• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 211
  • 48
  • 46
  • 32
  • 26
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 490
  • 490
  • 110
  • 99
  • 88
  • 74
  • 71
  • 65
  • 59
  • 56
  • 51
  • 49
  • 48
  • 46
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Mechatronic Design and Verification of Autonomic Thermoelectric Energy Source for Aircraft Application / Mechatronic Design and Verification of Autonomic Thermoelectric Energy Source for Aircraft Application

Ančík, Zdeněk January 2016 (has links)
Předložená disertační práce řeší komplexní mechatronický návrh autonomního termoelektrického zdroje energie pro letecké aplikace. Na základě dostupných zdrojů a literatury práce popisuje současný stav problematiky. V práci jsou prezentovány simulační modely MEMS termoelektrických článků, které jsou ověřeny experimentálním testováním a hodnotami dostupnými od výrobce. Na základě metodiky model-besed design byly navrženy a vyrobeny tři demonstrátory. Jejich vlastnosti byly testovány v reálných podmínkách na letecké pohonné jednotce.
412

Návrh vibračního generátoru s využitím nelineárních charakteristik / Design of Vibration Energy Harvester with Using of Non-linear Characteristics

Rubeš, Ondřej January 2016 (has links)
This thesis is focused on design of piezoelectric energy harvester with additional nonlinear stiffness. Linear generator has very narrow resonance frequency bandwidth. It makes the resonance mechanism very sensitive to tuning up of the resonance frequency and it can be tuned only for one narrow vibration peak. The main idea for using of the vibration energy harvester with nonlinear stiffness is to make resonance frequency bandwidth wider, so the generator will be useable for more excitation frequencies. In this thesis is used generator Midé V21BL and additional nonlinear stiffness is realized with permanent magnets.
413

Microsystème électrostatique tridimensionnel de récupération d'énergie pour alimenter un stimulateur cardiaque sans sonde / 3D electrostatic energy harvester to power a leadless pacemakers

Risquez, Sarah 28 February 2017 (has links)
Cette thèse s’inscrit dans un contexte d’activité en forte croissance dans le domaine des implants médicaux, stimulée par de nombreux progrès dans le domaine des micro-capteurs et de la micro-électronique. L’autonomie en énergie des implants demeure cependant un facteur limitant. Notre travail a pour objectif de repousser les limites actuelles en termes de miniaturisation et de durée de vie. Il contribue au développement d’une solution basée sur la récupération d’énergie mécanique du cœur pour alimenter durablement un pacemaker miniaturisé sans sonde de nouvelle génération, dit « pacemaker leadless ».Le microsystème de récupération d’énergie étudié est composé d’un résonateur mécanique de type masse-ressort associé à un transducteur électrostatique. Il a pour particularité une architecture tridimensionnelle, dont la forme permet de profiter au maximum de l’espace disponible dans la capsule cylindrique du pacemaker. L'utilisation de la troisième dimension associée à un design original permet en outre d’obtenir un effet de pseudo multiplication de fréquence qui doit conduire, d’après les modèles que nous avons développés, à des densités de puissance nettement supérieures à celles présentées dans l'état de l'art. Pour réaliser ce microsystème tridimensionnel, nous avons développé un procédé de fabrication additif qui repose sur des étapes de micro moulage d'un matériaux structurel obtenu par croissance électrolytique (nickel), de croissance d'un matériau sacrificiel (cuivre) et de polissage. L’identification d’imperfections géométriques dues au procédé et aux matériaux utilisés nous a amené à améliorer la conception du transducteur. Par ailleurs, de nombreux verrous de fabrication ont été levés au cours de cette thèse grâce à la mise en œuvre d’une instrumentation dédiée. Ce procédé nous a permis de fabriquer un premier prototype tridimensionnel du micro-transducteur électrostatique composé de 10 couches de nickel. D’autres métaux élaborés par croissance électrolytique pourraient être envisagés pour réaliser des microsystèmes tridimensionnels, suivant les besoins de l’application considérée. Afin d’anticiper d’éventuels problèmes de compatibilité des micro-dispositifs avec l'imagerie par résonance magnétique, nous avons mis au point le procédé de croissance électrolytique d’un matériau non-magnétique à base de nickel dopé au phosphore. / This thesis contributes to the medical implants field, which is stimulated by many advances in the fields of microelectronics and microsensors. However, electrical energy lifespan of implants and large size of batteries are still a problem. Our work aims at pushing back these limits. It contributes to the development of a solution based on mechanical energy harvesting from the heart motion. The objective is to sustainably power a new generation of pacemakers without lead, so-called "leadless pacemakers."The studied energy harvesting microsystem consists in a spring-mass-type mechanical resonator associated with an electrostatic transducer. Its originality comes from a three-dimensional architecture, whose shape fits pretty well with the cylindrical shape of the pacemaker capsule. The use of the third dimension combined with an original design enables to get a pseudo multiplication frequency effect. Thanks to this effect, our simulation models predict power densities significantly higher than state-of-the-art figures reported in literature. To fabricate this three-dimensional microsystem, we have developed an additive manufacturing process based on steps of micro-molding of a structural material (electroplated nickel), electroplating of a sacrificial material (copper) and planarization. Identification of imperfections related to the fabrication process and the materials used allowed us to improve the design of the transducer. Moreover, many manufacturing obstacles were overcome during this thesis through the implementation of dedicated instrumentation. This new process has enabled us to fabricate a first three-dimensional prototype of the electrostatic micro-transducer made of 10 layers of nickel. Other electroplated metals can be envisaged to achieve three-dimensional microsystems, depending on the application requirements. In order to anticipate any compatibility issue of our microsystem with magnetic resonance imaging, we have developed the electrodeposition process of a nonmagnetic material: phosphorous doped nickel.
414

Conception et réalisation d’un banc pour l’étude de fiabilité des micros dispositifs piézoélectriques de récupération d’énergie dédiés aux implants cardiaques / Design and realization of a bench for the study of the reliability of micro piezoelectric energy harvesting devices dedicated to cardiac implants

Maaroufi, Seifeddine 30 June 2017 (has links)
Dans le cadre de cette thèse de doctorat, nous présentons la conception et la réalisation d’un banc dédié à l’étude de la fiabilité de structures piézoélectriques et plus précisément des micro-dispositifs de récupération d'énergie destinés aux implants médicaux autonomes actifs (stimulateurs cardiaques de nouvelle génération). Les structure étudiées se présentent sous la forme d’un bimorphe piézoélectrique encastré-libre comportant une masse sismique à leur extrémité. Une bonne compréhension du vieillissement des matériaux et des modes de défaillance mécanique et électrique est essentielle pour ce type de système où la vie du patient au sein duquel est implanté le dispositif est directement mise en jeu. Pour étudier la fiabilité et la durabilité de la partie active du récupérateur, nous proposons d'établir une nouvelle méthodologie de vieillissement accélérée via un banc d'essai dédié où l'environnement et les stimuli peuvent être contrôlés avec précision sur une large période de temps. Une caractérisation électromécanique des structures est périodiquement réalisée via l’extraction d’une série d’indicateurs (force de blocage, raideur, tension en régime harmonique) au sein même du banc tout au long du vieillissement. Il est donc ainsi possible d'identifier les différents modes de défaillance potentiels et d’étudier leurs impacts sur le bon fonctionnement du système. / Within the framework of this PhD we present the design and realization of a bench dedicated to the study of the reliability of piezoelectric structures and more precisely micro-devices of energy harvesting for the new generation of active and autonomous medical implants. The structures studied are in the form of a free-clamped piezoelectric bimorph having a seismic mass at their tip. A good understanding of the aging of the materials and of the mechanical and electrical failure modes is essential for this type of system where the life of the patient implanted by this device is directly involved. To study the reliability and durability of the active part of the harvester, we propose to establish a new accelerated aging methodology via a dedicated test bench where the environment and stimuli can be controlled accurately over a large period of time. An electromechanical characterization of the structures is periodically carried out by the extraction of a series of indicators (blocking force, stiffness, tension in harmonic regime) within the bench throughout the aging process. Therefore it is possible to identify the different potential failure modes and to study their impact on the proper functioning of the system.
415

Nanomanufacturing of Wearable Electronics for Energy Conversion and Human-integrated Monitoring

Min Wu (9745856) 14 December 2020 (has links)
<div>Recently, energy crisis and environment pollution has become global issues and there is a great demand for developing green and renewable energy system. At the same time, advancements in materials production, device fabrication, and flexible circuit has led to the huge prosperity of wearable devices, which also requires facile and efficient approaches to power these ubiquitous electronics. Piezoelectric nanogenerators and triboelectric nanogenerators have attracted enormous interest in recent years due to their capacity of transferring the ambient mechanical energy into desired electricity, and also the potential of working as self-powered sensors. However, there still exists some obstacles in the aspect of materials synthesis, device fabrication, and also the sensor performance optimization as well as their application exploration.</div><div>Here in this research, several different materials possessing the piezoelectric and triboelectric properties (selenium nanowires, tellurium nanowires, natural polymer hydrogel) have been successfully synthesized, and also a few novel manufacturing techniques (additive manufacturing) have been implemented for the fabrication of wearable sensors. The piezoelectric and triboelectric nanogenerators developed could effectively convert the mechanical energy into electricity for an energy conversion purpose, and also their application as self-powered human-integrated sensors have also been demonstrated, like achieving a real-time monitoring of radial artery pulses. Other applications of the developed sensors, such as serving as electric heaters and infrared cloaking devices are also presented here. This research is expected to have a positive impact and immediate relevance to many societally pervasive areas, e.g. energy and environment, biomedical electronics, and human-machine interface.</div><div><br></div>
416

Plasmonics for Nanotechnology: Energy Harvesting and Memory Devices

Aveek Dutta (9033764) 26 June 2020 (has links)
<div>My dissertation research is in the field of plasmonics. Specifically, my focus is on the use of plasmonics for various applications such as solar energy harvesting and optically addressable magnetic memory devices. Plasmonics is the study of collective oscillations of free electrons in a metal coupled to an electromagnetic field. Such oscillations are characterized by large electromagnetic field intensities confined in nanoscale volumes and are called plasmons. Plasmons can be excited on a thin metal film, in which case they are called surface plasmon polaritons or in nanoscale metallic particles, in which case they are called localized surface plasmon resonances. Researchers have taken advantage of this electromagnetic field enhancement resulting from the excitation of plasmons in metallic structures and demonstrated phenomenon such as plasmon-assisted photocatalysis, plasmon-induced local heating, plasmon-enhanced chemical sensing, optical modulators, nanolasers, etc.</div><div>In the first half of my dissertation, I study the role of plasmonics in hydrogen production from water using solar energy. Hydrogen is believed to be a very viable source of alternative green fuel to meet the growing energy demands of the world. There are significant efforts in government and private sectors worldwide to implement hydrogen fuel cells as the future of the automotive and transportation industry. In this regard, water splitting using solar energy to produce hydrogen is a widely researched topic. It is believed that a Solar-to-Hydrogen (STH) conversion efficiency of 10% is good enough to be considered for practical applications. Iron oxide (alpha-Fe2O3) or hematite is one of the candidate materials for hydrogen generation by water splitting with a theoretical STH efficiency of about 15%. In this work, I experimentally show that through metallic gold nanostructures we can enhance the water oxidation photocurrent in hematite by two times for above bandgap wavelengths, thereby increasing hydrogen production. Moreover, I also show that gold nanostructures can result in a hematite photocurrent enhancement of six times for below bandgap wavelengths. The latter, I believe, is due to the excitation of plasmons in the gold nanostructures and their subsequent decay into hot holes which are harvested by hematite.</div><div>The second part of my dissertation involves data storage in magnetic media. Memory devices based on magnetic media have been widely investigated as a compact information storage platform with bit densities exceeding 1Tb/in2. As the size of nanomagnets continue to reduce to achieve higher bit densities, the magnetic fields required to write information in these bits increases. To counter this, the field of heat-assisted magnetic recording (HAMR) was developed where a laser is used to locally heat up a magnet and make it susceptible to smaller magnetic switching fields. About two decades ago, it was realized that a single femtosecond laser pulse can switch magnetic media and therefore could be used to write information in magnetic bits. This field is now known as All-Optical Magnetic Switching (AOMS). My research aims to bring together the two fields of HAMR and AOMS to create optically addressable nanomagnets for information storage. Specifically, I want to show that plasmonic resonators can couple the laser field to nanomagnets more efficiently. This can therefore be used not only to heat the nanomagnets but also switch them with lower optical energy compared to free-standing nanomagnets without any plasmonic resonator. The results of my research show that by coupling metallic resonators, supporting surface plasmons, to nanomagnets, one can reduce the light intensity required for laser induced magnetization reversal.</div>
417

Piezoelektrisk energiskördning för oregelbundna lågfrekventa rörelser / Piezoelectric Energy Harvesting for Irregular Low Frequency Motions

Bogren, Oliver, Olofsson, Simon January 2016 (has links)
Energiskördning är idag ett växande område och är framstående sett till hållbarhetsaspekterna. Vibrationsbaserad sådan har blivit allt populärare där man kan utnyttja mekanisk energi från olika källor till att generera elektrisk energi. Piezoelektricitet fungerar enligt denna princip och piezoelektrisk energiskördning har varit ett område som fler och fler utnyttjar på grund av dess effektivitet, exempelvis till trådlösa sensornätverk. Ett krav på att piezoelektrisk energiskördning ska fungera optimalt är att vibrationerna sker med en satt frekvens utan större variation, ofta i väldigt höga frekvenser. Syftet med detta projekt är att anpassa denna teknik till mänskliga rörelser vilket kan göra den mer användbar och ett tänkt ändamål kan vara ett demonstrationsexempel för oregelbundna rörelser vid låga frekvenser, precis som mänskliga rörelser. Utmaningen lägger därmed i att utveckla en piezoelektrisk energiskördare som har ett frekvensområde inom mänskliga rörelsers frekvenser på 4 till 7 Hertz, där effektiviteten fortfarande kan vara hög. Detta har beprövats med vibrationsplatta. Vad som observerades var att med flera piezoelektriska material på konsolbalkar i kolfiber av olika dimensioner med olika vikter längst ut, uppstod ett frekvensområde inom mänskliga området med höga spänningar. För att göra det möjligt behövdes vikterna ha en stor massa av upp till hundratals gram så att resonansfrekvenserna kunde vara inom nämnt frekvensområde. Då piezoelektriska material ger en växelspänning, måste spänningen likriktas. Detta gjordes med två olika gränssnitt med ett mönsterkort tillverkat för vardera. Dessa gränssnitt är ett klassiskt som helt enkelt likriktar spänningen, medan den andra, Parallel Synchronized Switch Harvesting on the Inductor (P-SSHI), ska maximera spänningen och effekten. Det visade sig att det inte blev lika lyckat som planerat. Det klassiska gränssnittet gav en likspänning som var nästan lika hög som den inmatade växelspänningen medan det inte gällde för P-SSHI. / Today energy harvesting is an area on the rise and is outstanding in regards to the environmental aspects. Vibration based energy harvesting has become popular where it uses mechanical energy from different sources to produce electrical energy. Piezoelectricity operates according to this principle and piezoelectric energy harvesting has been an area more are using because of its efficiency, with applications such as wireless sensor networks. One demand for piezoelectric energy harvesting to work optimally is that the vibration source must have a well known frequency with minor deviations and this in usually very high frequencies. The purpose of this thesis is to adapt this technology to human motions which could make it even more useful and a proposed usage is a demo product for irregular motions of low frequency, just like human motions. The challenge is hence to create a piezoelectric energy harvester which has a frequency range within the human motions’ frequencies of 4 to 7 Hertz, where the efficiency still could be high. This has been tested using a vibration exciter. What was noticed was that with multiple piezoelectric materials on cantilever beams of carbon fibre with different dimensions and tip masses, a frequency range within human range with high voltages could be created. To make this possible, the masses needed to have a significant mass of up towards hundreds of grams in order for the resonance frequencies to be within the stated frequency range. As the piezoelectric materials provide an AC voltage, the voltage needs to be rectified. This was done with two different interfaces with a PCB created for each. These interfaces are a classic one which simply rectifies the voltage, while the other, Parallel Synchronized Switch Harvesting on the Inductor (PSSHI), is supposed to maximize the voltage and power. This did not turn out to be as successful as predicted. The classical interface delivered a DC voltage almost as much as the provided AC voltage while the P-SSHI interface did not.
418

Développement d'une cellule SOFC de type monochambre pour la conversion en électricité des gaz d'échappement d'un moteur thermique / Development of a single chamber SOFC device for electrical energy production from exhaust gases of a thermal engine

Briault, Pauline 16 January 2014 (has links)
Le projet présenté dans ce mémoire a pour objectif de développer un système de récupération d’énergie des gaz d’échappement d’un véhicule à essence. Constitué de piles à combustible à oxyde solide (SOFC) en configuration monochambre, le dispositif doit convertir l’énergie chimique des gaz imbrûlés en électricité. Son fonctionnement en aval du catalyseur trois voies permettrait de compléter son action dépolluante tout en améliorant l’efficacité énergétique du véhicule. Par opposition aux piles SOFC dites conventionnelles, les piles SOFC monochambres ne nécessitent pas de scellement étanche entre les compartiments et fonctionnent sous un mélange gazeux composé d’hydrocarbures et d’oxygène. L’empilement en stack de plusieurs cellules est simplifié et plus compact, son intégration au cœur du pot d’échappement est donc plus simple. Ce concept a été précédemment étudié dans la littérature et le présent projet a pour but d’améliorer les performances délivrées en optimisant certains paramètres : la géométrie de pile et les matériaux d’électrodes et d’électrolyte. De plus, un mélange gazeux plus représentatif des conditions réelles a été défini et utilisé tout au long du projet. Une étude préliminaire sur les matériaux sous forme de poudre a permis de réaliser un premier choix parmi quatre matériaux de cathode et de définir les conditions de fonctionnement théoriques des cellules. Ensuite, les cellules complètes ont été mises en forme puis étudiées sous mélange gazeux. Une densité maximale de puissance de 25 mW.cm-2 à 550°C pour une cellule Ni-CGO/CGO/LSCF-CGO a ainsi pu être obtenue. / This study aims at developing a system able to recover energy from exhaust gases of a thermal engine. Composed of Solid Oxide Fuel Cells (SOFC) in a single chamber configuration, the device has to convert chemical energy of gases into electricity. Embedded in the exhaust line at the exit of the three-way catalyst, the stack of single chamber SOFC will complete the reduction of toxic gases emissions with an improvement of the vehicle energy efficiency.Unlike conventional SOFC, single chamber SOFC do not require any gastight sealing between compartments and work in a mixed atmosphere composed of hydrocarbon and oxygen. Stack assembly is thus simplified and more compact; insertion into the exhaust line is therefore easier. This concept has been previously studied in the literature and this work aims at enhancing performances through the optimisation of some parameters such as cell geometry and cell components materials.Moreover, a more representative gas mixture of actual compositions in the exhaust line has been defined and used all along this project. A preliminary study on the raw materials has allowed to make a first selection among four cathode materials and to define theoretical working conditions of our cells. Afterwards, cells have been elaborated and then studied in the selected gas mixture. A maximum power density of 25 mW.cm-2 has been obtained at 550°C for a Ni-CGO/CGO/LSCF-CGO cell.
419

Etude de dispositifs piézoélectriques et de leurs interfaces pour la récupération d'énergie / Designs for MEMS and Bulk-Sized Piezoelectric Energy Harvesting Systems for Ultra Low Power and Bandwidth Extension

Shih, Ya Shan 12 January 2018 (has links)
La récupération d'énergie ambiante permet d’alimenter de manière autonome des systèmes de petite taille tels que des neouds de capteurs ou des objets connectés à internet (IoT) en remplacement des batteries. Les sources d’énergie ambiante sont par exemple, l’énergie solaire, le gradient thermique, les forces mécaniques, le rayonnement électromagnétique et la pile microbienne. Les matériaux piézoélectriques permettent de valoriser électriquement l’énergie mécanique de vibration en la convertissant directement en énergie électrique. Les niveaux de puissance assez faible (de quelques μW au mW) ont amené à développer des interfaces électriques de récupération afin d’extraire le maximum d'énergie en améliorant le couplage électromécanique. Dans ce travail, nous nous intéressons à l’amélioration de dispositif de récupération d’énergie. Deux aspects sont abordés : dans un premier temps l’étude d’un commutateur hybride synchrone électrique-mécanique est faite pour remplacer le transistor MOSFET couramment utilisé, afin de réduire sa consommation d’énergie ; dans un deuxième temps, un travail est mené sur une nouvelle structure mécanique à base de poutres reliées entre elle par des forces de répulsion magnétique. La structure obtenue par cet ensemble de poutres et de type non-linéaire à plusieurs degrés de liberté (MDOF) ce qui permet augmenter la bande passante. / The future trend of Internet of Things (IoT) is bringing energy harvesting in to the core technique due to its requirement of self-power supplying. For best customer interface and eco-friendly issues, additional sensing systems are to be designed small, wireless and self-powering. Energy harvesting provides a way to realize the wireless self-powered system, it enables the device itself to obtain its own energy from their environment. Solar energy, thermal gradient, mechanical forces, are some commonly seen methods to obtain energy from the environment. The piezoelectric energy harvester is chosen to harvest vibrational energy in this study. In this work, a simple model of the original electrical smart switch driven under ultra-low power is proposed. By using the miniature device to drive the smart switch, the efficiency when low power is provided was examined. To construct an energy harvesting system in a more complete aspect, two newly proposed methods are as below: First, the hybrid-electrical-mechanical switches were utilized to replace the commonly seen electrical smart switches, to reduce its energy consumption such as threshold loss. Secondly, we designed a new mechanical structure for the cantilever array by connecting the beams using magnetic repelling force. In this way, the beams within the array were connected physically, forming a nonlinear multi-degree of freedom (MDOF) -like result.
420

Récupération d'énergie aéroacoustique et thermique pour capteurs sans fil embarqués sur avion / Aeroacoustic and thermal energy harvesting for wireless aircraft embedded sensors

Monthéard, Romain 27 November 2014 (has links)
Ces travaux portent sur la question de l’autonomie énergétiquedes capteurs sans fil dans un contexte aéronautique, à laquelle la récupérationet le stockage d’énergie ambiante sont susceptibles d’apporter uneréponse. Nous étudions dans un premier temps la génération thermoélectrique,destinée à être appliquée au suivi du vieillissement structurelprès de la zone moteur, et débouchant sur la réalisation d’un démonstrateur.Nous proposons ensuite une architecture de stockage capacitif qui,en s’adaptant à son état de charge, vise à améliorer la performance de cettesolution de stockage en termes de temps de démarrage, de taux d’utilisationd’énergie et sous certaines conditions, de transfert d’énergie. Finalement,nous rapportons les résultats d’une étude prospective sur la récupérationd’énergie du vent relatif grâce au phénomène aéroacoustique. Nousmontrons que cette méthode présente un potentiel énergétique intéressant,puis nous présentons la conception et la réalisation d’un circuit optimiséde gestion de l’énergie, permettant d’alimenter grâce à cette technique uncapteur sans fil de température / This work adresses the issue of energy autonomy within wirelesssensor networks embedded in aircrafts, which may be solved throughambient energy harvesting and storage. In a first study, we develop a demonstratorbased on thermal gradients energy harvesting, which is designedto supply power to a structural health monitoring system implementednear the engine zone. Thereafter, we introduce a capacitive storagearchitecture which self-adapts to its own state of charge, aiming at improvingits performance in terms of startup time, the energy utilization ratioand under some conditions, the energy transfer. Finally, we report the resultsof a prospective study on aeroacoustic energy harvesting appliedto the relative wind. It is shown that this method exhibits an interestingpotential in terms of generated power, then we introduce the design andthe realization of an optimized energy management circuit, allowing ourtechnique to supply power to a wireless temperature sensor

Page generated in 0.0583 seconds