloy nanoparticles.</p>
17

Development of electrochemical sensors containing bimerallic silver and gold nanoparticles

Mailu, Stephen Nzioki January 2010 (has links)
<p>In this work, a simple, less time consuming electrochemical method in the form of an electrochemical sensor has been developed for the detection of PAHs. The sensor was fabricated by the deposition of silver-gold (1:3) alloy nanoparticles (Ag-AuNPs) on ultrathin overoxidized polypyrrole (PPyox) film which formed a PPyox/Ag-AuNPs composite on glassy carbon electrode (PPyox/Ag-AuNPs/GCE). The silver-gold alloy nanoparticles deposited to form the composite were chemically prepared by simultaneous reduction of silver nitrate (AgNO3) and chloroauric acid (HAuCl4) using sodium citrate and characterized by UV-visible spectroscopy technique which confirmed the homogeneous formation of the alloy nanoparticles.</p>
18

Development of electrochemical sensors containing bimerallic silver and gold nanoparticles

Mailu, Stephen Nzioki January 2010 (has links)
Magister Scientiae - MSc / Polyaromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants that have been shown to be teratogenic, mutagenic and carcinogenic and pose serious threats to the health of aquatic and human life. Several methods have been developed for their determination such as immunoassay, gas chromatography and high performance liquid chromatography (HPLC) in combination with fluorescence or absorbance detection. However, these methods are known to manifest underlying disadvantages such as complicated pretreatment, high costs and time consuming processes. In this work, a simple, less time consuming electrochemical method in the form of an electrochemical sensor has been developed for the detection of PAHs. The sensor was fabricated by the deposition of silver-gold (1:3) alloy nanoparticles (Ag-AuNPs) on ultrathin overoxidized polypyrrole (PPyox) film which formed a PPyox/Ag-AuNPs composite on glassy carbon electrode (PPyox/Ag-AuNPs/GCE). The silver-gold alloy nanoparticles deposited to form the composite were chemically prepared by simultaneous reduction of silver nitrate (AgNO3) and chloroauric acid (HAuCl4) using sodium citrate and characterized by UV-visible spectroscopy technique which confirmed the homogeneous formation of the alloy nanoparticles. Transmission electron microscopy showed that the synthesized nanoparticles were in the range of 20-50 nm. The properties of the composite formed upon deposition of the nanoparticles on the PPyox film were investigated by electrochemical methods. The PPyox/Ag-AuNPs/GCE sensor showed strong catalytic activity towards the oxidation of anthracene, phenanthrene and pyrene, and was able to simultaneously detect anthracene and phenanthrene in a binary mixture of the two. The catalytic peak currents obtained from square wave voltammetry increased linearly with anthracene, phenanthrene and pyrene concentrations in the range of 3.0 x 10-6 to 3.56 x 10-4 M,3.3 x 10-5 to 2.83 x 10-4 M, 3.3 x 10-5 to 1.66 x 10-4 M and with detection limits of 0.169 μM, 1.59 μM and 2.70 μM, respectively. The PPyox/Ag-AuNPs/GCE sensor is simple, has antifouling properties and is less time consuming with a response time of 4 s. / South Africa
19

MESOSCALE AND INTERFACIAL PHYSICS IN THE CATALYST LAYER OF ELECTROCHEMICAL ENERGY CONVERSION SYSTEMS

Navneet Goswami (17558940) 06 December 2023 (has links)
<p dir="ltr">Catalyzing a green hydrogen economy can accelerate progress towards achieving the goal of a sustainable energy map with net-zero carbon emissions by rapid strides. An environmentally benign electrochemical energy conversion system is the Polymer Electrolyte Fuel Cell (PEFC) which uses hydrogen as a fuel to produce electricity and is notably used in a variety of markets such as industries, commercial setups, and across the transportation sector, and is gaining prominence for use in heavy-duty vehicles such as buses and trucks. Despite its potential, the commercialization of PEFCs needs to address several challenges which are manifested in the form of mass transport limitations and deleterious mechanisms at the interfacial scale under severe operating conditions. Achieving a robust electrochemical performance in this context is predicated on desired interactions at the triple-phase boundary of the electrochemical engine of the PEFC – the porous cathode catalyst layer (CCL) where the principal oxygen reduction reaction (ORR) takes place. The liquid water produced as a byproduct of the ORR helps minimize membrane dehydration; however, excess water renders the reaction sites inactive causing reactant starvation. In addition, the oxidation of the carbonaceous support in the electrode and loss of valuable electrochemically active surface area (ECSA) pose major barriers that need to be overcome to ameliorate the life expectancy of the PEFC.</p><p dir="ltr">In this thesis, the multimodal physicochemical interactions occurring inside the catalyst layer are investigated through a synergistic blend of visualization and computational techniques. The spatiotemporal dynamics of capillary force-driven liquid transport that ensues concentration polarization thereby affecting the desired response will be probed in detail. The drop in efficacy of the ORR due to competing catalyst aging mechanisms and the impact of degradation stressors on chemical potential-induced instability will be examined. The reaction-transport-mechanics interplay in core-shell nanoparticles, a robust class of electrocatalysts that promises better mass activity compared to the single metal counterparts is further highlighted. Finally, the influence of electrode microstructural attributes on the electrochemical performance of the reverse mode of fuel cell operation, i.e., Proton Exchange Membrane Water Electrolyzers (PEMWEs) is investigated through a mesoscale lens.</p>
20

Modulation of Nanostructures in the Solid and Solution States and under an Electron Beam

Sanyal, Udishnu January 2013 (has links) (PDF)
Among various nanomaterials, metal nanoparticles are the widely studied ones because of their pronounced distinct properties arising in the nanometer size regime, which can be tailored easily by tuning predominantly their size and shape. During the past few decades, scientists are engaged in developing new synthetic methodologies for the synthesis of metal nanoparticles which can be divided into two broad categories: i) top-down approach, utilizing physical methods and ii) bottom-up approach, employing chemical methods. As the chemical methods offer better control over particle size, numerous chemical methods have been developed to obtain metal nanoparticles with narrow size distribution. However, these two approaches have their own merits and demerits; they are not complementary to each other and also not sustainable for real time applications. Recent focus on the synthesis of metal nanoparticles is towards the development of green and sustainable synthetic methodologies. A solid state route is an exciting prospect in this direction because it eliminates usage of organic solvents thus, makes the overall process green and at the same time leads to the realization of large quantity of the materials, which is required for many applications. However, the major obstacle associated with the development of a solid state synthetic route is the lack of fundamental understanding regarding the formation mechanism of the nanoparticles in the solid state. Additionally, due to the heterogeneity present in the solid mixture, it is very difficult to ensure the proximity between the capping agent and nuclei which plays the most decisive role in the growth process. Recently, employment of amine–borane compounds as reducing agents emerged as a better prospect towards the development of sustainable synthetic routes for metal nanoparticles because they offer a variety of advantages over the traditional borohydrides. Being soluble in organic medium, amine– borane allows the reaction to be carried out in a single phase and due to its mild reducing ability a much better control over the nucleation and growth processes is realized. However, the most exciting feature of these compounds is that their reducing ability is not only limited to the solution state, they can also bring out the reduction of metal ions in the solid state. With the availability of a variety of amine–boranes of varying reducing ability, it opens up a possibility to modulate the nanostructure in both solid and solution states by a judicious choice of reducing agent. Although our current understanding regarding the growth behavior of nanoparticles has advanced remarkably, however, most often it is some classical model which is invoked to understand these processes. With the recent developments in in situ transmission electron microscopy techniques, it is now possible to unravel more complex growth trajectories of nanoparticles. These studies not only expand the scope of the present knowledge but also opens up possibilities for many future developments. Objectives • To develop an atom economy solid state synthetic methodology for the synthesis of metal nanoparticles employing amine–boranes as reducing agents. • To gain a mechanistic insight into the formation mechanisms of nanoparticles in the solid state by using amine–boranes with differing reducing ability. • Synthesis of bimetallic nanoparticles as well as supported metal nanoparticles in the solid state using ammonia borane as the reducing agent. • To develop a new in situ seeding growth methodology for the synthesis of core@shell nanoparticles composed of noble metals by employing a very weak reducing agent, trimethylamine borane and their transformation to their thermodynamically stable alloy counterparts. • Synthesis of highly monodisperse ultra-small colloidal calcium nanoparticles with different capping agents such as hexadecylamine, octadecylamine, poly(vinylpyrrolidone) and a combination of hexadecylamine/poly(vinylpyrrolidone) using the solvated metal atom dispersion (SMAD) method. To study the coalescence behavior of a pair of calcium nanoparticles under an electron beam by employing in situ TEM technique. Significant results An atom economy solid state synthetic route has been developed for the synthesis of metal nanoparticles from simple metal salts using amine–boranes as reducing agents. Amine–borane plays a dual role here: acts as a reducing agent thus brings out the reduction of metal ions and decomposes simultaneously to generate B-N based compounds which acts as a capping agent to stabilize the particles in the nanosize regime. This essentially minimizes the number of reagents used and hence simplifying and eliminating the purification procedures and thus, brings out an atom economy to the overall process. Additionally, as the reactions were carried out in the solid state, it eliminates use of organic solvents which have many adverse effects on the environment, thus makes the synthetic route, green. The particle size and the size distribution were tuned by employing amine–boranes with differing reducing abilities. Three different amine–boranes have been employed: ammonia borane (AB), dimethylamine borane (DMAB), and trimethylamine borane (TMAB) whose reducing ability varies as AB > DMAB >> TMAB. It was found that in case of AB, it is the polyborazylene or BNHx polymer whereas, in case of DMAB and TMAB, the complexing amines act as the stabilizing agents. Several controlled studies also showed that the rate of addition of metal salt to AB is the crucial step and has a profound effect on the particle size as well as the size distribution. It was also found that an optimum ratio of amine–borane to metal salt is important to realize the smallest possible size with narrowest size distribution. Whereas, use of AB and TMAB resulted in the smallest sized particles with best size distribution, usage of DMAB provided larger particles that are also polydisperse in nature. Based on several experiments along with available data, the formation mechanism of metal nanoparticles in the solid state has been proposed. Highly monodisperse Cu, Ag, Au, Pd, and Ir nanoparticles were realized using the solid state route described herein. The solid state route was extended to the synthesis of bimetallic nanoparticles as well as supported metal nanoparticles. Employment of metal nitrate as the metal precursor and ammonia borane as the reducing agent resulted in highly exothermic reaction. The heat evolved in this reaction was exploited successfully towards mixing of the constituent elements thus allowing the alloy formation to occur at much lower temperature (60 oC) compared to the traditional solid state metallurgical methods (temperature used in these cases are > 1000 oC). Synthesis of highly monodisperse 2-3 nm Cu/Au and 5-8 nm Cu/Ag nanoparticles were demonstrated herein. Alumina and silica supported Pt and Pd nanoparticles have also been prepared. Use of ammonia borane as the reducing agent in the solid state brought out the reduction of metal ions to metal nanoparticles and the simultaneous generation of BNHx polymer which encapsulates the metal (Pt and Pd) nanoparticles supported on support materials. Treatment of these materials with methanol resulted in the solvolysis of BNHx polymer and its complete removal to finally provide metal nanoparticles on the support materials. An in situ seeding growth methodology for the synthesis of bimetallic nanoparticles with core@shell architecture composed of noble metals has been developed using trimethylamine borane (TMAB) as the reducing agent. The key idea of this synthetic procedure is that, TMAB being a weak reducing agent is able to differentiate the smallest possible window of reduction potential and hence reduces the metal ions sequentially. A dramatic solvent effect was noted in the preparation of Ag nanoparticles: Ag nanoparticles were obtained at room temperature when dry THF was used as the solvent whereas, reflux condition was required to realize the same using wet THF as the solvent. However, no such behavior was noted in the preparation of Au and Pd nanoparticles wherein Au and Pd nanoparticles were obtained at room temperature and reflux conditions, respectively. This difference in reduction behavior was successfully exploited to synthesize Au@Ag, Ag@Au, and Ag@Pd nanoparticles. All these core@shell nanoparticles were further transformed to their alloy counterparts under very mild conditions reported to date. Highly monodisperse, ultrasmall, colloidal Ca nanoparticles with a size regime of 2-4 nm were synthesized using solvated metal atom dispersion (SMAD) method and digestive ripening technique. Hexadecylamine (HDA) was used as the stabilizing agent in this case. Employment of capping agent with a longer chain length, octadecylamine afforded even smaller sized particles. However, when poly(vinylpyrrolidone) (PVP), a branched chain polymer was used as the capping agent, agglomerated particles were realized together with small particles of 3-6 nm. Use of a combination of PVP and HDA resulted in spherical particles of 2-3 nm size with narrow size distribution. Growth of Ca nanoparticles via colaesence mechanism was observed under an electron beam. Employing in situ transmission electron microscopy technique, real time coalescence between a pair of Ca nanoparticles were detected and details of coalescence steps were analyzed.

Page generated in 0.0594 seconds