• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 332
  • 31
  • 18
  • 11
  • 8
  • 8
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 476
  • 242
  • 198
  • 186
  • 160
  • 136
  • 127
  • 112
  • 104
  • 102
  • 86
  • 85
  • 84
  • 81
  • 72
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

WELD PENETRATION IDENTIFICATION BASED ON CONVOLUTIONAL NEURAL NETWORK

Li, Chao 01 January 2019 (has links)
Weld joint penetration determination is the key factor in welding process control area. Not only has it directly affected the weld joint mechanical properties, like fatigue for example. It also requires much of human intelligence, which either complex modeling or rich of welding experience. Therefore, weld penetration status identification has become the obstacle for intelligent welding system. In this dissertation, an innovative method has been proposed to detect the weld joint penetration status using machine-learning algorithms. A GTAW welding system is firstly built. Project a dot-structured laser pattern onto the weld pool surface during welding process, the reflected laser pattern is captured which contains all the information about the penetration status. An experienced welder is able to determine weld penetration status just based on the reflected laser pattern. However, it is difficult to characterize the images to extract key information that used to determine penetration status. To overcome the challenges in finding right features and accurately processing images to extract key features using conventional machine vision algorithms, we propose using convolutional neural network (CNN) to automatically extract key features and determine penetration status. Data-label pairs are needed to train a CNN. Therefore, an image acquiring system is designed to collect reflected laser pattern and the image of work-piece backside. Data augmentation is performed to enlarge the training data size, which resulting in 270,000 training data, 45,000 validation data and 45,000 test data. A six-layer convolutional neural network (CNN) has been designed and trained using a revised mini-batch gradient descent optimizer. Final test accuracy is 90.7% and using a voting mechanism based on three consequent images further improve the prediction accuracy.
262

Using Word Embeddings to Explore the Language of Depression on Twitter

Gopchandani, Sandhya 01 January 2019 (has links)
How do people discuss mental health on social media? Can we train a computer program to recognize differences between discussions of depression and other topics? Can an algorithm predict that someone is depressed from their tweets alone? In this project, we collect tweets referencing “depression” and “depressed” over a seven year period, and train word embeddings to characterize linguistic structures within the corpus. We find that neural word embeddings capture the contextual differences between “depressed” and “healthy” language. We also looked at how context around words may have changed over time to get deeper understanding of contextual shifts in the word usage. Finally, we trained a deep learning network on a much smaller collection of tweets authored by individuals formally diagnosed with depression. The best performing model for the prediction task is Convolutional LSTM (CNN-LSTM) model with a F-score of 69% on test data. The results suggest social media could serve as a valuable screening tool for mental health.
263

Named-entity recognition in Czech historical texts : Using a CNN-BiLSTM neural network model

Hubková, Helena January 2019 (has links)
The thesis presents named-entity recognition in Czech historical newspapers from Modern Access to Historical Sources Project. Our goal was to create a specific corpus and annotation manual for the project and evaluate neural networks methods for named-entity recognition within the task. We created the corpus using scanned Czech historical newspapers. The scanned pages were converted to digitize text by optical character recognition (OCR) method. The data were preprocessed by deleting some OCR errors. We also defined specific named entities types for our task and created an annotation manual with examples for the project. Based on that, we annotated the final corpus. To find the most suitable neural networks model for our task, we experimented with different neural networks architectures, namely long short-term memory (LSTM), bidirectional LSTM and CNN-BiLSTM models. Moreover, we experimented with randomly initialized word embeddings that were trained during the training process and pretrained word embeddings for contemporary Czech published as open source by fastText. We achieved the best result F1 score 0.444 using CNN-BiLSTM model and the pretrained word embeddings by fastText. We found out that we do not need to normalize spelling of our historical texts to get closer to contemporary language if we use the neural network model. We provided a qualitative analysis of observed linguistics phenomena as well. We found out that some word forms and pair of words which were not frequent in our training data set were miss-tagged or not tagged at all. Based on that, we can say that larger data sets could improve the results.
264

Excellence in Incompetence: The Daily Show Creates a Moment of Zen

Hodgkiss, Megan Turley 04 December 2006 (has links)
Jon Stewart, the anchor and purveyor of “fake news,” has catapulted television's The Daily Show into prominence. The show functions as both a source of political humor and a vehicle for political commentary. This thesis explores how the program visually and rhetorically problematizes the hegemonic model of traditional television news, and how it tips the balance between what is considered serious news and what has become cliché about the broadcast industry.
265

Sketch Classification with Neural Networks : A Comparative Study of CNN and RNN on the Quick, Draw! data set

Andersson, Melanie, Maja, Arvola, Hedar, Sara January 2018 (has links)
The aim of the study is to apply and compare the performance of two different types of neural networks on the Quick, Draw! dataset and from this determine whether interpreting the sketches as sequences gives a higher accuracy than interpreting them as pixels. The two types of networks constructed were a recurrent neural network (RNN) and a convolutional neural network (CNN). The networks were optimised and the final architectures included five layers. The final evaluation accuracy achieved was 94.2% and 92.3% respectively, leading to the conclusion that the sequential interpretation of the Quick, Draw! dataset is favourable.
266

Low-Latency Detection and Tracking of Aircraft in Very High-Resolution Video Feeds / Låglatent detektion och spårning av flygplan i högupplösta videokällor

Mathiesen, Jarle January 2018 (has links)
Applying machine learning techniques for real-time detection and tracking of objects in very high-resolution video is a problem that has not been extensively studied. In this thesis, the practical uses of object detection for airport remote towers are explored. We present a Kalman filter-based tracking framework for low-latency aircraft tracking in very high-resolution video streams. The object detector was trained and tested on a dataset containing 3000 labelled images of aircrafts taken at Swedish airports, reaching an mAP of 90.91% with an average IoU of 89.05% on the test set. The tracker was benchmarked on remote tower video footage from Örnsköldsvik and Sundsvall using slightly modified variants of the MOT-CLEAR and ID metrics for multiple object trackers, obtaining an IDF1 score of 91.9%, and a MOTA score of 83.3%. The prototype runs the tracking pipeline on seven high resolution cameras simultaneously at 10 Hz on a single thread, suggesting large potential speed gains being attainable through parallelization.
267

Sentiment analysis of Swedish reviews and transfer learning using Convolutional Neural Networks

Sundström, Johan January 2018 (has links)
Sentiment analysis is a field within machine learning that focus on determine the contextual polarity of subjective information. It is a technique that can be used to analyze the "voice of the customer" and has been applied with success for the English language for opinionated information such as customer reviews, political opinions and social media data. A major problem regarding machine learning models is that they are domain dependent and will therefore not perform well for other domains. Transfer learning or domain adaption is a research field that study a model's ability of transferring knowledge across domains. In the extreme case a model will train on data from one domain, the source domain, and try to make accurate predictions on data from another domain, the target domain. The deep machine learning model Convolutional Neural Network (CNN) has in recent years gained much attention due to its performance in computer vision both for in-domain classification and transfer learning. It has also performed well for natural language processing problems but has not been investigated to the same extent for transfer learning within this area. The purpose of this thesis has been to investigate how well suited the CNN is for cross-domain sentiment analysis of Swedish reviews. The research has been conducted by investigating how the model perform when trained with data from different domains with varying amount of source and target data. Additionally, the impact on the model’s transferability when using different text representation has also been studied. This study has shown that a CNN without pre-trained word embedding is not that well suited for transfer learning since it performs worse than a traditional logistic regression model. Substituting 20% of source training data with target data can in many of the test cases boost the performance with 7-8% both for the logistic regression and the CNN model. Using pre-trained word embedding produced by a word2vec model increases the CNN's transferability as well as the in-domain performance and outperform the logistic regression model and the CNN model without pre-trained word embedding in the majority of test cases.
268

Regulation of fibroblast activity by keratinocytes, TGF-β and IL-1α : studies in two- and three dimensional in vitro models

Koskela von Sydow, Anita January 2016 (has links)
Dysregulated wound healing is commonly associated with excessive fibrosis. Connective tissue growth factor (CTGF/CCN2) is characteristically overexpressed in fibrotic diseases and stimulated by transforming growth factor-β (TGF-β) in dermal fibroblasts. Reepithelialisation and epidermal wound coverage counteract excessive scar formation. We have previously shown that interleukin-1α (IL-1α) derived from keratinocytes conteracts TGF-β-stimulated CTGF-expression. The aim of this thesis was to further explore the effects of keratinocytes and IL-1α on gene and protein expression, as well as pathways, in TGF-β stimulated fibroblasts. Fibroblasts were studied in vitro by conventional two dimensional cell culture models and in a three dimensional keratinocyte-fibroblast organotypic skin culture model. The results showed that IL-1 suppresses basal and TGF-β-induced CTGF mRNA and protein, involving a possible TAK1 mechanism. Keratinocytes regulate the expression of fibroblast genes important for the turnover of the extracellular matrix. Most of the genes analysed (11/13) were regulated by TGF-β and counter regulated by keratinocytes. The overall results support a view that keratinocytes regulate fibroblasts to act catabolically (anti-fibrotic) on the extracellular matrix. Transcriptional microarray and gene set enrichment analysis showed that antagonizing effects of IL-1α on TGF-β were much more prominent than the synergistic effects. The most confident of these pathways was the interferon signaling, which were inhibited by TGF-β and activated by IL-1α. A proteomics study confirmed that IL-1α preferentially conteracts TGF-β effects. Six new fibroblast proteins involved in synthesis/ regulation were identified, being regulated by TGF-β and antagonized by IL-1α. Pathway analysis confirmed counter-regulation of interferon signaling by the two cytokines. These findings have implications for understanding the role of fibroblasts for inflammatory responses and development of fibrosis in the skin.
269

Semantic Scene Segmentation using RGB-D & LRF fusion

Lilja, Harald January 2020 (has links)
In the field of robotics and autonomous vehicles, the use of RGB-D data and LiDAR sensors is a popular practice for applications such as SLAM[14], object classification[19] and scene understanding[5]. This thesis explores the problem of semantic segmentation using deep multimodal fusion of LRF and depth data. Two data set consisting of 1080 and 108 data points from two scenes is created and manually labeled in 2D space and transferred to 1D using a proposed label transfer method utilizing hierarchical clustering. The data set is used to train and validate the suggested method for segmentation using a proposed dual encoder-decoder network based on SalsaNet [1] with gradual fusion in the decoder. Applying the suggested method yielded an improvement in the scenario of an unseen circuit when compared to uni-modal segmentation using depth, RGB, laser, and a naive combination of RGB-D data. A suggestion of feature extraction in the form of PCA or stacked auto-encoders is suggested as a further improvement for this type of fusion. The source code and data set are made publicly available at https://github.com/Anguse/salsa_fusion.
270

Crowd Avoidance in Public Transportation using Automatic Passenger Counter

Mozart Andraws, David, Thornemo Larsson, Marcus January 2021 (has links)
Automatic Passenger Counting (APC) systems are some of the many Internet-Of-Things (IoT) applications and have been increasingly adopted by public transportation companies in recent years. APCs provide valuable data that can be used to give an real time passenger count, which can be a convenient service and allow customers to plan their travels accordingly. The provided data is also valuable for resource streamlining and planning, which potentially increases revenues for the public transportation companies. This thesis briefly studies and evaluates different APC technologies, highlights the advantages and disadvantages of these, and presents an Edge-prototype based on Computer Vision and Object Detection. The presented APC was tested in a lab environment and with recordings of people walking in and out of a designated area in the lab. Test results from the lab environment show that the presented low-cost APC efficiently detects passengers with an accuracy of 98.6% on pre-recorded videos. The APC was also tested in real time and the results show that the low-cost APC only achieved an accuracy of 66.7%. This work has laid the ground for further development and testing in a public transport environment.

Page generated in 0.2853 seconds