• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 211
  • 48
  • 46
  • 32
  • 26
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 490
  • 490
  • 110
  • 99
  • 88
  • 74
  • 71
  • 65
  • 59
  • 56
  • 51
  • 49
  • 48
  • 46
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Efficient Solar Energy Harvesting and Management for Wireless Sensor Networks under Varying Solar Irradiance Conditions

Gurung, Sanjaya 05 1900 (has links)
Although wireless sensor networks have been successfully used for environmental monitoring, one of the major challenges that this technology has been facing is supplying continuous and reliable electrical power during long-term field deployment. Batteries require repetitive visits to the deployment site to replace them once discharged; admittedly, they can be recharged from solar panels, but this only works in open areas where solar radiation is unrestricted. This dissertation introduces a novel approach to design and implement a reliable efficient solar energy harvester to continuously, and autonomously, provide power to wireless sensor nodes for long-term applications. The system uses supercapacitors charged by a solar panel and is designed to reduce power consumption to very low levels. Field tests were conducted for more than a year of continuous operation and under a variety of conditions, including areas under dense foliage. The resulting long-term field data demonstrates the feasibility and sustainability of the harvester system for challenging applications. In addition, we analyzed solar radiation data and supercapacitor charging behavior and showed that the harvester system can operate battery free, running on the power provided by supercapacitors. A battery is included only for backup in case the supercapacitor storage fails. The proposed approach provides continuous power supply to the system thereby significantly minimizing data loss by power failure and the frequency of visits to the deployment sites.
432

Alternative Uses of CZTS Thin Films for Energy Harvesting

Mustaffa, Muhammad Ubaidah Syafiq 07 September 2021 (has links)
The search for renewable energy resources and ways to harvest them has become a global mainstream topic among researchers nowadays, with solar cells and thermoelectric generators among the energy harvesting technologies currently being researched in vast. CZTS (Cu2ZnSnS4), a p-type semiconducting material initially researched to replace copper indium gallium selenide (CIGS) as the light absorbing layer in thin film solar cells, was studied in this doctoral work for alternative uses in energy harvesting. This work aims to systemically investigate the prospects of CZTS to be used as hole transport layers and thermoelectric generators. CZTS thin film was successfully fabricated using a versatile approach involving hot-injection synthesis of CZTS nanoparticles ink followed by spin coating and thermal treatment. Results obtained revealed the possibility to fine control CZTS thin film fabrication based on ink concentration and spin. Besides that, thermal treatment temperature was found to affect the film’s overall properties, where an increase in thermal treatment temperature improved the degree of crystallinity and electrical properties. In addition, a phase change going from less stable cubic and wurtzite structures to a more stable tetragonal structure was also observed. Furthermore, CZTS was found to be a good candidate to replace the commonly used organic hole transport layer in perovskite solar cells, with potentials in improving performance and stability. In addition, CZTS also possessed good transport properties to be a potential p-type material in a thermoelectric generator, with the preliminary performance of fabricated CZTS/AZO thermoelectric generator showing a maximum power output of ~350 nW at ~170 KΔT. These findings provide new perspectives for CZTS in energy harvesting applications, despite the struggle in its development as the absorber layer in thin film solar cells. Besides providing a deeper understanding of CZTS and its vast possibilities in energy harvesting applications, promising future research stemming from this work is also limitless, reinventing ways in material studies, in search of alternative applications which may be of benefit.
433

Sensing and Energy Harvesting of Fluidic Flow by InAs Nanowires, Carbon Nanotubes and Graphene

Chen, Ying 11 June 2014 (has links)
No description available.
434

Modeling and Analysis of a Cantilever Beam Tip Mass System

Meesala, Vamsi Chandra 22 May 2018 (has links)
We model the nonlinear dynamics of a cantilever beam with tip mass system subjected to different excitation and exploit the nonlinear behavior to perform sensitivity analysis and propose a parameter identification scheme for nonlinear piezoelectric coefficients. First, the distributed parameter governing equations taking into consideration the nonlinear boundary conditions of a cantilever beam with a tip mass subjected to principal parametric excitation are developed using generalized Hamilton's principle. Using a Galerkin's discretization scheme, the discretized equation for the first mode is developed for simpler representation assuming linear and nonlinear boundary conditions. We solve the distributed parameter and discretized equations separately using the method of multiple scales. We determine that the cantilever beam tip mass system subjected to parametric excitation is highly sensitive to the detuning. Finally, we show that assuming linearized boundary conditions yields the wrong type of bifurcation. Noting the highly sensitive nature of a cantilever beam with tip mass system subjected to parametric excitation to detuning, we perform sensitivity of the response to small variations in elasticity (stiffness), and the tip mass. The governing equation of the first mode is derived, and the method of multiple scales is used to determine the approximate solution based on the order of the expected variations. We demonstrate that the system can be designed so that small variations in either stiffness or tip mass can alter the type of bifurcation. Notably, we show that the response of a system designed for a supercritical bifurcation can change to yield a subcritical bifurcation with small variations in the parameters. Although such a trend is usually undesired, we argue that it can be used to detect small variations induced by fatigue or small mass depositions in sensing applications. Finally, we consider a cantilever beam with tip mass and piezoelectric layer and propose a parameter identification scheme that exploits the vibration response to estimate the nonlinear piezoelectric coefficients. We develop the governing equations of a cantilever beam with tip mass and piezoelectric layer by considering an enthalpy that accounts for quadratic and cubic material nonlinearities. We then use the method of multiple scales to determine the approximate solution of the response to direct excitation. We show that approximate solution and amplitude and phase modulation equations obtained from the method of multiple scales analysis can be matched with numerical simulation of the response to estimate the nonlinear piezoelectric coefficients. / Master of Science
435

Accuracy Improvement of Predictive Neural Networks for Managing Energy in Solar Powered Wireless Sensor Nodes

Al_Omary, Murad 20 December 2019 (has links)
Das drahtlose Sensornetzwerk (WSN) ist eine Technologie, die Umgebungsbedingungen oder physikalische Parameter misst, weiterleitet und per Fernüberwachung zur Verfügung stellt. Normalerweise werden die Sensorknoten, die diese Netzwerke bilden, von Batterien gespeist. Diese sollen aus verschiedenen Gründen nicht mehr verwendet werden, sondern es wird auf eine eigenständige Stromversorgung gesetzt. Dies soll den aufwendigen Austausch und die Wartung minimieren. Energy Harvesting kann mit den Knoten verwendet werden, um die Batterien zu unterstützen und die Lebensdauer der Netzwerke zu verlängern. Aufgrund der hohen Leistungsdichte der Solarenergie im Vergleich zu verschiedenen anderen Umweltenergien sind Solarzellen die am häufigsten eingesetzten Wandler, allerdings stellt die schwankende und intermittierende Natur der Solarenergie eine Herausforderung dar, einen funktionalen und zuverlässigen Sensorknoten zu versorgen. Um den Sensorknoten effektiv zu betreiben, sollte sein Energieverbrauch sinnvoll gesteuert werden. Ein interessanter Ansatz zu diesem Zweck ist die Steuerung der Aktivitäten des Knotens in Abhängigkeit von der zukünftig verfügbaren Energie. Dies erfordert eine Vorhersage der wandelbaren Sonnenenergie für die kommenden Betriebszeiten einschließlich der freien Zeiten der Sonne. Einige Vorhersagealgorithmen wurden mit stochastischen und statistischen Prinzipien sowie mit Methoden der künstlichen Intelligenz (KI) erstellt. Durch diese Algorithmen bleibt ein erheblicher Vorhersagefehler von 5-70%, der den zuverlässigen Betrieb der Knoten beeinträchtigt. Beispielsweise verwenden die stochastischen Methoden einen diskreten Energiezustand, der meist nicht zu den tatsächlichen Messwerten passt. Die statistischen Methoden verwenden einen Gewichtungsfaktor für die zuvor registrierten Messwerte. Daher sind sie nur geeignet, um Energieprofile bei konstanten Wetterbedingungen vorherzusagen. KI-Methoden erfordern große Beobachtungen im Trainingsprozess, die den benötigten Speicherplatz erhöhen. Dementsprechend ist die Leistung hinsichtlich der Vorhersagegenauigkeit dieser Algorithmen nicht ausreichend. In dieser Arbeit wird ein Vorhersagealgorithmus mit einem neuronalen Netzwerk entwickelt und eingebunden in einen Mikrocontroller, um die Verwaltung des Energieverbrauchs von solarzellengesteuerten Sensorknoten zu optimieren. Das verwendete neuronale Netzwerk wurde mit einer Kombination aus meteorologischen und statistischen Eingangsparametern realisiert. Dies hat zum Ziel, die erforderlichen Designkriterien für Sensorknoten zu erfüllen und eine Leistung zu erreichen, die in ihrer Genauigkeit die Leistung der oben genannten traditionellen Algorithmen übersteigt. Die Vorhersagegenauigkeit die durch den Korrelationskoeffizienten repräsentiert wird, wurde für das entwickelte neuronale Netzwerk auf 0,992 bestimmt. Das genaueste traditionelle Netzwerk erreicht nur einen Wert von 0,963. Das entwickelte neuronale Netzwerk wurde in einen Prototyp eines Sensorknotens integriert, um die Betriebszustände oder -modi über einen Simulationszeitraum von einer Woche anzupassen. Während dieser Zeit hat der Sensorknoten 6 Stunden zusätzlich im Normalbetrieb gearbeitet. Dies trug dazu bei, eine effektive Nutzung der verfügbaren Energie um ca. 3,6% besser zu erfüllen als das genaueste traditionelle Netz. Dadurch wird eine längere Lebensdauer und Zuverlässigkeit des Sensorknotens erreicht. / Wireless Sensor Network (WSN) is a technology that measures an environmental or physical parameters in order to use them by decision makers with a possibility of remote monitoring. Normally, sensor nodes that compose these networks are powered by batteries which are no longer feasible, especially when they used as fixed and standalone power source. This is due to the costly replacement and maintenance. Ambient energy harvesting systems can be used with these nodes to support the batteries and to prolong the lifetime of these networks. Due to the high power density of solar energy in comparison with different environmental energies, solar cells are the most utilized harvesting systems. Although that, the fluctuating and intermittent nature of solar energy causes a real challenge against fulfilling a functional and reliable sensor node. In order to operate the sensor node effectively, its energy consumption should be well managed. One interesting approach for this purpose is to control the future node’s activities according to the prospective energy available. This requires performing a prior prediction of the harvestable solar energy for the upcoming operation periods including the sun’s free times. A few prediction algorithms have been created using stochastic and statistical principles as well as artificial intelligence (AI) methods. A considerable prediction error of 5-70% is realized by these algorithms affecting the reliable operation of the nodes. For example, the stochastic ones use a discrete energy states which are mostly do not fit the actual readings. The statistical methods use a weighting factors for the previous registered readings. Thus, they are convenient only to predict energy profiles under consistent weather conditions. AI methods require large observations to be used in the training process which increase the memory space needed. Accordingly, the performance concerning the prediction accuracy of these algorithms is not sufficient. In this thesis, a prediction algorithm using a neural network has been proposed and implemented in a microcontroller for managing energy consumption of solar cell driven sensor nodes. The utilized neural network has been developed using a combination of meteorological and statistical input parameters. This is to meet a required design criteria for the sensor nodes and to fulfill a performance exceeds in its accuracy the performance of aforementioned traditional algorithms. The prediction accuracy represented by the correlation coefficient has been registered for the developed neural network to be 0.992, which increases the most accurate traditional network which has a value 0.963. The developed neural network has been embedded into a sensor node prototype to adjust the operating states or modes over a simulation period of one week. During this period, the sensor node has worked 6 hours more towards normal operation mode. This in its role helped to fulfill an effective use of available energy approximately 3.6% better than the most accurate traditional network. Thus, longer lifetime and more reliable sensor node.
436

Evaluating Energy Harvesting Technologies for Powering Micro-Scale IoT Units

Andersson, Eric, Alnajjar, Maher January 2024 (has links)
This thesis explores the viability of various energy harvesting technologies for powering micro-scale IoT devices in outdoor environments, specifically for products developed by Thule Sweden AB. Through a comprehensive literature review and experimental testing, we evaluated the performance of solar panels and piezoelectric systems to identify sustainable power solutions that could replace or reduce dependence on traditional battery power. Our methodology involved controlled laboratory tests and real-world applications on car roof boxes and bike trailers to assess the technologies under practical conditions. The experiments aimed to achieve a minimum daily energy output of 20 Joules. This target was chosen with reference to the energy consumption data of a specific IoT device used by Thule. The results demonstrated that while both solar and piezoelectric technologies have their possibilities and limitations, they hold promise for integration into IoT applications, offering a step towards more sustainable product designs. These findings contribute to a broader understanding of energy harvesting’s potential to reduce environmental impact and enhance the self-sufficiency of energy production in outdoor IoT applications. / Denna avhandling undersöker genomförbarheten av olika teknologier för energiutvinning för att driva mikroskaliga IoT-enheter i utomhusmiljöer, specifikt för produkter utvecklade av Thule Sweden AB. Genom en omfattande litteraturöversikt och experimentella tester utvärderade vi prestandan hos solpaneler och piezoelektriska system i syfte att identifiera hållbara energilösningar som kunde ersätta eller minska beroendet av traditionella batterier. Vår metodik inkluderade både kontrollerade laboratorietester och praktiska tillämpningar på takboxar och cykelkärror för att bedöma teknologierna under praktiska förhållanden. Experimenten syftade till att uppnå en minsta daglig energiproduktion på 20 joule. Detta mål baseras på energiförbrukningsdata från en specifik IoT-enhet som används av Thule. Resultaten visade att även om både sol- och piezoelektriska teknologier har sina fördelar och begränsningar, har de potential för integration i IoT-applikationer, vilket erbjuder ett steg mot mer hållbara produktdesigner. Dessa fynd bidrar till en bredare förståelse för energiutvinningens potential att minska miljöpåverkan och förbättra självförsörjningen av energiproduktion för IoT-applikationer utomhus.
437

Endurance improvement of mini UAVs through energy harvesting from atmospheric gusts / Amélioration de l'endurance des mini-drones grâce à la récupération d'énergie à partir de rafales atmosphériques

Gavrilovic, Nikola 14 November 2018 (has links)
Cette thèse a pour but de découvrir la faisabilité et le potentiel de la récupération d'énergie à partir de rafales atmosphériques pour les micro et mini véhicules aériens sans pilote. L'atmosphère sert de grande source d'énergie pouvant être récoltée afin d'accroître la performance des petits UAV sous la forme d'une autonomie et d'une autonomie étendues. Il est bien connu que de nombreuses espèces d'oiseaux utilisent diverses techniques de vol pour obtenir des performances de vol étonnantes. Compte tenu du fait que les véhicules susmentionnés partagent la taille et la vitesse de vol avec des dépliants naturels, cette thèse peut être considérée comme une application des techniques de vol bio-inspirées pour les véhicules construits par l’homme. Cette étude de trois ans visait à établir une dérivation théorique des équations qui décrivent la dynamique de vol d'un aéronef en présence d'un environnement en rafales. La première réalisation a été la démonstration du mécanisme de récupération d'énergie et des paramètres d'influence à travers des simulations décrivant le vol en modèle de masse ponctuelle d'aéronef avec un contrôle optimisé de l'ascenseur en présence d'un profil de vent sinusoïdal et stochastique. La réalisation suivante est liée à un système sensoriel inspiré par la biologie qui utilise des mesures de pression des ailes pour estimer l’angle d’attaque local. Ce système particulier a été utilisé dans l’estimation du champ de vent, en tant que mécanisme décisif et protection contre le décrochage. Enfin, les dernières contributions sont liées à l’expérience et aux résultats obtenus lors d’essais en vol visant à prouver l’augmentation de l’état énergétique de l’avion lors des manœuvres de récupération d’énergie. La première campagne d'essais en vol a été réalisée avec un mini-UAV disponible dans le commerce équipé de sondes à trous multiples et d'un contrôleur conçu sur mesure. Cette campagne a démontré l’augmentation de l’état d’énergie dans un fort gradient de vent horizontal. La deuxième campagne d'essais en vol a été réalisée avec une aile volante équipée d'un système de détection de pression pour l'estimation du champ de vent. Cette campagne a également impliqué des économies supplémentaires sur la consommation d'énergie électrique lors des vols de récupération d'énergie. / This thesis aims at discovering the feasibility and potential of energy-harvesting from atmospheric gusts for micro and mini unmanned aerial vehicles. The atmosphere serves as a great source of energy that can be harvested in order to increase performance of small UAVs in form of extended endurance and range. It is well known that many bird species use various flight techniques for achieving astonishing flight performances. Considering the fact that aforementioned vehicles share size and flight speed with natural flyers, this thesis can be considered as an application of bioinspired flight techniques for man made vehicles. This three-year study set out to establish a theoretical derivation of equations that describe flight dynamics of an aircraft in presence of gusty environment. The first achievement was demonstration of energy harvesting mechanism and influencing parameters through simulations that describe aircraft point mass model flight with optimized control of elevator in presence of sinusoidal and stochastic wind profile. The next achievement is related to a biologically inspired sensory system that uses wing pressure measurements for local angle of attack estimation. That particular system found purpose in wind field estimation, as decisive mechanism and stall protection. Finally, last contributions are related to experience and results gained from flight tests which aimed to prove increase in energy state of the aircraft while performing energy harvesting maneuvers. The first flight test campaign was performed with commercially available mini UAV equipped with multi-hole probes and custom designed controller. This campaign demonstrated the raise in energy state within strong horizontal wind gradient. The second flight test campaign was done with a flying wing equipped with pressure sensing system for wind field estimation. This campaign also involved additional insight savings in electrical power consumption during energy harvesting flights.
438

UHF energy harvester in CMOS technology

Michelon, Dino 26 April 2016 (has links)
Un des défis majeurs de l’Internet des Objets et, plus généralement, des tous les réseaux de capteurs sans fils, c’est l’alimentation de chaque nœud connecté. La solution la plus commune est d’équiper chaque dispositif d’une batterie mais cela introduit plusieurs contraintes, qui mettent en question la faisabilité de cette approche sur le long terme (durée de vie limité, couts de gestion élevé, empreinte écologique).Cette thèse développe une possible solution basée sur la transmission sans-fils de l’énergie. Un récupérateur d’énergie RF, composé d’une antenne, un redresseur haute-fréquence et un convertisseur élévateur, est présenté. Ce système permet de récupérer les ondes électromagnétiques et de produire une tension continue en sortie, qui peut être utilisé pour alimenter des microcontrôleurs ou des capteurs. L’absence d’une batterie interne augmente la flexibilité globale, surtout pour les situations où le remplacement n’est pas possible (ex. dispositifs implantés, nombre élevé de nœuds, milieux dangereux). Une étude approfondie sur les redresseur intégrés ultra-haute-fréquence de type Schottky et MOS a été mené ; plusieurs topologies ont été analysées et optimisées. De plus, l’utilisation d’un convertisseur élévateur a été envisagée, dans le but d’accroitre la tension en sortie ; une première version discrète et puis une plus compacte version intégrée, ont été abordées et testées. Ces développements ont permis d’aboutir à un récupérateur complet, potentiellement capable d’alimenter un microcontrôleur du commerce. / One of the challenges of the Internet of Things and, more in general, of every wireless sensor network is to provide electrical power to every single one of its smart nodes. A typical solution uses batteries but various major concerns reduce the long-term feasibility of this approach (limited lifetime, maintenance and replacement costs, and environmental footprint).This thesis develops a possible solution based on the wireless transmission of power. A complete RF harvester composed of an antenna, a UHF rectifier and a step-up voltage converter is presented. This system captures electromagnetic waves and converts them to a stable DC voltage to supply power to common logic circuits like microcontrollers and sensors. The lack of an internal battery provides an extended flexibility, especially when its replacement is not a viable option (ex. implanted devices, large number of nodes, dangerous environments, etc.). An in-depth study of integrated Schottky and CMOS UHF rectifiers is carried out; various topologies and optimizations are analyzed. Moreover, the use of an additional step-up converter is proposed in order to increase the system output voltage; an early discrete implementation and a final, more compact, integrated version are discussed and tested. These developments lead to a complete system capable of potentially powering an application with an off-the-shelf microcontroller.
439

Système thermoélectrique pour la récupération d'énergie : modélisation électrique et continuité de service de la circuiterie électronique / Thermoelectric system for energy harvesting : electrical modeling and continuity of service of electronic circuit

Siouane, Saïma 06 December 2017 (has links)
La récupération d'énergie thermique basée sur les générateurs thermoélectriques (TEG) est utilisée dans de nombreuses applications telles que les dispositifs médicaux auto-alimentés. La sûreté de fonctionnement et la continuité de service de ces systèmes sont aujourd'hui des préoccupations majeures. Ainsi, toute défaillance au niveau d'un des interrupteurs commandables de la circuiterie électronique d'interface peut provoquer de graves dysfonctionnements du système. Tout défaut non détecté et non compensé peut mettre en danger l'ensemble du système et interrompt l'alimentation en énergie de la charge. Par conséquent, la mise en œuvre d'une compensation de défaut efficace et rapide est impérative afin d'assurer la continuité de service. Dans ces travaux de recherche, nous étudions la continuité de service d'une interface électronique pour TEG basée sur une conversion à deux étages Buck/Buck-Boost cascadés. Une modélisation électrique générique (modèle de Thévenin) du TEG sous différentes conditions de fonctionnement et prenant en compte l'ensemble des résistances thermiques de contact est tout d'abord présentée. Ensuite, une méthode de compensation de défaut de type circuit-ouvert au niveau de l'interrupteur commandable de l'un des deux convertisseurs DC-DC est également proposée. Nous présentons une topologie originale de convertisseur DC-DC à tolérance de pannes, sans redondance matérielle classique. Cette topologie permet d'assurer la continuité de service du système de récupération d'énergie en mode nominal. Les études théoriques ont été validées par simulation et par des tests expérimentaux / Thermal energy harevsting based on thermoelectric generators is used in many applications such as self-powered medical devices. The reliability and continuity of service of these systems are now major concerns. Furthermore, any failure in the controllable switch of the electronic interface circuitry can cause serious system malfunctions. Any undetected and uncompensated fault can endanger the entire system and interrupt the power supply to the load. Therefore, the implementation of an efficient and rapid fault compensation is imperative in order to ensure the continuity of service. In this research, we study the continuity of service of an electronic interface for TEG, based on a two-stage conversion cascaded Buck/Buck-Boost. A generic electrical modeling of the TEG model under different operating conditions and with taking into account all the thermal contact resistances is first presented. Next, an open-circuit fault compensation method of the controllable switch of one of the two DC-DC converters is also proposed. We present an original fault-tolerant DC-DC converter topology with no conventional hardware redundancy. This topology ensures the continuity of service of the energy recovery system in nominal mode. Theoretical studies were validated by simulation and experimental tests
440

Caractérisation et modélisation des polymères électro-actifs : Application à la récupération d’énergie / Electro-active polymers : Modeling and characterization and its application to energy harvesting

Eddiai, Adil 24 May 2013 (has links)
Le concept de la récupération d'énergie se rapporte généralement au processus d'utilisation de l'énergie ambiante, qui est converti, principalement (mais pas exclusivement) en énergie électrique pour faire fonctionner des dispositifs électroniques petites et autonomes. Les tendances récentes à la fois dans l'industrie et au domaine de la recherche ont mis l'accent sur les polymères électro-actifs pour la conversion d'énergie électromécanique. Cet intérêt s'explique par de nombreux avantages tels que la productivité élevée, la grande flexibilité, et la facilité de traitement. Le but de ce travail de recherche est d’explorer la potentialité des polymères électro-actifs pour une application de récupération d’énergie mécanique ambiante. Dans la première partie, une synthèse des composites à base de polyuréthane (PU) et de P(VDF-TrFE-CFE) a été réalisée, suivie d’une caractérisation électrique et mécanique de ces polymères et composites afin d’évaluer leurs paramètres intrinsèques. La seconde partie de ce travail de thèse concerne la caractérisation électromécanique de ces polymères. Un modèle analytique électromécanique est mise en place afin de déterminer finement le comportement physique des polymères électrostrictifs ainsi que les variations de leurs paramètres intrinsèques. Ce modèle analytique est validé par une série de tests à travers un banc d’essai. La dernière partie de ce travail consiste à évaluer les performances électromécaniques des polymères électrostrictifs pour la récupération d’énergie mécanique. Deux nouvelles techniques sont testées afin de maximiser la densité d’énergie récupérée. Ainsi qu’une comparaison avec les méthodes classiques a été réalisée. Un excellent potentiel de ces techniques pour la récupération d'énergie a été démontré. Le deuxième point porte sur l’étude de l’efficacité de la conversion électromécanique pour la récupération d’énergie mécanique en utilisant l'analyse spectrale FFT. Il a été montré que cette méthode permet de prévoir le rendement énergétique de nos polymères en accord avec les prédictions théoriques. Le dernier point se focalise sur l’amélioration de cette efficacité de conversion électromécanique en utilisant des électrets de polypropylène cellulaire, afin d’assurer un meilleur rendement énergétique. / The concept of energy harvesting generally relates to the process of using ambient energy, which is converted, primarily (but not exclusively) into electrical energy in order to power small and autonomous electronic devices. Recent trends in both industrial and research fields have focused on electro-active polymers for electromechanical energy conversion. This interest is explained by many advantages such as high productivity, high flexibility, and processability. The purpose of this research work is to explore the potential of electro-active polymers for application of mechanical energy harvesting. At first, a synthesis of the composite based on polyurethane (PU) and P (VDF-TrFE-CFE) was performed, followed by electrical and mechanical characterization of these polymers and composites in order to evaluate their intrinsic parameters. The second part of this thesis concerns electromechanical characterization of these polymers. An electromechanical analytic modeling is detailed in order to determine the physical behavior of electrostrictive polymers and the variations of intrinsic parameters. This modeling is validated by a series of tests using a test bench. The last part of this work consists to evaluate the electromechanical performance of electrostrictive polymers for the mechanical energy harvesting. Two new techniques are tested in order to maximize the density of energy recovered. As well as a comparison against those classic has been performed. Excellent potential of these techniques for energy harvesting has been demonstrated. The second point is about the study of the electromechanical conversion efficiency for scavenging mechanical energy using spectral analysis FFT. It was shown that this method allows predicting the energy efficiency of our polymers, in accordance with the results predicted by the model. The last point focuses on improving the efficiency of electromechanical conversion by using cellular polypropylene electrets to ensure better energy efficiency.

Page generated in 0.0454 seconds